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Abstract
When preprocedural images are overlaid on intraprocedural images, interventional procedures benefit in that more structures 
are revealed in intraprocedural imaging. However, image artifacts, respiratory motion, and challenging scenarios could limit 
the accuracy of multimodality image registration necessary before image overlay. Ensuring the accuracy of registration during 
interventional procedures is therefore critically important. The goal of this study was to develop a novel framework that has 
the ability to assess the quality (i.e., accuracy) of nonrigid multimodality image registration accurately in near real time. We 
constructed a solution using registration quality metrics that can be computed rapidly and combined to form a single binary 
assessment of image registration quality as either successful or poor. Based on expert-generated quality metrics as ground 
truth, we used a supervised learning method to train and test this system on existing clinical data. Using the trained quality 
classifier, the proposed framework identified successful image registration cases with an accuracy of 81.5%. The current 
implementation produced the classification result in 5.5 s, fast enough for typical interventional radiology procedures. Using 
supervised learning, we have shown that the described framework could enable a clinician to obtain confirmation or caution 
of registration results during clinical procedures.
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Introduction

Computed tomography (CT) is the imaging modality of 
choice for guiding percutaneous tumor ablation of liver 
tumors [1–3]. CT is common due to its ability to provide 
fast, high-resolution, and three-dimensional (3D) images 
of organs of interest intraprocedurally. In addition, CT 

images facilitate a radiologist’s spatial understanding of the 
tumor inside the host organ and with respect to surround-
ing structures [4]. However, typically, only unenhanced CT 
images are used, so tumor margins may not be delineated 
well [5], which may contribute to misdirected or incomplete 
ablation [6–10].

Incomplete ablations or ablations with small margins, the 
shortest distance between the outer boundary of the tumor 
and the outer boundary of the ablation, have been corre-
lated with high local tumor progression (LTP) rates [11, 12]. 
The effect of increasing the ablation margin on LTP can 
be dramatic. A study demonstrated that for hepatocellular 
carcinoma, an ablation margin increase from 1 mm to 3 mm 
corresponded to a drop in the LTP rate from 23% to 0% [13, 
14]. Visualizing tumor boundaries clearly is important for 
achieving complete treatment with adequate ablation mar-
gins and thus best patient outcomes.

To delineate tumor boundaries intraprocedurally, we per-
form multimodality registration of preprocedural images 
such as magnetic resonance (MR) images to intraprocedural 
CT images. If successfully registered, tumor boundaries 
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depicted on MR images and overlaid on live CT image can 
help an interventional radiologist guide the ablation needle 
precisely to the tumor [15]. Furthermore, the tumor bounda-
ries can be directly compared to ablation effects depicted 
on intraprocedural CT images. The proposed registration 
can thus depict both tumor and ablation volumes [16]. Non-
rigid image registration techniques can be used to correct 
accurately any misalignment between structures in the two 
images caused by physiologic variations [17]. For exam-
ple, the liver may be misaligned because of diaphragmatic 
motion or different patient orientation (e.g., prone versus 
supine).

While nonrigid registration is a solution, registration 
accuracy, in some cases, may be affected by a number of 
external factors: image artifacts, major changes to anatomy, 
and improper initialization. To maintain clinically accept-
able accuracy when such effects are unavoidable, a quality 
assessment system can be used to intercept poorly registered 
images and remove them from consideration by a clinician. 
The benefits of quality assessment for registration have been 
utilized in domains such as radiotherapy [18] and diagnostic 
radiology [19–21], but not yet in interventional radiology. In 
this work, we construct a solution based on accuracy metrics 
used in image registration that can be computed in near real 
time and combined to form a single assessment of multi-
modality registration quality as a binary value: successful 
or poor. We define a successful registration as one that is in 
close agreement with an expert-based correspondence and a 
poor registration as one that is not. Using expert-generated 
offline metrics of image registration, we present a supervised 
learning method, which predicts the quality of image regis-
tration from the trained classification model, and then test 
this framework on existing clinical data.

Our contribution is a quality assessment framework that 
is designed to integrate into existing interventional radiology 
workflows at interactive speeds and deliver fusion results 
that are quantifiably accurate relative to expert-validated 
solutions. We describe an implementation of the key compo-
nent for this framework: a near real-time quality assessment 
module using supervised learning. By establishing a quality 
threshold enforced by our system, the fusion of MR and CT 
images to guide percutaneous ablations can be more reliable 
and enable faster and more accurate procedures.

Background

Automated Medical Image Registration

Image registration algorithms seek to find correspondences 
between two images and correct for any misalignments 
based on those correspondences. The task of discovering 

correspondences can be accomplished in a variety of ways 
including matching of extracted landmarks to homologous 
landmarks, an image to an atlas, or voxel intensities to 
voxel intensities. For a given similarity function S, we 
define an ideal registration transformation t̂ by:

where Ir is the reference image (sometimes called fixed), If  is 
the floating image (sometimes called moving), t ∶ ℝ

m
→ ℝ

m 
is a transformation that may be applied to points in the space 
of Ir to find the corresponding value or feature of a point in 
If  . In this work, we focus on If  and Ir when m = 3 . T is the 
set of possible transformations, and t̂ is a transformation 
which optimizes the similarity S being used. Note that t and 
t̂ are transformations of reference image points to floating 
image points, such that the registered floating image will 
cover all the points in the reference image. Image registra-
tion methods commonly employ regularization to limit the 
set of transformations T. For instance, correspondences that 
indicate a transformation that is not physically possible are 
excluded from T because they cannot represent a possible 
correspondence even if they optimize a similarity func-
tion. T can represent rigid registration, in which only linear 
transformations are used to map the floating image to the 
reference, or nonrigid registration, in which nonlinear trans-
formations are used to represent local deformations inside 
the volume. Rigid transformations may be represented by a 
tuple of parameters, while nonrigid transformations are often 
represented by a deformation field such that each voxel in the 
floating image has a unique vector to describe how it maps 
to the reference image space.

For multimodality image registration the focus of this 
work, we utilize a volume subdivision algorithm previ-
ously reported by our team [22] and accelerated on a GPU. 
This multilevel algorithm begins by performing a rigid 
registration between the two volumes (i.e., volumetric 
images). After rigid registration, the reference volume is 
divided into eight smaller subvolumes by dividing along 
each of the three axes, and an independent rigid registra-
tion takes place between each of the subvolumes and the 
floating image. By repeating the division and registration 
processes, rigid-body transformations that best model the 
local deformation for each of the subvolumes are deter-
mined. When these transformations are smoothly inter-
polated, nonrigid registration is achieved. Normalized 
mutual information (NMI) [23] is the similarity measure 
for registrations performed at all levels, and the solutions 
from previous levels contribute to NMI at subsequent sub-
volumes to improve local stability while retaining speed. 
This nonrigid registration algorithm is inherently tailored 
to benefit from the GPU′ s parallel computing capability.

(1)t̂ = argmax
t∈T

S
(
Ir, If , t

)
,
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Metrics of Registration Quality

Regardless of the registration approach used and its dem-
onstrated accuracy and robustness, suboptimal results are 
always possible. The ability to assess the quality of a given 
registration result is of critical importance in real-world 
applications. When evaluating registration approaches for 
accuracy, ideally, ground truth would be available. How-
ever, a true ground truth is difficult to be obtained unless the 
images or the transformation to be recovered is synthetic. 
For clinical images, proxies for ground truth fall into either 
offline or online metrics, which are described next.

Offline vs. Online Metrics

Relying on experts to mark points or contour structures is the 
gold standard of assessing registration quality when working 
with clinical images. Since an expert must create or at least 
approve marks, these quality metrics can only be used in 
an offline scenario, well after the registration is complete. 
Offline quality metrics based on such data cannot be fully 
automated and deployed with a registration solution. For such 
a situation, online metrics are required to evaluate the quality 
of a given resulting transformation. Assessments of registra-
tion quality are determined based on derived features of the 
image pair, evaluating correspondences or properties of the 
transformation itself. Online quality assurance metrics act as 
a guide to an automated optimization system toward a better 
solution contributing to either a similarity cost function or a 
regularization approach that augments such a function.

Point‑Based Metrics

Target registration error (TRE) is the most common offline 
metric, in which an expert identifies point landmarks com-
mon to both images. The TRE is then the mean distance 
between matching point pairs, and it assesses the transforma-
tion accuracy between the reference and floating images at 
these point landmarks. The primary issue with using TRE 
is that point landmarks can be ambiguous. The dome of 
the liver may be identifiable in both images, but the soft-
tissue deformation may cause a different physical point to 
be the dome. This can lead to difficulties identifying a true 
correspondence.

Contour‑Based Metrics

Volumetric misalignment of an organ between two images 
can be evaluated using contour-based offline metrics such as 
Hausdorff distance (HD) and the Dice similarity coefficient 
(DSC) [24, 25]. The HD provides the mismatch distance 
between two contours, and perfect alignment yields an HD 
equal to 0. The DSC is defined as

where A and B are labeled subvolumes in the same image 
space, |A| , |B| , and |A ∩ B| represent the volumes of the organ 
of interest in each image and the overlap between the two, 
respectively. Perfect alignment of the two data sets leads to 
a DSC value of 1. The HD and DSC are both derived from 
the same contours. However, they have distinctive inter-
pretations; the HD indicates a misalignment of the region 
between the two images, whereas the DSC denotes what 
percent of the area in the registered image represents the true 
area. Although the HD provides an intuition as to the degree 
of misalignment in units of distance, it tends to be sensitive 
to outliers, which often makes it less stable than the DSC.

Intensity‑Based Metrics

Intensity-based metrics are online metrics that either assume 
or discover correspondences between pixel intensities. They 
assess the similarity of an image pair for a given transforma-
tion. When image pixel correspondences (and hence inten-
sity correspondences) are known, metrics such as the sum 
of differences or squared differences are effective at indicat-
ing similarity. When correspondences must be discovered, 
entropy-based features such as the mutual information (MI) 
can be employed, which can account for nonlinear depend-
encies in multimodality medical images [26]. In addition, 
normalized MI or NMI is effective for multimodality images 
that are sensitive to the changes in the overlap of low con-
trast regions [23]. The NMI is defined as

where A and B indicate individual images, and H is a meas-
ure of individual or joint entropy. Although NMI has been 
proved to be effective, homogeneous regions in organs can 
be arbitrarily deformed as they lack features to anchor the 
correspondences.

Deformation Field‑Based Metrics

For nonrigid registration, a smooth deformation field may 
be created from a transformation result. This field has prop-
erties that can be used to assess the quality of registration. 
When both a forward and a backward registration are per-
formed, applying them in sequence should reproduce the 
original image albeit with few errors [27], which we refer to 
as self-TRE (STRE):

(2)DSC(A,B) =
2|A ∩ B|
|A| + |B|

,

(3)NMI(A,B) =
H(A) + H(B)

H(A,B)
,

(4)STRE(xr) = |xr − tbackward(tforward(xr))|,
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where xr is a point in the reference image, and tf orward 
and tbackward transform the point from the reference image 
space to floating image space, and vice versa. When sampled 
over an entire result, STRE provides a meaningful check of 
the consistency of the registration solution. Recovering the 
underlying deformation from two different directions and 
achieving a unique solution suggests that the solution is cor-
rect. If forward and backward registrations do not produce 
a self-consistent result that finds the same correspondences 
in both directions, then at least one of the registration results 
is incorrect. It is possible that the forward registration cor-
respondence is correct but the backward registration result 
is incorrect, or vice versa. Even when the forward and back-
ward registrations agree, it is also plausible that both are 
incorrect in the same way, overlooking an erroneous result 
that happens to be consistent. STRE is thus a necessary but 
not sufficient metric of accurate image registration.

The Jacobian determinant (JD) can be used to assess 
the amount of warping of a deformation field. In the con-
text of image registration, the JD is defined as the deter-
minant of the first-order partial derivative of the deforma-
tion field. In the case of image registration:

where Ji j are the entries in the Jacobian matrix, ti is the value 
of the i component of the vector of the deformation field, and 
xj is the j component of the point. When JD is applied on 
subvolumes of the deformation field, it indicates whether the 
deformation field is growing or shrinking. Variance in the 
size of subvolumes is possible, but for homogeneous regions 
that are erroneously deformed, the average, maximum, or 
minimum JD will correlate to such an error.

Related Work

Previous work on quality assurance of image registra-
tion has used Bayesian and supervised learning-based 
approaches [28]. During interventional procedures, a 
supervised learning-based assessment method is more 
suitable because of its lower computational complexity 
allowing the potential for real-time processing. In this 
section, we therefore review relevant previous studies on 
registration quality assessment using supervised learning. 
We then introduce our earlier registration study, the data, 
and the results of which were used in this work.

Previous Work on Quality Assessment

Wu and Samant [18] proposed a supervised learning-based 
approach to assess the quality of registration and identifying 

(5)JD = det
(
Jij
)
= det

(
�ti

�xj

)
,

misregistration in patient positioning during radiation ther-
apy. They used MI as a feature and an adaptive pattern clas-
sifier for quality assessment. Wu and Murphy [19] refined 
their previously reported work by adding more features and 
constructing a two-layer feed-forward neural network. With 
this framework, they focused on improving the evaluation 
of the quality of rigid registration of volumetric CT images 
for patient setup in radiotherapy. Shams et al. [21] presented 
a method for extracting a number of features in ultrasound 
images and used them to evaluate the quality of rigid reg-
istration for patient positioning during ultrasound-guided 
radiotherapy.

Heinrich et al. [29] and Muenzing et al. [20] presented a 
study on using statistical image features at distinctive land-
mark points of lung CT images and employing a set of dif-
ferent classifiers for registration quality assessment. They 
used manual landmark correspondences and evaluated the 
accuracy of spatial mapping between point landmarks in the 
CT images. Sokooti et al. [30] proposed a quality assess-
ment framework using random regression forests. Using the 
regression model, they measured the registration error of 
chest CT scans in a quantitative manner, and then classi-
fied the registration quality. Schlachter et al. [31] presented 
a system for visualizing the quality of nonrigid registra-
tion of lung images. They used dissimilarity measures of 
local image patches and GPU acceleration to visualize the 
registration quality. Kybic et al. [32] proposed a prediction 
method that applies bootstrap resampling for image registra-
tion. Heinrich et al. [29] estimated registration uncertainty 
using supervoxel belief propagation to improve the accuracy 
of nonrigid registration.

Each of these works was motivated by the need for 
assessing whether a registration result is suitable for 
clinical use. However, these studies included only single-
modality registration. These approaches are not easily 
applicable and extensible to multimodality registration, 
the focus of our work presented. Furthermore, there is no 
discussion of the computational aspects of these methods, 
and it is not clear if they run at practical speeds. In contrast, 
our work is focused on assessing the quality of multimodal-
ity registration results in near real time for interventional 
radiology procedures. This motivation necessitates a num-
ber of differences in the underlying methods for training 
and implementation.

Our Previous Registration Study

For the present work, we used imaging data from a previ-
ously published registration study [33] by our team. This 
study included ground-truth registration data provided by 
expert clinicians, board-certified interventional radiolo-
gists with over 10 years of experience each. The study 
focused on demonstrating the accuracy and speed of the 
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GPU-accelerated volume subdivision registration algo-
rithm in the interventional radiology setting. We utilized 
abdominal imaging data that included a pair of volumet-
ric intraprocedural CT and preprocedural MR images for 
each patient. The study was institutional review board-
approved (Protocol 2002-P-001166/24), and the inclusion 
criteria were subjects who 1) had undergone CT-guided 
liver ablations between January 2013 and October 2013 
and 2) had preprocedural MRI studies. Using these cri-
teria, 14 subjects (aged 45–84 years; six men and seven 
women; one man underwent two ablations during two 
separate procedures) were included in the study. Tumor 
ablations were conducted using microwave ablation (n 
= 8; AMICA; HS Medical Inc., Boca Raton, FL), cry-
oablation (n = 6; Galil Medical Ltd., Yokneam, Israel), 
or radiofrequency ablation (n = 1; Covidien, Mansfield, 
MA). In one patient, both cryoablation and microwave 
ablation were performed to treat separate tumors in a 
single session. Using these datasets, automated multi-
modality registrations were performed between the MR 
and CT images, and then alignment was assessed against 
liver contours provided by clinical experts. This study 
showed that automatic registration provided by the GPU-
accelerated volume subdivision algorithm was faster than 
semi-manual methods with no loss in accuracy.

For the purpose of quality assessment using supervised 
learning in the present study, datasets that lead to vary-
ing accuracies of multimodality registration need to be 
generated. To achieve this, we adopted the standard data 
augmentation strategy, and it is described in “Datasets”.

Methods

We performed a retrospective study that included multimo-
dality registration using existing data as discussed in “Our 
Previous Registration Study”.

Real‑Time Quality Assessment Architecture

To achieve the goal of real-time discrimination between suc-
cessful and poor registration instances, we propose a novel 
quality assessment framework, as shown in Fig. 1. The key 
challenge in developing this framework is to compute and 
combine registration quality metrics rapidly with no manual 
assistance such that the metrics can be incorporated in a 
clinical workflow. Registration and fusion of MR and CT 
images that pass this framework should be of a quality simi-
lar to what an expert would have validated if given the time.

To meet this computational challenge, we use two GPUs 
concurrently to perform forward and backward registra-
tions between the preprocedural MR image and the intrap-
rocedural CT image. This approach enables near real-time 
computation of intensity-based and deformation field-based 
online metrics. Using these online quality metrics, we 
employ a supervised binary classifier based on the Random 
Forest method [34] for quality assessment. Random For-
est is an ensemble learning method for classification, which 
constructs multiple decision trees and takes the average 
prediction over all of the trees to derive the classification 
result. For our framework, we selected Random Forests, as 
it does not require preprocessing such as data rescaling and 
feature selection of quality metrics. The proposed framework 
constructs a classifier which produces a binary assessment—
successful or poor—of registration quality. This approach 
requires labeled datasets to train the classifier, which is 
explained next.

Experimental Setup for the Binary Classifier

Datasets

Positive and negative examples are needed to train the pro-
posed binary classification model. In this work, positive and 
negative represent successful registration (SR) and poor 

Fig. 1   Real-time quality assurance architecture using supervised 
learning. GPU-accelerated nonrigid registration was performed to 
compute registration quality metrics. Based on the quality metrics 

computed in real time, the binary classifier is constructed to evaluate 
the quality of multimodality registration results
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registration (PR), respectively. We used expert-traced liver 
contours on preprocedural MR images and intraprocedural 
CT images to form SR and PR sets. We calculated the DSC 
based on liver contours for each registered MR image and its 
corresponding reference CT image. We divided the training 
data into two distinct sets using the following expert-derived 
offline metric:

where t is the transformation of the current registration, Vr is 
the labeled volume associated with the liver in the reference 
image, Vft

 is the labeled volume of the liver transformed from 
the floating image to the reference image, and th represents 
the threshold that separated SR and PR cases.

Following these criteria, we formed SR and PR examples 
through data augmentation from the clinical cases of our 
prior study. The overall approach was to perturb the initial 
misalignment or window-leveling of the MR and CT image 
pair, by perturbing corresponding parameters. The perturba-
tion process, a form of data augmentation, enabled obtain-
ing varying qualities of multimodality registration cases. 
Using empirical results, we found a range of each param-
eter that can be used to generate a mix of SR and PR cases. 
To window-level the MR and CT images, as is common, 
we rescaled their 16-bit intensity values to 8-bit intensity 
values using saturating logic (0 and 255) for voxel intensi-
ties outside of the window. We then obtained window-level 
candidates by randomly varying the high and low threshold 
values. This method allowed us to use window-level percen-
tiles between 0.05 and 0.99 as lower and upper thresholds, 
respectively, which produced a mix of SR and PR cases. 
The slice size of MR and CT images was 512 × 512 pixels, 
and the number of slices varied between 20 to 45. MR pixel 
spacing was 0.70 mm with slice thickness of 3 – 5 mm. 
CT pixel spacing was 0.52 mm with slice thickness of 3 
mm. The translation parameters were set from 2 mm to 3.5 
mm along the three axes. Within these allowable ranges, we 
selected a window-level value and the offset of translation 
parameters at random assuming a uniform distribution. With 
this approach, prior to training, we set aside 200 image pairs 
generated from 2 cases for testing and generated 1256 image 
pairs for training from the remaining cases. Both sets com-
prised an equal number of SR and PR instances, and helped 
to construct and employ the classification model.

We defined a registration result as a successful if the DSC 
was above 0.84 and poor otherwise. Quality threshold set-
ting: We derived the quality threshold of 0.84 from the 
results of the clinically acceptable algorithm as discussed 
in “Our Previous Registration Study”. The previous study 
presented that the mean and standard deviation of the DSC 
were 0.89 and 0.05, respectively. The value 0.84 then is one 

(6)
SR =

{
t ∶ DSC

(
Vr,Vft

)
≧ th

}
,

PR =
{
t ∶ DSC

(
Vr,Vft

)
< th

}
,

standard deviation below the mean DSC, which defines a 
successful registration to be close to or about the average of 
an expert-derived solution. Figure 2 shows the distribution 
of DSC values for the entire datasets.

Figure 3 presents two cases of registration between pre-
procedural MR images and intraprocedural CT images. Each 
case shows an example of successful registration and two 
examples of poor registration resulting from perturbing the 
window-level and translation parameters. Figure 4 depicts 
the expert-generated liver contours of MR and CT images. 
We calculated the DSC value based on the overlay of the 
contours.

Supervised Learning Classifier

In this study, we calculated features as follows: post- 
registration NMI, STRE rigid registration, STRE nonrigid  
registration, and the Jacobian determinant. As shown in 
Fig. 1, we then obtained 6 online quality metrics using 
descriptive statistical features, which formed the input to 
train our Random Forest classifier. Using training datasets, 
we then constructed the binary classifier with k-fold cross-
validation. We used the stratified fivefold cross-validation 
with a 4:1 ratio of training and validation sets. For Ran-
dom Forest classification, we used 200 estimators with 
entropy as a splitting criterion and evaluated the classi-
fier performance using a receiver operating characteristic 
(ROC) curve along with the computation of a confusion 
matrix. Based on the trained classifier, we also computed 
a confusion matrix using test datasets. From the confusion 
matrix of binary classification, we calculated sensitivity, 
specificity, and accuracy which represent, respectively, the 
rates of correctly classified SR, correctly classified PR, 

Fig. 2   Distribution of DSC values of the total training and test data-
set. The quality threshold was defined as one standard deviation 
below (dashed line) the mean DSC value (solid line) acquired from 
the expert-derived solution [22]
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and correctly classified SR and PR cases. These measures 
demonstrated the performance of our classifier.

Platform

Forward and backward registrations were concurrently 
performed using a dual NVIDIA GTX 970 GPU and quad-
core Intel Xeon 5140 CPU 2.33 GHz. We used the Insight 
Toolkit (ITK) [35] to calculate the Jacobian determinant 
and implemented the Random Forest classifier with k-fold 
cross-validation using the scikit-learn package (version 
0.19) [36].

Regression Evaluation

Random Forest Regression

Using comparable metrics, we applied Random Forest 
regression to predict the DSC value for multimodality reg-
istration. A flowchart representation of the regression model 
is presented in Fig. 5. As Random Forest regression does 
not require feature selection and data rescaling, the quality 
metrics in the binary classifier can be applied without any 
pre- or post-processing. We created training and testing data-
sets by splitting the overall dataset with 50% of the samples 

(e)(d)(c)(b)(a)

Fig. 3   Two examples of nonrigid registration of preprocedural MR 
and intraprocedural CT. (a) Preprocedural MR image, (b) Intraproce-
dural CT image, (c) Successfully registered MR image with a DSC of 

0.89 (top) and 0.92 (bottom), (d) Poorly registered MR image with a 
DSC of 0.72 (top) and 0.78 (bottom), (e) Poorly registered MR image 
with a DSC of 0.68 (top) and 0.65 (bottom)

(d)(c)(b)(a)

Fig. 4   Visualization of liver contours presented in the preprocedural 
MR image (red contours) and intraprocedural CT image (green 
region). (a) Preprocedural MR image with expert-defined liver region 
(red region), (b)−(d) Intraprocedural CT image, (b) Successful regis-
tration with a DSC of 0.89 (top) and 0.92 (bottom), (c) Poor registra-

tion with a DSC of 0.69 (top) and 0.78 (bottom), (d) Poor registration 
MR image with a DSC of 0.64 (top) and 0.65 (bottom). Note that the 
MR image is the floating image and the CT image is the reference 
image in these examples

1382 Journal of Digital Imaging  (2021) 34:1376–1386



selected randomly for training and the other 50% used for 
testing. We used the r-squared value for performance evalu-
ation of the regression model.

Platform

The scikit-learn package (version 0.19) was used to imple-
ment the Random Forest regression model.

Results

Figure 6 shows the feature importance distribution of the 
registration quality metrics used in the Random Forest clas-
sifier. As can be seen, each feature contributes to the quality 
assessment of registration between the preprocedural MR 
image and the intraprocedural CT image.

Figure 7a has the ROC curve of the classifier. There are five 
separate ROC curves arising from fivefold cross-validation 
using training datasets, and the mean area under the ROC curves 
(AUC) is 0.94. Furthermore, Figure 7b illustrates the fitted lin-
ear regression, which identifies the relationship between the 
actual and predicted DSC values. We determined the associated 
r-squared value to be 0.89.

Tables 1 and 2 illustrate the confusion matrix for the 
assessment of registration quality from training and test 
datasets with sensitivity, specificity and accuracy.

Discussions

In this study, using online metrics that can be computed 
in real time, we developed a framework to assess the qual-
ity of nonrigid registration as either successful or poor. By 
using the expert-derived offline metrics as ground truth, we 
employed a Random Forest binary classifier for this assess-
ment framework. We identified quality metrics that had the 
ability to differentiate between successful and poor regis-
trations, and they formed the input to the framework. Fur-
thermore, we ensured that the computation of each metric 

required no manual step and could be completed in a few 
seconds or less. These criteria led us to the selection of nor-
malized mutual information, Jacobian determinant, and self-
target registration error as the desired metrics. We calculated 
these quality metrics at different times during the registra-
tion process: before registration, between rigid and nonrigid 
stages, and after full nonrigid registration. We then used a 
machine learning method to combine these metrics so that 
each contributed to the overall classification.

Each quality metric contributed to detecting registration 
failure modes. For instance, STRE (both rigid and nonrigid) 
detects misalignment between the MR and CT images post 
registration, whereas JD detects over-warping. The relatively 
even distribution of contributions observed in Fig. 6 indi-
cates that each metric played a role in quality assessment. 
The most significant metric was found to be post-registration 
NMI, which was valuable in determining how likely it was 
that the registration had been successful. The lowest contrib-
uting factor in the classifier was JD. A possible explanation 
for this could be the use of DSC as the ground truth. The 
DSC metric is based on the matching of organ edges and/
or surfaces, not the intra-organ deformation that may occur 
and that JD is sensitive to.

Based on these quality metrics, we constructed a binary 
classifier that can differentiate successful registrations from 

Fig. 5   Flowchart of the qual-
ity assessment process using 
Random Forest regression. The 
regression model is constructed 
from the metrics used for the 
binary classifier

Fig. 6   Feature importance distribution of registration quality metrics
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poor ones with a sensitivity of 88%, a specificity of 75%, 
and an accuracy of 81.5% (see Table 2). We examined the 
instances of false positives and false negatives in the test 
data. All instances of false negatives were from registration 
results that generated DSC values less than 10% away from 
our threshold of 0.84 DSC. On the other hand, all instances 
of false positives were less than 5% away from this threshold 
in terms of the actual DSC of the final registration. Even 
when false positives and false negatives occur, they appear 
close to the threshold set for distinguishing a successful reg-
istration from a poor registration result.

From our experimental results, we determined the 
r-squared value of our random-forest-based quality assess-
ment system to be 0.89. This result indicates that the system 
is effective in predicting actual DSC values, and that the 
system can be also utilized to optimize registration using 
machine-learning-based regularization.

We have taken as an assumption that the DSC value is a 
good proxy for clinical acceptance of results. We have per-
formed a small-scale test of this assumption with the help of 
a practicing radiologist. In our test, we created an equal mix 
of high quality and low quality registration cases, randomly 
selected from the evaluation pool. Using the corresponding 
fusion images, a board-certified radiologist rated them with 
the same lexicon. Of the 10 cases presented, the radiolo-
gist was confident about the labels for 7 of the cases; our 

registration algorithm agreed with all 7 of these cases. In the 
remaining 3 cases, the radiologist observed several features 
that indicated a successful registration, while other features 
led the radiologist to think it was a poor registration. These 
cases corresponded with 1 SR and 2 PR, each of which were 
close to our threshold, which leads us to the same conclusion 
that, while the threshold for acceptability may change per 
a specific clinician’s preference, the basic ordering we have 
derived from DSC, we believe, is representative of registra-
tion quality.

In the results of our small-scale test, borderline cases 
according to our algorithm coincide with borderline cases 
for the clinician as well—that is, they correspond to the three 
cases that the radiologist was not confident about. How such 
borderline cases are ultimately treated in a clinical setting 
may require some tuning, and such a tuning-integrated 
approach fits within the framework presented in our paper. 
Larger-scale testing with clinicians as well as software tools 
to assist in tuning are useful directions for future work that 
build naturally upon the developments of this paper.

The results described above demonstrate that the pro-
posed framework could effectively provide real-time con-
firmation or caution of registration results to the clinician 
during interventional procedures. Whereas the true positive 
and true negative cases are self-explanatory in this classifi-
cation context, false negative and false positive cases need 

Fig. 7   (a) ROC curve of 
fivefold cross-validation for 
the binary classifier. The mean 
ROC curve is calculated by 
averaging validation curves of 
all of the folds. (b) Scatter plot 
of the actual and predicted DSC 
values from the Random Forest 
regression model. The result of 
linear regression is depicted by 
the dashed line

Table 1   Confusion matrix of training datasets for the quality assess-
ment of multimodality registration: successful registration (SR) and 
poor registration (PR). SR and PR correspond to positive and nega-
tive cases, respectively, for the confusion matrix

Actual Class

SR (Positive) PR (Negative)

Predicted SR 83.6% (525/628) 14.0% (88/628)
Class PR 16.4% (103/628) 82.8% (520/628)
Measure Sensitivity = 83.6%

Specificity = 82.8%
Accuracy = 83.2%

Table 2   Confusion matrix of test datasets for the quality assessment 
of multimodality registration: successful registration (SR) and poor 
registration (PR)

Actual Class

SR (Positive) PR (Negative)

Predicted SR 88.0% (88/100) 12.0% (12/100)
Class PR 25.0% (25/100) 75.0% (75/100)

Sensitivity = 88.0%
Measure Specificity = 75.0%

Accuracy = 81.5%
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elaboration. A false negative means a valid fusion image 
will not be presented to the clinician, and/or the framework 
will improperly trigger another registration attempt. This 
implies the lost value of a valid fusion image being con-
sidered toward the clinical end. In this case, however, the 
registration engine can keep trying or reset when another 
intraprocedural image is taken. The harm of a false negative 
is principally the slowing down of a procedure. A false posi-
tive has a greater potential of harm, potentially misleading 
a clinician, who relies on the fusion image for a clinical 
decision. One approach to address this problem would be 
to bias the final system toward minimizing false positives. 
A larger validation dataset would enhance the sensitivity 
and specificity by mitigating over-fitting. The sensitivity and 
specificity metrics will inform clinicians as to the appropri-
ate reliance on fusion as an adjunct guidance tool.

The computation time for the proposed framework is 
fast enough to be used clinically. It takes less than 5 sec-
onds to compute the described metrics, each of which can 
be calculated concurrently, and an additional 0.5 seconds to 
obtain the classification result. The mean time to generate 
the outcome with our framework is 4.7 seconds. This mean 
value was derived by averaging over 200 image-pairs; the 
associated standard deviation is 0.27 seconds. The current 
implementation is sufficiently fast to provide on-demand 
automated quality assessment in a typical interventional radi-
ology workflow. The execution of the framework can indeed 
be further accelerated with additional computing resources. 
When a preprocedural image is being registered with the lat-
est navigational image during an interventional radiology 
procedure, the framework can be executed fast enough to 
allow successfully registered fusion images and prevent the 
display of poorly registered images. When poor registration 
is detected, the registration can be restarted with a different 
set of parameters or from a different starting position. As 
the computation time is further reduced, the framework has 
the potential to evolve into a machine learning-based regu-
larization such that the proposed quality assessment can be 
incorporated directly into traditional registration algorithms.

We have focused on a single registration algorithm in this 
work. The novelty of our proposed method lies more on the 
framework of multimodality registration quality assessment 
and less on the registration algorithm itself. In addition, the 
presented framework is not reliant on any particular feature 
of the registration algorithm. Thus, it is generalizable to 
other registration algorithms. Indeed, an interesting direction 
for future work is experimentation with the proposed frame-
work in conjunction with different registration algorithms.

For supervised learning, we augmented the training and test 
sets with synthetic samples generated from clinical imaging 
data from our previous study. This might have limited the over-
all performance of the classifier, as it might have over-fitted 
to the registration scenario and the ground truth metric. The 

proposed framework can be further extended and improved 
by using larger clinical datasets. A larger number of training 
samples may allow for exploring different classifiers and con-
structing deep neural networks, which may further augment 
our metrics and assess the registration quality in more anatomi-
cally general environment. In addition, a larger image database 
with clinical outcomes would enable clinical benefits to be 
part of the evaluation or training of our framework. Also, we 
used DSC as the ground truth for supervised learning. The 
framework can be further enhanced with additional quantita-
tive distance-based metrics, such as the Hausdorff distance or 
center of mass distance, and landmark-based metrics, such as 
TRE. Using such metrics, we can expand the proposed frame-
work with the validation of different registration algorithms. 
Moreover, new images being acquired and fused together with 
the clinical feedback being gathered will provide a logical next 
step in further development and evaluation of our proposed 
quality assessment framework.

Conclusion

In this paper, we presented a supervised learning-based 
framework that has the ability to assess the quality of mul-
timodality nonrigid image registration results at interactive 
speeds. We proposed a framework that includes a Random 
Forest classifier constructed by using existing quality met-
rics that can be computed in real time, and then demon-
strated that the overall accuracy and speed of the classifier 
are appropriate for practical clinical implementations. When 
introduced clinically, our platform would add a new level of 
confidence and sophistication to the use of image fusion in 
practice, enabling or improving on a myriad of image-based 
clinical applications.
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