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OBJECTIVE

Type 1 and type 2 diabetes are associated with gut dysbiosis. However, the relation-
ship between the gut microbiota and latent autoimmune diabetes in adults (LADA),
sharing clinical and metabolic features with classic type 1 and type 2 diabetes,
remains unclear. Here, we used a multiomics approach to identify the characteristics
of the gut microbiota and metabolic profiles in patients with LADA.

RESEARCH DESIGN AND METHODS

This age- and sex-matched case-control study included 30 patients with LADA, 29
patients with classic type 1 diabetes, 31 patients with type 2 diabetes, and 29
healthy individuals. The gut microbiota profiles were identified through the 16S
rRNA gene, and fecal and serum metabolites were measured through untargeted
liquid chromatography-mass spectrometry.

RESULTS

Patients with LADA had a significantly different structure and composition of the
gut microbiota and their metabolites as well as a severe deficiency of short-chain
fatty acid–producing bacteria. The gut microbiota structure of the patients with
LADA was more similar to that of patients with type 1 diabetes who were posi-
tive for GAD antibody. We identified seven serum metabolite modules and eight
fecal metabolite modules that differed between the LADA group and the other
groups.

CONCLUSIONS

The characteristic gut microbiota and related metabolites of patients with LADA
are associated with autoantibodies, glucose metabolism, islet function, and
inflammatory factors, which may contribute to the pathogenesis of LADA. Future
longitudinal studies should explore whether modulating the gut microbiota and
related metabolites can alter the natural course of autoimmune diabetes in the
quest for new therapeutics.

The recognition of latent autoimmune diabetes in adults (LADA) as adult-onset
autoimmune diabetes sharing some genetic, immunologic, metabolic, and clinical
features with classic type 1 diabetes (T1D) and type 2 diabetes (T2D) has gradually
increased (1–3). The progression of autoimmune b-cell destruction is less intensive in
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LADA than in classic T1D, and patients
are insulin independent for at least 6
months after diagnosis (1–3). Approxi-
mately 4–14% of patients with T2D are
misdiagnosed and actually have LADA,
which, in fact, is more prevalent than
classic juvenile-onset T1D in some minor-
ity populations (3). In the context of mod-
erate genetic susceptibility to T1D, some
environmental factors can trigger islet
autoimmunity, leading to b-cell apoptosis
and potentially promoting LADA (4). How-
ever, the detailed mechanisms underlying
the onset of LADA are unclear.
The gut microbiota is an indispensable

environmental factor for the develop-
ment of T1D and T2D (5,6); the structure
and composition of the gut microbiota in
patients with T1D and T2D differ from
those in healthy subjects. Studies in T1D
animal models showed that the gut
microbiota can regulate toll-like receptor
2/4 signaling, T helper type 17 cells in the
intestinal mucosa, sex hormone levels,
and the secretion of pancreatic antibacte-
rial peptide, which may modulate the
autoimmune targeting of b-cells (7–9).
Additionally, in T2D, intestinal dysbiosis
can disrupt the gut barrier function and
promote chronic metabolic inflammation
and the secretion of intestinal hormones,
including glucagon-like peptide 1 and pep-
tide YY, affecting insulin sensitivity and
secretion (10,11). Importantly, studies have
shown that dietary interventions (probiot-
ics, dietary fiber supplements, etc.) and
fecal transplants can regulate the gut
microbiota; vaccines and various drugs that
regulate key factors that affect intestinal
barrier function can be used as novel treat-
ment strategies (12). However, no such
studies have been conducted in patients
with LADA, so the relationships between
the gut microbiota, metabolic profile, and
LADA remain to be determined.
Here, we compared the gut microbiota

and metabolic profiles in patients with
LADA, classic T1D, and T2D and healthy
subjects. Furthermore, we elucidated the
relationships among enterobacterial co-
abundance groups (CAGs), metabolite
modules, and clinical phenotypes.

RESEARCH DESIGN AND METHODS

Study Participants and Recruitment
We consecutively recruited 30 patients
with LADA, 29 patients with classic T1D,
31 patients with T2D, and 29 healthy
subjects (all age and sex matched, 30–70

years old) at the Henan Provincial Peo-
ple’s Hospital from 3 February 2019 to 30
September 2019; all were of Han origin
(Supplementary Diagram). Diabetes was
diagnosed according to the criteria rec-
ommended by the World Health Organi-
zation (13). LADA was diagnosed based
on 1) diagnosis age between 30 and 70
years, 2) insulin independence during the
initial 6 months, 3) positivity for at least
one autoantibody (GAD antibody [GADA],
IA-2 antibody [IA-2A], or zinc transporter
8 antibody [ZnT8A]), and 4) no ketosis or
ketoacidosis (2,14). Classic T1D was diag-
nosed based on 1) the onset of acute
ketosis or ketoacidosis, 2) the course of
insulin replacement therapy, 3) impaired
islet function, or 4) positivity for at least
one autoantibody (GADA, IA-2A, or
ZnT8A). T2D was diagnosed based on 1)
the typical history of hyperglycemia, 2) no
requirement for immediate insulin treat-
ment, and 3) negativity for islet autoanti-
bodies. All healthy subjects and patients
with T2D were negative for GADA, IA-2A,
and ZnT8A. All healthy subjects under-
went a standard 75-g oral glucose toler-
ance test (OGTT) to verify their normal
blood glucose levels. All patients with
diabetes were undergoing treatment with
multiple doses of insulin or oral drugs, or
both (Supplementary Table 1). The exclu-
sion criteria included the following: second-
ary diabetes; acute or chronic inflammatory
diseases; infectious diseases; pregnancy;
malignant tumors; history of steroid or
immunosuppressive drug use >7 days; his-
tory of treatment with prebiotics, probiot-
ics, antibiotics, or any other medication
that could potentially influence the gut
microbiota for >3 days in the previous 3
months; gastrointestinal diseases; a history
of gastrointestinal surgery in the previous
year; and hepatic and renal dysfunction.

The collected demographic/clinical data
included age, sex, diabetes duration, height,
weight, BMI, waist-to-hip ratio, systolic blood
pressure, and diastolic blood pressure. We
also collected biochemical determinations,
including the 75-g OGTT, C-peptide release
test, HbA1c, fasting plasma glucose (FPG),
lipid profile, blood cell and hemoglobin
counts, liver and renal function, autoanti-
bodies (GADA, IA-2A, ZnT8A), and inflam-
matory factors. The receiver operating
characteristic area under the curve for glu-
cose (AUCGlucose) and C-peptide (AUCC-peptide)
during OGTTwere also calculated.

All participants completed an interview
to determine health status, lifestyle, and

medication use. All patients with diabetes
received diabetes education and followed
a diabetes diet. Dietary intake patterns
were determined using a food frequency
questionnaire.

All participants provided written info-
rmed consent. This study was approved
by the Henan Provincial People’s Hospital
ethics committee.

Measurement of Autoantibodies
GADA, IA-2A, and ZnT8A were detected
as described by Huang et al. (15,16). The
cutoff indices of positivity for GADA, IA-
2A, and ZnT8A were 18 units/mL (World
Health Organization units), 3.3 units/mL,
and 0.011 (ZnT8A index), respectively.
Positive samples were tested twice for
confirmation. According to the Islet Auto-
antibody Standardization Program 2016,
the sensitivity and specificity scores for
GADA were 82% and 97.8%; for IA-2A,
76% and 100%; and for ZnT8A, 72% and
100%, respectively.

Measurement of Inflammatory
Markers
Peripheral venous blood was collected
in the morning after enrollment. Serum
samples were stored at �80�C until
analysis. The serum levels of interleukin-
10 (IL-10), tumor necrosis factor-a (TNF-
a), IL-6, and IL-1b were quantified using
a custom Human Luminex Discovery
Assay (LXSAHM-08; R&D Systems, Min-
neapolis, MN) according to the manu-
facturer’s protocol. The detection limits
were 4.8–1,162, 9.7–2,359, 4.8–1,154,
and 19.5–4,744 pg/mL for IL-10, TNF-a,
IL-6, and IL-1b, respectively.

Lipopolysaccharide-Binding Protein
Assays
Serum lipopolysaccharide-binding pro-
tein (LBP) levels were detected using a
commercial ELISA kit (R&D Systems)
according to the manufacturer’s instruc-
tions (range 4.4–50 ng/mL).

Statistical Analyses
A priori sample size estimation was not
possible because of the lack of data on
the gut microbiota differences among
LADA, classic T1D, T2D, and healthy sub-
jects. For clinical characteristics, serum
LBP, and inflammatory factors, relative
and absolute frequencies were used as
qualitative variables, whereas median
and interquartile range values were
used as quantitative variables. Differences
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in quantitative variables among the
groups were tested using the nonpara-
metric Mann-Whitney U test or Kruskal-
Wallis test. Differences in qualitative vari-
ables among the groups were tested
using the x2 test or Fisher exact test.
Statistical analyses were performed using
SPSS version 19.0 (IBM Corporation,
Chicago, IL).

Fecal DNA Extraction and 16S rRNA
Gene Sequencing
Fecal samples were collected from all par-
ticipants according to established proce-
dure and stored at �80�C. Genomic DNA
was extracted using the QIAamp Power-
Fecal Pro DNA Kit (QIAGEN, Hilden, Ger-
many). The fecal microbiota composition
was characterized through 16S rRNA
gene sequencing. Briefly, PCR targeting
the V3–V4 region of the 16S rRNA gene
was performed using the following pri-
mers: forward, 50-CCTACGGGNGGCWG-
CAG-30, and reverse, 50-GACTACHVGGGT-
ATCTAATCC-30 (17). Subsequent amplicon
sequencing was performed on a MiSeq
platform (Illumina, San Diego, CA) to gen-
erate 300-bp paired-end reads; DNA from
all 119 fecal samples was included in the
same sequencing run.

Sequencing Data Analysis
Sequencing data were demultiplexed
using the QIIME2 2019.7 pipeline (18),
and forward and reverse reads were
trimmed to 268 bp and 194 bp, respec-
tively. An average of 48,972 reads were
used as input; after filtering, denoising,
merging forward and reverse reads, and
removing chimeras, an average of 26,908
reads was recovered. Amplicon sequence
variants (ASVs) were identified using the
DADA2 plugin (19). Samples were ran-
domly subsampled to equal depths of
20,148 reads before fecal microbiome
analysis using the QIIME2 diversity core-
metrics-phylogenetic plugin. The gener-
ated raw sequencing data are publicly
available at the National Center for Bio-
technology Information under accession
no. SRP272175 (https://www.ncbi.nlm.
nih.gov/bioproject/?term=PRJNA646610).
The phylogenetic tree of the represen-
tative ASV sequences was built using
the core-metrics-phylogenetic pipeline in
QIIME2, and the ASVs were annotated
based on the SILVA release 132 database
(20). The adonis test using vegan (https://
cran.r-project.org/web/packages/vegan/
index.html) in R 3.6.1 was performed to

calculate the variation in each host fac-
tor. The diversity, richness, and even-
ness of samples were evaluated using
QIIME2. Each host physiological factor
was calculated according to its explana-
tion rate; P values were generated
based on 9,999 permutations. To test
the variation in the gut microbiota,
Bray-Curtis distances of all samples
were calculated in QIIME2. The ASV
abundance table was used for the prin-
cipal coordinate analysis (PCoA) and
partial least squares discriminant analy-
sis (PLS-DA) based on the Bray-Curtis
distances. PCoA was performed using
QIIME2 and visualized using GraphPad
Prism 8 (GraphPad Software, San Diego,
CA); PLS-DA was performed and plotted
using mixOmics in R 3.6.1 (21). Differen-
tial ASVs between the groups were iden-
tified via linear discriminant analysis
effect size (https://huttenhower.sph.
harvard.edu/galaxy). Major ASVs were
defined as those differing between the
LADA group and the healthy, T1D-A
(GADA-positive [GADA-P]), T1D-B (GADA-
negative [GADA-N]), and T2D groups.
CAGs were clustered based on Spearman
correlations of the major ASVs using
WGCNA (weighted gene coexpression
network analysis) with the Ward cluster-
ing algorithm in R 3.6.1 (22). The CAG
network was visualized in Cytoscape 3.7.2
(https://github.com/cytoscape/cytoscape).

The abundances of ASVs and CAGs in
the healthy, T1D-A, T1D-B, and T2D
groups were compared with those in
the LADA group using the Kruskal-Wallis
test with Dunn post hoc analysis in
Prism 8.0.1; those in the LADA, T1D-A,
T1D-B, and T2D groups were also com-
pared with those in the healthy group,
and differences were deemed signifi-
cant when P < 0.05. Functions of the
gut microbiota were predicted from
ASVs using PICRUSt2 (Phylogenetic Investi-
gation of Communities by Reconstruction
of Unobserved States 2). Enriched path-
ways were determined using the Kyoto
Encyclopedia of Genes and Genomes data-
base (https://www.kegg.jp). Wilcoxon rank
sum tests (per pathway) between the
LADA and the healthy, T1D-A, T1D-B, and
T2D groups as well as between the
healthy and the T1D-A, T1D-B, and T2D
groups were performed using the R pack-
age MASS. All correlation analyses were
performed by calculating the Spearman cor-
relation coefficient using MATLAB R2019b;

the same software was used to design all
the heatmaps.

Untargeted Metabolomics Study
The metabolic profiling of fecal and
serum samples was performed using
the 1290 Infinity LC System (Agilent,
Santa Clara, CA) coupled to the Triple-
TOF 6600 System (SCIEX, Framingham,
MA). The electrospray ionization sources
were set according to the method
described by Zhou et al. (23). Metabo-
lites were characterized via comparison
of the retention times, charge/mass
ratio values, and fragmentation patterns
with those previously reported (24).

Metabolomics Data Analysis
Differential metabolites were identified
based on variable importance in the pro-
jection generated from the 10-fold cross-
validated orthogonal PLS-DA model using
a threshold of 1 and then validated with
an adjusted P < 0.05 at a univariate level.
The metabolites that differed between the
LADA and the healthy, T1D-A, T1D-B, and
T2D groups were clustered using the R
package WGCNA. Serum and fecal metab-
olites were analyzed separately. Signed,
weighted coabundance correlation net-
works of the metabolites were calculated
for all the individuals in the study (24). The
soft threshold b = 14, for metabolite cor-
relation, was chosen based on a scale-free
topology criterion. Clusters were identified
with a dynamic hybrid tree-cutting algo-
rithm using a DeepSplit of 4 and a mini-
mum cluster size of 3 (25). Hub metabolites
were defined as those with the highest
module membership P value within each
module. The heatmap of metabolite mod-
ules was plotted using MATLAB R2019b.

Fecal and serum metabolites detected
in the positive and negative ion modes
among healthy, GADA-P (LADA and T1D-
A), and GADA-N (T1D-B) individuals and
patients with T2D were subjected to
PCoA, performed based on the Bray-
Curtis distance. Comparisons were per-
formed using the Kruskal-Wallis test with
Dunn post hoc analysis in QIIME2. The
abundances of the metabolite modules
in the healthy, T1D-A, T1D-B, and T2D
groups were compared with those in the
LADA group using the Kruskal-Wallis test
with Dunn post hoc analysis in Prism
8.0.1; those in the LADA, T1D-A, T1D-B,
and T2D groups were also compared with
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those in the healthy group. The differences
were deemed significant when P< 0.05.

Multiomics Correlation Analysis
The Spearman correlations among gut
microbiota CAGs, fecal metabolite modules,
serum metabolite modules, and clinical
parameters were calculated using MATLAB
R2019b. The P values were adjusted based
on the false discovery rate (FDR) values
described by Hochberg and Benjamini (26).
Significance was set as FDR <0.05. The
visualization of multiomics correlations was
performed using Cytoscape 3.7.2.

RESULTS

Anthropometric and Biochemical
Measurements
Patient anthropometric and biochemical
data are listed in Table 1. The duration of
diabetes was shorter in the LADA group
than in the other two diabetes groups.
The average BMIs of the LADA, T1D
groups were lower than those of the T2D
and healthy groups. As expected, the FPG

and HbA1c levels were significantly higher
in patients with LADA and classic T1D and
T2D than in healthy subjects; moreover,
the fasting C-peptide levels in the LADA
and T1D groups were lower than those in
the T2D and healthy groups. Blood pres-
sure readings did not differ among the
four groups. HDL cholesterol levels were
significantly lower in the T2D group than
in the other groups. The LADA group had
significantly lower IL-10 levels than the
other groups. The three diabetes groups
had significantly higher TNF-a levels than
the healthy group. The levels of IL-6 and
IL-1b in the LADA and T1D groups were
significantly lower than those in the T2D
group and significantly higher than those
in the healthy group. The levels of LBP
were higher in the three diabetes groups
than in the healthy group; LBP levels
were the highest in the LADA group.

Characterization of the Gut
Microbiota of Patients With LADA
No differences in the richness (observed
ASVs), diversity (Shannon index), and

evenness (Pielou index) were found among
the four groups (Supplementary Fig. 1).
However, the PCoA and score plots of the
PLS-DA (Fig. 1A and Supplementary Fig. 2)
showed that the structure and composi-
tion of the gut microbiota differed signifi-
cantly among the three diabetes groups
and healthy group. Furthermore, the
structure of the microbiota differed sig-
nificantly between the LADA group and
the other two diabetes groups. Clinical
groups, inflammatory factors, autoanti-
body GADA, and medication use were
significantly associated with gut microbial
variations (P < 0.1 of permutational
MANOVA) (Fig. 1B). As GADA is a very
strong explanatory factor for variations in
the gut microbiota, the classic T1D group
was further divided into T1D-A (GADA-P)
and T1D-B (GADA-N) groups. The micro-
biota structure of the T1D-A group was
the most similar to that of the LADA
group, whereas that of the T2D group
was the most dissimilar to that of the
LADA group (Fig. 1C and D). The clinical

Table 1—Anthropometric and biochemical data

Variable
Healthy controls

(n = 29)
Type 2 diabetes
patients (n = 31)

LADA patients
(n = 30)

Classic type 1
diabetes patients

(n = 29) P

Male/female 11/18 11/20 10/20 11/18

Age (years) 34.0 (28.50–52.5) 39.0 (31.00–48.0) 36.5 (30.5–45.0) 35.0 (31.0–47.5) 0.932

Duration of diabetes (months) 36.0 (12.0–84.0)a 24.0 (2.5–36.0)b 36.0 (13.0–108.0)a <0.001

BMI (kg/m2) 22.14(19.99–24.41)a,b 23.51(21.22–25.40)a 20.48(18.31–22.29)c 21.85(20.79–23.02)b,c 0.002

WHR 0.86 (0.83–0.92) 0.92 (0.87–0.94) 0.88 (0.83–0.94) 0.90 (0.85–0.93) 0.221

SBP (mmHg) 112 (106–120) 120 (110–130) 110 (106–125) 118 (109–130) 0.130

DBP (mmHg) 71 (65–77) 75 (72–80) 73 (64–80) 77 (70–84) 0.060

HbA1c (%) 5.30 (5.20-5.50)a 9.00 (7.00-10.60)b 9.10 (7.08-11.80)b 8.60 (6.80-9.30)b <0.001

HbA1c (mmol/mol) 34(33–37)a 75(53–92)b 76(54–105)b 70(51–78)b <0.001

FPG (mmol/L) 4.75 (4.43–5.28)a 6.90 (6.17–7.40)b 6.80 (5.70–8.43)b 7.00 (5.58–8.70)b <0.001

FCP (ng/ml) 1.08 (0.86–1.36)a 0.78 (0.50–1.26)b 0.37 (0.26–0.50)c 0.00 (0.00–0.05)d <0.001

TC (mg/dL) 4.57 (4.12–4.89) 4.90 (3.68–5.33) 4.34 (3.87–5.27) 4.58 (4.08–5.21) 0.767

TG (mg/dL) 1.08 (0.89–1.21) 1.35 (0.97–2.12) 0.91 (0.62–1.43) 1.03 (0.76–1.50) 0.050

HDL-c (mg/dL) 1.36 (1.26–1.56)a 1.15 (0.94–1.27)b 1.33 (1.10–1.62)a 1.23 (1.07–1.55)a 0.004

LDL-c (mg/dL) 2.56 (2.38–2.78) 2.99 (2.16–3.27) 2.33 (1.85–3.03) 2.34 (2.03–2.84) 0.185

IL-10 (pg/mL) 1.63 (1.23–1.93)a 1.44 (1.21–1.66)a 1.32 (1.03–1.48)b 1.44 (1.22–1.77)a 0.008

TNF-a (pg/mL) 4.49 (4.06–5.09)a 5.60 (5.16–6.28)b 5.44 (4.60–6.74)b 5.20 (4.26–6.67)b 0.002

IL-6 (pg/mL) 1.09 (0.92–1.27)a 2.69 (1.55–5.68)b 1.61 (1.25–2.74)c 1.74 (1.18–3.04)c <0.001

IL-1b (pg/mL) 2.19 (2.03–2.64)a 3.03 (2.47–3.77)b 2.67 (2.03–2.97)c 2.47 (2.03–3.18)c <0.001

LBP (ng/mL) 26.35(23.58–29.24)a 32.91(29.41–36.50)b,c 34.73(29.48–39.89)b 29.88(26.62–33.44)c <0.001

Data are median (25th–75th percentile) unless otherwise indicated. DBP, diastolic blood pressure; FCP, fasting C-peptide; HDL-C, HDL choles-
terol; LDL-C, LDL cholesterol; SBP, systolic blood pressure; TC, total cholesterol; TG, triglyceride; WHR, waist-to-hip ratio. Different super-
scripted symbols (a, b, c, d) in a row indicate that the medians of the different groups are significantly different (P < 0.05).

care.diabetesjournals.org Fang and Associates 2741

https://doi.org/10.2337/figshare.16441407
https://doi.org/10.2337/figshare.16441407


features of the LADA, T1D-A, and T1D-B
groups are shown in Supplementary Table 2.
The T1D-B group showed lower BMI,
AUCC-peptide, and serum LBP levels than the
LADA and T1D-A groups and a longer duration
of diabetes than the LADA and T1D-A groups.

Additionally, we identified 139 ASVs to
explore the LADA-specific microbiota
(Supplementary Figs. 3 and 4) and con-
structed 12 CAGs based on Spearman cor-
relation analysis (Fig. 1E). The abundances
of CAG2 (i.e., families Ruminococcaceae
and Lachnospiraceae), CAG4 (e.g., Parabac-
teroides species [spp.]), CAG5 (mainly in

Clostridiaceae), and CAG6 (including Prevo-
tella spp.) were significantly lower in
patients with LADA than in healthy subjects.
The abundances of CAG4 and CAG6, CAG6
and CAG12 (i.e., families Ruminococcaceae
and Lachnospiraceae), and CAG4 alone
were also significantly lower in the LADA
group versus the T1D-A, T1D-B, and T2D
groups, respectively (Fig. 1F). Collectively,
these findings suggest that patients with
LADA have a unique gut microbiota struc-
turally and compositionally different from
that of healthy subjects and patients with
classic T1D and T2D.

For further insight, we also predicted
the potentially enriched pathways based
on the obtained 16S rRNA gene sequenc-
ing data using PICRUSt2 (Supplementary
Fig. 5). In the LADA group, amino acid,
carbohydrate, and lipid metabolism path-
ways, including those involved in valine,
leucine, and isoleucine degradation, and
fatty acid biosynthesis were significantly
downregulated, while the secondary bile
acid biosynthesis pathway was upregu-
lated in LADA (compared with healthy
subjects). Pathways for amino acids,
cofactors, and vitamins (e.g., phenylalanine

Figure 1—Identification of the major ASV modules in the context of LADA. A: PLS-DA of the gut microbiota composition of healthy subjects and
patients with LADA, T1D, and T2D. B: Bar plot revealing the top physiological factors that were significantly associated with variations in the gut
microbiota based on Bray-Curtis distances. The colors of the bars represent their clinical categories. Size effects and statistical significance were cal-
culated by adonis/permutational MANOVA. The association was considered significant when P < 0.1. C: PLS-DA of the gut microbiota composition
of the patients with LADA, T1D-A, T1D-B, and T2D. D: Between-sample Bray-Curtis distances of the gut microbiota of the T1D-A, T1D-B, and T2D
groups compared with those of the LADA group. **P < 0.01. E: Network diagrams of the 12 CAGs. The taxonomy of bacteria phyla identified using
the QIIME2 q2-feature-classifier is denoted on the nodes. The rectangular nodes represent Bacteroidetes, the triangular nodes represent Actino-
bacteria, the round nodes represent Firmicutes, the hexagonal nodes represent Proteobacteria, and the diamond-shaped nodes represent Teneri-
cutes. Lines between nodes represent correlations; only correlations with magnitudes >0.3 are drawn. Red lines mean positive correlations, and
blue lines mean negative correlations. F: Z-scores of the abundance of the 12 CAGs across the different groups. Z-scores were transformed by sub-
tracting the average abundance and dividing by the SD of all samples. Blue represents negative Z-scores, and orange represents positive Z-scores.
Comparison of the relative abundance of each CAG in the five groups was performed using the Kruskal-Wallis test followed by Dunn post hoc analy-
sis. Significant differences (P < 0.05) are marked with arrows; arrows pointing up represent a significantly higher abundance, and arrows pointing
down represent a significantly lower abundance. DBP, diastolic blood pressure; DPP4, dipeptidyl peptidase 4; GGT, glutamyl transpeptidase; RBC,
red blood cell; TG, triglyceride; UA, uric acid.
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metabolism) were also significantly downre-
gulated in LADA versus T2D. However, in
LADA (compared with T1D), no differences
were detected.
Considering that all forms of diabetes

induced by autoimmune b-cell destruc-
tion are included under T1D, patients
with LADA and classic T1D were stratified
collectively into GADA-P and GADA-N
groups. The clinical characteristics of
these two groups are shown in Supple-
mentary Table 3. There were no differ-
ences in a-diversity among the GADA-P,
GADA-N, T2D, and healthy groups (Supple-
mentary Fig. 6). However, the structure
and composition of the gut microbiota dif-
fered significantly between the GADA-P
group and healthy group (Supplementary
Figs. 7 and 8).

Characterization of the Fecal and
Serum Metabolites in Patients With
LADA
Fecal and serum metabolites were significantly
different in patients with diabetes versus
healthy subjects. Notably, patients with LADA
presented significantly different metabolite pro-
files from those in healthy subjects and
patients with T1D and T2D (Fig. 2). From the
orthogonal PLS-DA models (Supplementary
Figs. 9 and 10), we identified 422 and 317
metabolites under positive ionic mode and

negative ionic modes, respectively, in the feces
that were binned into 12 coabundance clus-
ters for all subjects. Additionally, we iden-
tified 178 and 147 metabolites (positive
and negative modes, respectively) in the
serum that were binned into 11 coabun-
dance clusters. Compared with healthy
subjects, we found that most fecal metab-
olite modules (i.e., dipeptide, medium
chain fatty acids, hexoses) were less
abundant, while most serum metabolite
modules (e.g., cyclohexanols, glutamic
acid and derivatives, a-amino acids, pro-
line and its derivatives) were more abun-
dant in patients with diabetes. Of note,
with respect to fecal metabolites, there
was a lower abundance of thymine in the
LADA versus T1D-A groups and a higher
abundance of dipeptides, including tyro-
sine, phenylalanine, valine, and isoleu-
cine, in the LADA versus T2D groups.
Additionally, concerning serum metabo-
lites, proline and its derivatives were
more abundant in the LADA group than
in the T1D-A group, while glutamic acid
and its derivatives and a-amino acids
were less abundant in the LADA group
than in the T1D-B group. Interestingly,
while PCoA showed that for fecal metabolites,
differences were observed only between the
three general diabetes groups (GADA-P,
GADA-N, T2D) and healthy subjects, for serum

metabolites, the differences were between the
three diabetes groups and healthy subjects
and between the GADA-P and GADA-N
groups (Supplementary Figs. 11–15). Thus
altogether, these results suggest that
patients with diabetes have significantly
different metabolite profiles compared
with those of healthy subjects and that
the metabolite levels differ among
patients with LADA and patients with
T1D-A, T1D-B, and T2D.

The Relationships Among the Gut
Microbiota, Fecal Metabolites, Serum
Metabolites, and Clinical Phenotypes
Subsequently, we analyzed the correlations
among the gut microbiota profiles, fecal
metabolites, serum metabolites, and clinical
phenotypes in all participants (Fig. 3). Six
fecal metabolite modules, mainly dipeptide-
containing branched-chain amino acids
(BCAAs) (valine, leucine, and isoleucine) and
aromatic amino acids (AAAs) (tyrosine and
phenylalanine), were negatively correlated
with glucose metabolism–related parame-
ters but positively correlated with islet func-
tion–related parameters. Conversely, six
serum metabolite modules were positively
correlated with glucose metabolism–related
parameters and negatively correlated with
islet function–related parameters. CAG2,
CAG4, and CAG6, less abundant in the

Figure 2—Identification of major fecal and serum metabolite modules in the context of LADA. Distribution of the 12 fecal metabolite modules (A)
and 11 serum metabolite modules (B) among the LADA, healthy, T1D-A, T1D-B, and T2D groups. The abundance profiles were transformed into Z-
scores by subtracting the average abundance and dividing by the SD of all samples. Comparison of the abundances of each module in the five
groups was performed using the Kruskal-Wallis test followed by Dunn post hoc analysis. P< 0.05 indicates a significant difference.
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LADA group, were associated with glucose
metabolism– and islet function–related
parameters through fecal metabolites.
CAG5 was negatively correlated with IL-6
and IL-1b, whereas CAG2 and CAG4 were
associated with TNF-a through fecal and
serum metabolites. L-proline and hypo-
xanthine were positively correlated with
LBP. Notably, CAG2, CAG4, CAG6, and the
fecal metabolites BCAAs and AAAs were

all negatively correlated with GADA;
moreover, the fecal metabolites BCAAs
and AAAs were also negatively correlated
with ZnT8A and IA-2A.

CONCLUSIONS

In this study, we found that patients with
LADA showed significantly different gut
microbiota and metabolite profiles from
those of healthy subjects and patients

with classic T1D and T2D. Furthermore,
we found a correlation among the gut
microbiota, fecal metabolites, serum met-
abolites, and clinical phenotypes.

Remarkably, the gut microbiota of
patients with LADA showed distinctive
characteristics (e.g., significantly decrea-
sed abundance of Faecalibacterium spp.,
Roseburia spp., and Blautia spp.) com-
pared with the other groups. These are

Figure 3—Correlations among gut microbiota, host fecal or serum metabolites, and host clinical phenotypes in the context of LADA. A: The Spear-
man correlation network of the gut microbiota, fecal metabolites, serum metabolites, and clinical phenotypes related to blood glucose. B: The
Spearman correlation network of the gut microbiota, fecal metabolites, serum metabolites, and clinical phenotypes related to inflammation. C:
The Spearman correlation network of the gut microbiota, fecal metabolites, serum metabolites, and autoimmunity antibodies. Red lines indicate
positive correlations (FDR <0.05), and blue lines indicate negative correlations (FDR <0.05). 2h CP, 2-h postprandial C-peptide; 2h PG, 2-h post-
prandial glucose; FCP, fasting C-peptide.
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short-chain fatty acid (SCFA)–producing

bacteria. SCFA-producing bacteria are

known to positively affect glucose meta-

bolism; they strengthen the gut barrier

function, reduce chronic inflammation,

and modulate intestinal hormones to

improve insulin sensitivity and reduce

pancreatic autoimmunity (27–29). The

structure and composition of the gut

microbiota in patients with T1D and T2D

are different from that in healthy sub-

jects, with a decrease in the abundance

of SCFA-producing bacteria (9,30). Our

study found that patients with LADA

show a severe deficiency in SCFA-pro-

ducing bacteria compared not only with

healthy subjects but also with patients

with classic T1D and T2D. Accordingly,

the severe SCFA-producing bacterial defi-

ciency in the guts of patients with LADA

may contribute to the occurrence and

progression of the disease. However, fur-

ther studies are needed to identify the

key microbiota players and investigate

their disease-linked mechanisms of action.
Additionally, we found that the auto-

antibody GADA strongly associates with
the structure and composition of the
microbiome but negatively correlates
with SCFA-producing bacteria. GADA is
one of the most potent autoantigens
involved in b-cell–specific autoimmu-
nity. LADA is defined as a heterogene-
ous disease with respect to susceptibility
genes, effects on autoimmunity, and phe-
notype. The potential causes of LADA
involve heterogeneous pathways in the
initiation of islet autoimmunity and het-
erogeneity in cellular responses (31).
Interestingly, animal studies found that
the SCFAs acetate and butyrate produced
by gut microbes protected nonobese dia-
betic mice from insulitis and slowed the
progression of diabetes, whereas butyrate
in the diet improved regulatory T cell
count and enhanced regulatory T cell
function (32). Additionally, several cross-
sectional studies have shown that the
GADA titer correlates with the phenotypic
heterogeneity of autoimmune diabetes,
particularly in patients with LADA (33,34).
Importantly, in the current study, the find-
ings were similar. Therefore, we hypothe-
sized that the gut microbiota may significantly
affect the clinical classification and therapy of
autoimmune diabetes. Our understanding of
these diseases is insufficient and needs further

exploration, and the gut microbiota may pro-
vide new insights.

We also identified specific metabo-
lites in the feces and blood, such as
BCAAs and AAAs produced by gut bac-
teria, that were different in patients
with LADA versus others with diabetes.
Of note, they correlated with glucose
metabolism. Other studies have found
that BCAAs and AAAs are associated
with insulin sensitivity/resistance (35).
Large human population studies found
that a high intake of dietary BCAAs
increases the risk of T2D (36,37). Con-
versely, animal studies demonstrated
that a diet specifically enriched in leu-
cine (BCAA) could improve glucose
homeostasis (38). Moreover, lowering
dietary BCAAs has been shown to
improve insulin sensitivity and increase
energy expenditure (39). The mechanism
is probably related to the activation of
mammalian target of rapamycin, affecting
insulin sensitivity (40). Therefore, BCAAs
and AAAs might affect glucose metabo-
lism and sensitivity and promote autoan-
tibody expression in patients with LADA.

However, because of the relatively
small sample size in this study, multi-
center, large-scale trials are required to
validate our results. Additionally, since
this is a cross-sectional study, the data
are correlative but not causal. Future
longitudinal studies are essential to
explore whether the modulation of the
gut microbiota and metabolism can
alter the natural course of LADA; the
mechanisms involved in immune regula-
tion by commensal bacteria in LADA
need further investigation.

In this study, we found unique charac-
teristics of the gut microbiota and meta-
bolic profiles in patients with LADA,
distinct from those in healthy subjects
and patients with classic T1D and T2D.
Additionally, we found that these profiles
correlated to glucose metabolism, islet
function, inflammatory factors, and the
autoimmune status, suggesting an in-
volvement in the onset and progression
of LADA. Collectively, the findings of this
study may shed new light on autoim-
mune diabetes.
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mixOmics: an R package for ’omics feature
selection and multiple data integration. PLoS
Comput Biol 2017;13:e1005752
22. Langfelder P, Horvath S. WGCNA: an R
package for weighted correlation network
analysis. BMC Bioinformatics 2008;9:559
23. Zhou X, Liu L, Lan X, et al. Polyunsaturated
fatty acids metabolism, purine metabolism and
inosine as potential independent diagnostic
biomarkers for major depressive disorder in
children and adolescents. Mol Psychiatry
2019;24:1478–1488
24. Langfelder P, Horvath S. Fast R functions for
robust correlations and hierarchical clustering. J
Stat Softw 2012;46:i11
25. Langfelder P, Zhang B, Horvath S. Defining
clusters from a hierarchical cluster tree: the
Dynamic Tree Cut package for R. Bioinformatics
2008;24:719–720
26. Hochberg Y, Benjamini Y. More powerful
procedures for multiple significance testing. Stat
Med 1990;9:811–818
27. Kim CH. Microbiota or short-chain fatty
acids: which regulates diabetes? Cell Mol
Immunol 2018;15:88–91
28. Canfora EE, Meex RCR, Venema K, Blaak EE.
Gut microbial metabolites in obesity, NAFLD and
T2DM. Nat Rev Endocrinol 2019;15:261–273
29. Wen L, Wong FS. Dietary short-chain fatty
acids protect against type 1 diabetes. Nat Imm-
unol 2017;18:484–486
30. Wu H, Tremaroli V, Schmidt C, et al. The
gut microbiota in prediabetes and diabetes: a
population-based cross-sectional study. Cell
Metab 2020;32:379–390.e3
31. Ilonen J, Lempainen J, Veijola R. The heter-
ogeneous pathogenesis of type 1 diabetes
mellitus. Nat Rev Endocrinol 2019;15:635–650

32. Mari~no E, Richards JL, McLeod KH, et al.
Gut microbial metabolites limit the frequency
of autoimmune T cells and protect against
type 1 diabetes. Nat Immunol 2017;18:
552–562
33. Buzzetti R, Di Pietro S, Giaccari A, et al.; Non
Insulin Requiring Autoimmune Diabetes Study
Group. High titer of autoantibodies to GAD
identifies a specific phenotype of adult-onset
autoimmune diabetes. Diabetes Care 2007;
30:932–938
34. Hawa MI, Kolb H, Schloot N, et al.; Action
LADA Consortium. Adult-onset autoimmune dia-
betes in Europe is prevalent with a broad clinical
phenotype: Action LADA 7. Diabetes Care 2013;
36:908–913
35. Newgard CB, An J, Bain JR, et al. A branched-
chain amino acid-related metabolic signature
that differentiates obese and lean humans and
contributes to insulin resistance. Cell Metab
2009;9:311–326
36. Zheng Y, Li Y, Qi Q, et al. Cumulative
consumption of branched-chain amino acids and
incidence of type 2 diabetes. Int J Epidemiol
2016;45:1482–1492
37. Isanejad M, LaCroix AZ, Thomson CA, et al.
Branched-chain amino acid, meat intake and risk
of type 2 diabetes in the Women’s Health
Initiative. Br J Nutr 2017;117:1523–1530
38. Zhang Y, Guo K, LeBlanc RE, Loh D,
Schwartz GJ, Yu YH. Increasing dietary leucine
intake reduces diet-induced obesity and
improves glucose and cholesterol metabolism
in mice via multimechanisms. Diabetes 2007;
56:1647–1654
39. Cummings NE,Williams EM, Kasza I, et al.
Restoration of metabolic health by decreased
consumption of branched-chain amino acids.
J Physiol 2018;596:623–645
40. Yoon MS. The Emerging role of branched-
chain amino acids in insulin resistance and
metabolism. Nutrients 2016;8:405

2746 Gut Microbiota and Metabolism in LADA Diabetes Care Volume 44, December 2021


