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Attribution of extreme weather events has expanded rapidly as a
field over the past decade. However, deficiencies in climate model
representation of key dynamical drivers of extreme events have
led to some concerns over the robustness of climate model–based
attribution studies. It has also been suggested that the uncon-
ditioned risk-based approach to event attribution may result in
false negative results due to dynamical noise overwhelming any
climate change signal. The “storyline” attribution framework, in
which the impact of climate change on individual drivers of an
extreme event is examined, aims to mitigate these concerns. Here
we propose a methodology for attribution of extreme weather
events using the operational European Centre for Medium-Range
Weather Forecasts (ECMWF) medium-range forecast model that
successfully predicted the event. The use of a successful forecast
ensures not only that the model is able to accurately represent
the event in question, but also that the analysis is unequivocally
an attribution of this specific event, rather than a mixture of
multiple different events that share some characteristic. Since this
attribution methodology is conditioned on the component of the
event that was predictable at forecast initialization, we show how
adjusting the lead time of the forecast can flexibly set the level of
conditioning desired. This flexible adjustment of the conditioning
allows us to synthesize between a storyline (highly conditioned)
and a risk-based (relatively unconditioned) approach. We demon-
strate this forecast-based methodology through a partial attribu-
tion of the direct radiative effect of increased CO2 concentrations
on the exceptional European winter heatwave of February 2019.

climate change | extreme event attribution | numerical weather prediction

A ttribution of extreme weather events is a relatively young
field of research within climate science. However, it has

expanded rapidly from its conceptual introduction (1) over the
past 20 y; it now has an annual special issue in The Bulletin of the
American Meteorological Society (2). Extreme event attribution
is of particular importance for communicating the impacts of
climate change to the public (3, 4), since the changing frequency
of extreme weather events due to climate change is an impact
that is physically experienced by society. As a result of this
rapid expansion, there now exist a large number of different
methodologies for carrying out an event attribution (5). Many
of these rely on large ensembles of climate model simulations,
the credibility of which has been questioned by recent studies
(6–8). A particular issue is the dynamical response of the atmo-
sphere to external forcing, which is highly uncertain within these
models (9). As attribution studies try to provide quicker results,
with an operational system a clear aim, it is vital that any such
system provides trustworthy results. In this study we propose a
“forecast-based” attribution methodology using medium-range
weather forecasts that could provide several key advantages over
traditional climate model-based approaches. First, if an event is
predictable within a forecasting system, we know that that system
is capable of accurately representing the event. Second, we know
that any attribution performed is unequivocally an attribution of

the specific event that occurred, unlike in unconditioned climate
model simulations. Finally, weather forecasts are run routinely by
many different national and research centers. The models used
are generally state of the art and extensively verified. We propose
that the attribution community could and should take advantage
of the massive amount of resources that are put into these
forecasts by developing methodologies that use the same type
of simulation. Ideally, the experiments required for attribution
with forecast models would be able to be run with little additional
effort on top of the routine weather forecasts; in this way they
might provide a rapid operational attribution system. We discuss
these ideas further throughout the text.

There have been several studies that propose or perform
methodologies related to the forecast-based attribution demon-
strated here. Hoerling et al. (10) used two seasonal forecast
ensembles to examine the predictability of the 2011 Texas
drought/heatwave within a comprehensive attribution analysis
involving several different types of climate simulation. Meredith
et al. (11) used a triply nested convection-permitting regional
forecast model to investigate the role of historical sea surface
temperature (SST) warming within an extreme precipitation
event. They conditioned their analysis on the large-scale
dynamics of the event through nudging in the outermost domain.
More recently, Van Garderen et al. (12) employed spectrally
nudged simulations to assess the contribution of human influence
on the climate over the 20th century on the 2003 European and
2010 Russian heatwaves. Possibly the most similar studies to the
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one presented here are a series of studies by Hope et al. (13–15).
They used a seasonal forecast model to assess anthropogenic
CO2 contributions to record-breaking heat and fire weather in
Australia. Two more similar studies carried out forecast-based
hurricane attribution studies (16, 17). Tropical cyclones are a
natural candidate for forecast-based methodologies due to the
high model resolution required to represent them accurately,
if at all. A final distinct, but related study is Hannart et al.
(18), which proposes the use of data assimilation for detection
and attribution (DADA). They suggest that operational causal
attribution statements could be made in a computationally
efficient manner using the kind of data assimilation procedure
carried out by weather centers (to initialize forecasts) to compute
the likelihood of a particular weather event under different
forcings (these would be observed and estimated preindustrial
forcings for conventional attribution). Our forecast-based
framework differs from these other studies in several regards.
First, we use a state-of-the-art forecast model to perform the
attribution analysis of the event in question, rather than to
solely assess the predictability of the event. We use free-running
coupled ocean-atmosphere global integrations here, allowing the
predictable component at initialization to dynamically condition
the ensemble, as opposed to nudging our simulations toward
the dynamics of the event, using nested regional simulations
or using the highly observationally constrained output of data
assimilation procedures. A final key difference is that here we
present an attribution of the direct radiative effect of CO2 in
isolation, although we hope that our approach could be extended
in the future to provide an estimate of the full anthropogenic
contribution to extreme weather events as in these other studies.
We argue that the relative simplicity in the validation, setup, and
conditioning of our simulations is desirable from an operational
attribution perspective and flexible across many different types
of extreme event.

We begin by introducing the chosen case study, the 2019
February heatwave in Europe, describing its synoptic character-
istics and formally defining the event quantitatively. We then
demonstrate the predictability of the event within the European
Centre for Medium-Range Weather Forecasts (ECMWF) en-
semble prediction system, showing that this operational weather
forecast was able to capture both the dynamical and thermo-
dynamical features of the event. In perturbed CO2 forecasts,
we outline the experiments we have performed to quantitatively
determine the direct CO2 contribution to the heatwave. We then
provide quantitative results from these experiments and finally
conclude with a discussion of the strengths and potential issues
of our forecast-based attribution methodology, including our
proposed directions for further work.

The 2019 February Heatwave in Europe
Between 21 and 27 February 2019, climatologically exceptional
warm temperature anomalies of 10 to 15 ◦C were experienced
throughout Northern and Western Europe (19), as shown in
Fig. 1A. In particular, 25 to 27 February showed record-breaking
temperatures measured at many weather stations and over wide
areas of Iberia, France, the British Isles, the Netherlands, Ger-
many, and Southern Sweden, as shown in Fig. 1C (20). Fig. 1D,
comparing the regional mean maximum temperatures during
the 2019 heatwave with timeseries of winter mean maximum
temperatures between 1950 and 2018, illustrates just how unusual
and widespread the event was. This heat was associated with
a characteristic flow pattern: a narrow titled ridge extending
from northwest Africa out to the southern tip of Scandinavia,
advecting warm subtropical air northeast (21), as shown in the
geopotential height field in Fig. 1A. This dynamical driver was
accompanied by another synoptic feature that further enhanced
the warming: widespread clear skies between 25 and 27 February,
shown in Fig. 1B. These clear skies resulted in a widespread and
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Fig. 1. Observations and historical context of the February 2019 heatwave.
(A) Maximum temperature anomaly in E-OBS with overlying contours of
mean Z500 anomaly from ERA5 (61) over 25 to 27 February 2019. (B)
Mean total cloud cover with overlying contours of mean sea level pressure
anomaly averaged over 25 to 27 February 2019. (C) Rank of the maximum
temperature in E-OBS over 25 to 27 February 2019 out of all winter temper-
ature maxima since 1950 and light-blue scatterplot of 216 HadISD stations
(with > 30 winters of measurements) that recorded their highest recorded
value over the same 3 d. (D) Historical winter maximum regional mean
daily maximum temperatures in E-OBS. Solid purple line shows timeseries
of winter maxima for 1950 to 2018; dashed pink line indicates maximum
value observed over 25 to 27 February 2019. Regions are as in ref. 27.

persistent strong diurnal cycle, reaching 20 ◦C in some locations.
Further details of the meteorological mechanisms and historical
context of the heatwave are provided in refs. 19, 22, and 23.
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To quantify the direct impact of CO2 on the heatwave in ques-
tion within this study, we need to characterize the heatwave in an
“event definition.” The choice of event definition is subjective but
can impact on the quantitative results of an attribution study sig-
nificantly (24–26). The most remarkable feature of the February
2019 heatwave was the maximum temperatures observed, which
peaked between 25 and 27 February for the majority of the
affected area. Focusing on this relatively short time period en-
sures that the synoptic situation driving the heat is coherent
throughout the event definition window. For the spatial extent
of the event, we use the eight European subareas described in
ref. 27. The use of regions previously defined in the literature
aims to avoid selection bias. Our resulting event definition is as
follows: the hottest temperature observed between 25 February
2019 and 27 February 2019, averaged over the land points within
each region (the temporal maximum is calculated before the
spatial averaging). Although we carry out our calculations for
all subareas, several regions were characteristically very similar
in terms of both the event itself and the forecasts of the event.
We therefore focus on three of the eight regions: the British
Isles (BI), which experienced exceptional heat that was well
predicted; France (FR), which experienced exceptional heat but
where the magnitude of the heat was less well forecast; and
the Mediterranean (MD), which experienced well-predicted but
climatologically average heat.

Forecasts of the Heatwave. This heatwave was well predicted by
the ECMWF ensemble prediction system. Their coupled ocean-
atmosphere forecasts indicated “extreme” heat was possible at a
lead time of around 2 wk and probable at a lead time of around
10 d (Fig. 2A), despite the exceptional nature of the heatwave
in both the model climatology and the real world. As expected,
the forecasts’ performance in predicting the extreme heat at
the surface is reflected in variables more closely linked to the
dynamic drivers of the heat, such as 500 hPa geopotential height
(Fig. 2B).

This successful forecast is a crucial part of our study as it means
that we are not only confident that the model used is able to sim-
ulate the event in question, but also unequivocally performing an
attribution analysis of the specific winter heatwave that occurred
in Europe during February 2019. This is an important distinction
from the framework used in “conventional” or “risk-based” (9)
attribution studies (24, 28–30), which in general reduce the event
to some impact-relevant quantitative index and then estimate the
increase in likelihood of events that exceed the magnitude of the
event in question. For example, a heatwave attribution study may
choose to define the event as the hottest observed temperature
during the heatwave and then compute the attributable change in
likelihood of temperatures hotter than this recorded maximum
(e.g., using models or historical records). While this does pro-
vide useful information, it does not answer the question of how
much more likely anthropogenic activities have contributed to
the specific heatwave that occurred, but rather the question of
how much more likely anthropogenic activities have contributed
to a mixture of events that share one or more characteristics.
Studies have attempted to provide a more satisfactory answer to
this first question by including a level of conditioning on the set of
events considered by using circulation analogs (31) or by nudging
model simulations toward the specific dynamical situation that
occurred during the event in question (11, 12). Here we are
evidently performing an attribution study of the specific record-
breaking heatwave that occurred in February 2019 due to the
use of these successful forecasts that captured not only the heat
experienced at the surface, but also the dynamical drivers behind
the heat.

As well as enabling us to answer the attribution question
for a single specific heatwave, the use of a numerical weather
prediction model provides additional benefits. Since large model
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Fig. 2. Medium- to extended-range forecasts of the heatwave. (A) En-
semble distribution of heatwave as event definition against forecast initial-
ization date for the British Isles region. Gray line on far left shows model
climatology, thick black lines show lead times selected for the perturbed
CO2 experiments, dashed gold line shows heatwave magnitude in ERA5.
Dots show ensemble mean. (B) Forecasts of Z500 over Europe during the
heatwave period compared to ERA5. y axis shows the fraction of the forecast
ensemble with a pattern correlation at least as great as the levels indicated
by the contour lines, against forecast initialization date. Thin dotted lines
show lead times selected for the perturbed CO2 experiments.

ensembles are required to properly capture the statistics of ex-
treme events, many previous attribution studies, especially in the
context of heatwaves, have used relatively coarse, atmosphere-
only climate models (32–34), which may not fully capture all the
physical processes required to credibly simulate the extreme in
question (35). In particular, the use of atmosphere-only simu-
lations may result in the full space of climate variability being
undersampled due to the lack of atmosphere–ocean interaction
(36). This can lead to studies overestimating the impact of an-
thropogenic activity on weather extremes (6, 24). More generally,
Bellprat et al. (7) and Palmer and Weisheimer (8) have shown
the importance of initial-value reliability in model ensembles
underlying robust attribution statements. Model evaluation is
therefore a key part of any robust model-based attribution study.
Here, the demonstrably successful forecast enables us to be
confident that the model used is providing credible realizations of
the event.

A clear distinction between the typical climate model simula-
tions used for attribution (32, 34) and the forecasts used here is
that the climate model simulations are usually allowed to spin out
for a sufficient length of time such that they have no memory of
their initial conditions; an ensemble constructed in this way will
therefore be representative of the climatology of the model. If
such simulations use prescribed SST boundary conditions, then
the ensemble will be representative of the climatology condi-
tioned on the prescribed SST pattern (33). Unlike climatological
simulations, a successful forecast is conditioned upon the compo-
nent of the weather that is predictable at initialization. In general,
the level of conditioning imposed upon the ensemble by the
initial conditions reduces as the model integrates forward from
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the initialization date. Hence a forecast ensemble initialized only
a few days before an event will be much more heavily conditioned
(and therefore much less spread) than one initialized weeks
before. As the lead time increases, a forecast ensemble will tend
toward the model climatology, analogous to the climate model
simulations discussed above. We can relate these situations to the
two broad attribution frameworks discussed in ref. 9: Very long
lead times, where the forecast simulates model climatology, are
analogous to conventional attribution; while short lead times, in
which the forecast ensemble is heavily dependent on the initial
conditions and therefore conditional on the actual dynamical
drivers that lead to the extreme event, are analogous to the
“storyline” approach in refs. 12 and 37. To synthesize between
these two frameworks, here we have chosen four initialization
times (3-, 9-, 15-, and 22-d leads) for our experiments that span
the range from a near-unconditioned climatological forecast to
a short-term forecast that is tightly conditioned on the actual
dynamical drivers of the heatwave.

Perturbed CO2 Forecasts
In this study we choose to change only one feature of the opera-
tional forecast in our experiments: the CO2 concentration. This
means that the analysis we carry out is limited to attributing the
impact of diabatic heating due to increased CO2 concentrations
above preindustrial levels just over the days between the model
initialization date and the event. Although this results in a coun-
terfactual that does not correspond to any “real” world (since it
is one with approximately present-day temperatures but prein-
dustrial CO2 concentrations) and thus reduces the relevance of
our analysis to stakeholders or policymakers, it does significantly
increase the interpretability of our results and removes a major
source of uncertainty associated with a “complete” attribution to
human influence: the estimation of the preindustrial ocean and
sea-ice state vector used to initialize the model (38). Here we
define a complete attribution as an estimate of the total impact
of human influence on the climate arising from anthropogenic
emissions of greenhouse gases and aerosols since the preindus-
trial period. For each lead time chosen, in addition to the oper-
ational forecast (indicated by “ENS” in the figures) we run two
experiments using operational initial conditions and identical to
the operational forecast in every way except the experiments have
specified fixed CO2 concentrations. One experiment has CO2

concentrations fixed at preindustrial levels of 285 ppm (PI-CO2),
while in the other one they are increased to 600 ppm (INCR-
CO2). These represent approximately equal and opposite pertur-
bations on global radiative forcing (39). We carry out these two
experiments for each lead time, perturbing the CO2 concentra-
tion in opposite directions, to ensure that any changes to the like-
lihood of the event can be confidently attributed to the changed
CO2 concentrations. It is possible that, due to the chaotic na-
ture of the weather, the operational conditions were ideal for
generating the observed extreme, and any perturbation to the
dynamical system would reduce the likelihood of its occurrence
(9). If this were the case, we would see a reduction in event prob-
ability regardless of whether we increased or reduced the CO2

concentration.
Some previous work has been done on the impact of reduced

CO2 concentrations in the absence of changes to global sea sur-
face temperatures. Baker et al. (40) explored how temperature
and precipitation extremes were affected by the direct effect
of CO2 concentrations (defined there as all the effects of CO2

on climate besides those occurring through ocean warming),
finding the direct effect of CO2 increases risk of temperature
extremes, especially within the Northern Hemisphere summer.
Our experimental design is also reminiscent of some of the
earliest work done on investigating the impact of CO2 on cli-
mate in global circulation models (41, 42). This work found
that, in the absence of changes to sea surface temperatures

or sea ice concentrations, a doubling of CO2 concentrations
would change global mean surface temperatures over land by
∼0.4 ◦C. These early studies indicate that changes in global land
temperatures are approximately linear with the logarithm of CO2

concentration.
We find that the best-estimate global mean change in land

surface temperatures attributable to the additional diabatic heat-
ing due to CO2 over preindustrial levels (henceforth the “CO2

signal,” calculated as half the difference between the two exper-
iments for a particular variable) at a lead time of 2 wk (over
the final 5 d of the forecasts initialized on 11 February 2019)
is 0.22 [0.20, 0.25] ◦C (square brackets indicate a 90% confi-
dence interval throughout). In general, the farther away from
the initialization date, the slower is the rate of change of the
globally averaged ensemble mean CO2 signal and the larger is the
ensemble spread (Fig. 3A). While in experiments with prescribed
SSTs, we might expect the CO2 signal in surface temperatures
to approach a maximum value within timescales on the order of
months, in our experiments the CO2 signal will likely continue to
increase in magnitude for centuries due to the ocean coupling,
as is the case in the abrupt-4×CO2 experiment carried out in
the Coupled Model Intercomparison Project (CMIP) (43–45).
The zonal-mean patterns of surface temperature CO2 signal are
qualitatively similar to those exhibited by CMIP5 and CMIP6
models during the abrupt-4×CO2 experiment (46, 47), despite
the considerably shorter timescales involved: Small and very
confident changes in the tropics become larger but much less
confident changes at the poles. This heterogeneity in the zonal
distribution of warming appears to originate in the zonal distri-
bution of the lapse-rate feedback; the weekly timescales of these
experiments are insufficient for the surface-albedo feedbacks to
have any significant impact (48).

We also examine the impact on the specific event dynamics
over our region of interest, since these were crucial in devel-
oping the extremes observed. Fig. 3B shows the growth in 500
hPa geopotential height (Z500) errors (measured as the mean
absolute distance from ERA5 over the European domain) for
each of the experiments. Fig. 3B illustrates that there are no
clear differences in the ability of each experimental ensemble to
predict the dynamical characteristics of the event. In other words,
we have not made the synoptic event any more or less likely as a
result of our perturbations. This is crucial as it means that we
can consider any changes to the magnitude of the temperatures
observed to be entirely due to the thermodynamic effect of
changed diabatic CO2 heating and not due to the attractor of the
dynamical system having changed as a result of the perturbations
we have made.

Fig. 3 C and D shows analogous plots to Fig. 3B, but for
interexperimental and intraensemble errors, respectively. These
indicate a couple of important features. First, no two experiments
are more similar than any other two; the magnitudes of Z500
distances in Fig. 3C are nearly identical for all lead and validation
times. Second, the error growth due to the CO2 perturbation is
slower than due to the initial condition perturbations; the errors
in Fig. 3C increase slower than in Fig. 3D. However, by the end of
the longest lead forecast, we can see that the intraensemble errors
have saturated, and the interexperimental errors have grown to
be the same magnitude. The saturation of intraensemble errors
by the end of this lead time reinforces our assertion that at this
lead the forecast is a good approximation of a climatological
simulation.

Attributing the Heatwave to Diabatic CO2 Heating
First, we examine the geographical pattern of the CO2 signal
in the heatwave in Fig. 4 A–D. These maps indicate several key
features of the attributable direct CO2 effect on the heatwave.
The CO2 effect tends to grow with lead time, consistent with its
impact on global mean temperatures. It is generally stronger over
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of the differences between the PI-CO2 and INCR-CO2 experiments. (D) As in B but for intraensemble errors. Errors here are shown only for the operational
ensembles.
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Fig. 4. Attribution of the direct CO2 influence on the heatwave. (A–D) Maps of the ensemble mean attributable CO2 signal in the heatwave for the four
forecast lead times, which are indicated by the subplot titles. Stippling indicates a significant positive signal at the 90% level. (E) Boxplot of the absolute CO2

signal for the three regions of interest and over the four forecast lead dates. Black line indicates ensemble median. Dark shading indicates 90% confidence
in the median, and light shading indicates 90% confidence in the ensemble. Gray line indicates median difference between the operational forecast and
PI-CO2 experiment. (F) As in E, but showing risk ratios using the operational forecast as a factual and PI-CO2 experiment as a counterfactual ensemble. (G)
As in F, but using the INCR-CO2 experiment as a factual and PI-CO2 experiment as a counterfactual ensemble.

land than ocean, also consistent with global mean temperatures.
Finally, the ensemble tends to become less confident in its effect
as the lead time increases and the ensemble members diverge.
The CO2 signal magnitude in the heatwave generally exceeds
the signal in the global mean surface temperature (Fig. 3A), in
particular in Central Europe, possibly due to the high contri-
bution of diabatic heating to the heatwave arising from ideal
dynamical conditions. Fig. 4E shows boxplots of the heatwave
CO2 signal for the three regions of interest. Although there
is some region-specific variability, these reinforce the main
messages illustrated by the maps: The CO2 signal grows and
decreases in confidence as the lead time increases.

In addition to the absolute impact of the direct CO2 effect
on the heatwave, we also carry out a probabilistic assessment
of its impact, consistent with conventional risk-based attribution
studies (9, 49). Due to the distinct approach we are taking within
this study, it is worth clarifying exactly what question we are
answering with this probabilistic analysis. The specific question
is as follows: Given the forecast initial conditions, how did the
direct impact of increased CO2 concentrations compared to

preindustrial levels just over the days between initialization and
the heatwave itself change the probability of temperatures at
least as hot as were observed? Using conventional attribution ter-
minology, we call the operational forecast ensemble of the event
our “factual” ensemble and the preindustrial CO2 experiment
our “counterfactual” ensemble. We calculate the probability of
simulating an event at least as extreme as observed in the factual
ensemble, P1, and in the counterfactual ensemble, P0. These
probabilities are estimated by fitting a generalized extreme value
distribution to the 51-member ensemble in each case. We then
express the change in event probability as a risk ratio, RR =
P1/P0, which represents the fractional increase in the likelihood
of an event at least as extreme as observed in the factual ensemble
over the counterfactual ensemble (28, 50). Uncertainties are
estimated with a 100,000-member bootstrap with replacement,
rejecting samples for which the probability of the event in the
factual ensemble is zero. The resulting risk ratios are shown in
Fig. 4F. There are several key factors that contribute to the best
estimate and confidence in the risk ratios: the CO2 signal growth
with lead time, the ensemble spread growth with lead time, how
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extreme the event was, and how well forecast the event was.
The larger the CO2 signal is, the greater the increase in risk;
the larger the ensemble spread is, the lesser the increase in risk
and the lower the confidence; the more extreme the event is,
the greater the increase in risk; and the better the forecast is
(i.e., the closer the event to the ensemble center), the greater the
confidence.

We find that on the shortest lead time, the direct CO2 effect
increases the probability of the event over all European regions
(significant at the 5% level based on a one-sided test). For the
well-forecast event experienced over the British Isles, the direct
CO2 effect increases the probability of the extreme heat by 42
[30, 60]%. For the France heatwave, which was well forecast given
its exceptional nature, but for which the ensemble did not quite
reach the total magnitude of the heat experienced, the event
probability increased by at least 100% (fifth percentile), but with
a very wide uncertainty range. Finally, for the least remarkable
but relatively well-forecast event over the Mediterranean, the
direct impact of CO2 increased the event probability by 6.7
[4.6, 9.7]%. These results from the very short lead experiments
represent very highly conditioned statements: In both ensembles
the dynamical evolution of the event was nearly identical (pattern
correlation of >0.99 for all ensemble members; Fig. 2B).

Moving out to the longer lead times, we find that the confi-
dence in the change in event probability decreases almost ubiqui-
tously. This is as expected, since the farther we move away from
the event, the less highly conditioned our ensemble is, and the
more dynamical noise we are adding to the system (9). However,
for the 9-d lead forecast, the uncertainty is low enough to have
confidence in the results for the majority of study regions. In
particular, the British Isles heatwave, for which the 9-d lead
forecast was better than several of the regional 3-d lead forecasts
(as measured by the continuous ranked probability skill score),
increases in probability by 52 [29, 94]% due to the direct CO2

effect. However, for France the uncertainty range is so large
that based on these results alone we would have no confidence
in the direction of the CO2 effect. Moving farther out to the
15- and 22-d lead forecasts, this loss in confidence becomes
more pronounced, especially for the British Isles region. For this
region, we can get virtually no useful information out of these
probabilistic results for the two longest lead experiments. This
drop-off in confidence arises due to the increasing ensemble
spread from dynamical noise and large reduction in the number
of factual ensemble members able to simulate an event as hot
as occurred in reality between the 9- and 15-d leads. A similar,
although generally less pronounced drop-off in confidence is
found in all other regions.

We can make use of our INCR-CO2 experiment to increase
our confidence that the positive results we obtained in the proba-
bilistic analysis above are in fact due to the direct CO2 effect and
not just random variability. If CO2 were driving the changes in
event probability between the PI-CO2 and operational forecasts,
then we would expect to see an even more dramatic increase in
event probability between the PI-CO2 and INCR-CO2 forecasts.
This is indeed what we find. For all regions and lead times, our
best-estimate change in event probability is above zero when
CO2 concentration is increased from preindustrial levels of 285
ppm to 600 ppm. This therefore increases our confidence further
that the positive attribution to CO2 under high conditioning is
genuinely significant. From these results, it also appears that
there is a general trend of change in event probability increasing
as the forecast lead increases, similar to the absolute impact of
the direct CO2 effect trend, although it is still somewhat masked
by uncertainty.

An important caveat in all of these results, probabilistic and
absolute, is that they represent a lower bound on the estimate of
the direct CO2 effect. As is clear from the development of the
CO2 signal estimates with lead time, the model is still adjusting

to the sudden change in CO2 concentration (and would continue
to do so for centuries due to the very long deep ocean equili-
bration timescales). Hence, we would expect the “full” effect of
CO2 to be greater than the estimates we present here. This is
consistent with a recent study that used unconditioned climate
model simulations to carry out an attribution of the complete
anthropogenic contribution to the same event, which produced
much higher estimates of the risk ratio (23).

Discussion
Here we have presented a partial, forecast-based attribution
of the European 2019 winter heatwave. Taking advantage of
successful medium-range forecasts from ECMWF, we used a
state-of-the-art numerical weather prediction model that was
demonstrably able to predict the event to attribute the direct
impact of CO2 through diabatic heating over preindustrial levels
and just over the days immediately preceding the event on the
high temperatures experienced in several regions of Europe. We
explored how the level of dynamical conditioning imposed can
be specified by changing the lead time of the forecasts. Finally,
we presented our quantitative results using two different ap-
proaches: measuring the attributable absolute and probabilistic
impacts of CO2, inspired by the storyline and risk-based attribu-
tion frameworks (9, 28, 49, 51).

There are several advantages associated with this forecast-
based attribution methodology, compared to conventional cli-
mate model-based attribution. One simple advantage is that fore-
cast models generally represent the technological peak within the
spectrum of general circulation models. They almost always have
a higher resolution than the models used for climate simulation.
In addition, the forecast model used here is coupled ocean-
atmosphere, while the large climate model ensembles used for
attribution often use prescribed sea surface temperatures (33).
The use of prescribed SSTs can lead to model biases that project
strongly onto attribution results (36). A final advantage arising
from the use of an operational forecast model is the wealth of
literature and model analysis that will already be available before
an attribution study is initiated. As well as these advantages
associated with the type of model there is the crucial advantage
associated with using successful forecasts: the specific and intrin-
sic model verification. Due to the difficulty in fully quantifying
how well climate models can represent an individual specific
event (in particular, the very large ensembles required to have
a large enough sample of characteristically similar events), cli-
mate model-based attribution studies tend to perform statistical
model evaluations or/and account for this uncertainty through
multimodel ensembles (52). On the other hand, if a forecast
model that demonstrably predicted the event as it occurred is
used, no further model verification or evaluation is required
to test whether the model is capable of producing a faithful
representation of the specific event.

Related to this intrinsic verification is an important point
on the framing of forecast-based attribution studies. Climate
model-based attribution studies tend to characterize an event
in terms of some quantitative index closely related to the im-
pact of the event (such as the maximum temperature observed
during a heatwave). They then use climate model simulations
to determine how climate change has affected the probability of
observing an event at least as extreme as the actual event. This is
often done without imposing any dynamical conditioning on the
simulations, although this is an area of active research (31, 53).
This unconditional approach means that the specific question
being answered is not “how has anthropogenic climate change
affected the probability of event X?” but “how has anthropogenic
climate change affected the probability of all events that are at
least as extreme as event X in terms of the index used to define
X?” This second question does not fully answer the question
of how climate change has affected the actual event that the
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study is concerned with. In contrast, the use of a forecast model
that predicted the event ensures that any attribution analysis is
unequivocally an attribution of that specific event (15).

In addition to its advantages, this forecast-based attribution
methodology also has associated issues that must be overcome.
First, the forecast model must have produced a “good” forecast
of the event. If the model is unable to represent the event as it
happened, then we cannot have confidence in any estimates of
the impact of climate change on that event. Issues can arise even
in qualitatively good forecasts, such as the forecast of the heat-
wave over France in this study. As very few ensemble members,
if any, exceeded the observed magnitude of the event for this
region, the confidence in our estimates of the probabilistic impact
of CO2 on the event is extremely low (since we are extrapolating
the distribution shape outside of the range of our data). Although
the estimates of the absolute impact of CO2 do not share this
lack of confidence, this is still a problem. It is possible that
applying some bias correction procedure (54–56) based on the
model climatology to the model output before analysis might
alleviate these issues to some extent, but not if the model is simply
unable to predict the event in question (i.e., a forecast bust).
Second, the short timescales involved in these medium-range
forecasts mean that the interpretation of any results becomes
more difficult as the model is still adjusting to the perturbations
imposed (13), at least in the case of the CO2 perturbations
applied here. This adjustment is clear on a global scale in Fig. 3A.
Due to this incomplete adjustment, any quantitative statements
of attribution represent a lower bound on the “true” value.

We have shown that the direct effect of CO2 concentrations
over preindustrial levels on the February heatwave is significant,
even on timescales as short as a few days. Based on the very good
9-d lead forecast of the heatwave over the British Isles, the region
that saw the most climatologically exceptional event, the direct
effect of CO2 was to increase the magnitude of the heatwave by
0.31 [0.24, 0.37] K and the conditional probability of the heatwave
by 52 [29, 94]%. It is very important to bear in mind that this
statement of risk is highly dynamically conditioned (Fig. 2B).
These estimates of the impact of CO2 on the heatwave follow
the storyline attribution framework, since we have effectively
removed the dynamical uncertainty from our simulations with
this strong conditioning imposed by the short lead time (9, 51,
57). Our longer, 22-d lead experiments can contrast this storyline
analysis with relatively unconditioned results much closer to
the climatological simulations typically used in the conventional
risk-based attribution framework (28, 52). At this lead, we find
that although over all regions the best-estimate impact of the
direct CO2 effect is to enhance the heatwave by ∼0.5 K, in
none of the regions is this impact significantly positive at the
90% level (based on the bootstrapped confidence in the median
value). Corresponding estimates of the risk ratio have such low
confidence that they provide virtually no useful information.
Increasing the forecast ensemble size, which is small compared
to the climate model ensembles used in most attribution studies,
would increase the confidence, potentially resulting in useful
quantitative estimates of the risk ratio even at these longer lead
times. Our results illustrate some of the concerns voiced recently
over the conventional risk-based approach to attribution (9, 49).
Due to the dynamical noise present in unconditioned ensem-
bles, it is possible to obtain an inconclusive attribution within a
conventional risk-based framework and at the same time obtain
a confident positive attribution if the dynamical uncertainty is
removed through conditioning (in our case achieved by reducing
the forecast lead).

While this study provides a demonstration of the potential
use for forecast models within attribution science, it remains a
partial attribution to the direct CO2 effect only. For forecast-
based attribution to provide results that are fully comparable
to conventional climate model-based attribution, we will need

to demonstrate how the complete anthropogenic contribution
to an extreme event could be estimated with successful fore-
casts. The next step to progress forecast-based attribution farther
will be to remove an estimate of the anthropogenic contribu-
tion to ocean temperatures from the model initial conditions
(38). If performed in addition to reducing other greenhouse gas
concentrations and aerosol climatology down to their preindus-
trial levels, this should allow us to run preindustrial forecasts of
an event. This has been done previously for a seasonal forecast
model by Hope et al. (13–15). They removed the anthropogenic
signal from 1960 onward from the initial conditions, but we
could in principle remove the signal from preindustrial times on-
ward to estimate the complete anthropogenic contribution to an
event. Although it is highly likely that there will be methodology-
specific issues that arise in this direction, we suggest that being
able to estimate the complete anthropogenic contribution to an
extreme event using a forecast model that was able to predict
the event in question would be extremely valuable. Develop-
ing a methodology to allow us to do so might also provide a
pathway to operational attribution being able to be carried out
by weather prediction centers, due to the routine frequency
at which they produce forecasts. In addition to attempting a
complete forecast-based attribution of an extreme event, we want
to explore how increasing the ensemble size may allow us to
provide confident forecast-based attribution analyses within the
unconditioned risk-based framework (i.e., at long forecast lead
times). One potential avenue to allow us to do this efficiently
might be to reduce the resolution of the forecasts, although this
would not be appropriate if it reduced the ability of the model to
represent the event in question. On a similar note, we also want
to extend our experiments out to seasonal timescales. This would
reduce the issues with the interpretation of our medium-range
results that occurred due to the model adjustment to the sudden
changes to the CO2 concentration. It is possible that seasonal
forecasts have the greatest potential to target for an operational
forecast-based attribution methodology.

Materials and Methods
The ECMWF Integrated Forecasting System. In this study, we use Integrated
Forecasting System (IFS) model cycle CY45R1, the operational cycle at the
time of the event. The 51-member ensemble prediction system comprises
a 91-layer, TCo639 resolution atmospheric model coupled to the 75-level,
0.25◦ resolution Nucleus for European Modelling of the Ocean ocean engine
v3.4 (58). Once the model integration reaches the extended range (day 15
onward), the atmospheric model resolution is reduced to TCo319.
The IFS model climatology. We define the IFS model climatology, used to
compute model anomalies and the continuous ranked probability skill score,
in an identical manner as is done operationally (for example, to calculate
the Extreme Forecast Index product) (59). This climatology is defined using
nine consecutive reforecast sets, spanning 5 wk centered on the forecast
initialization date (reforecast sets are run twice a week, every Monday
and Thursday), of 11 members per reforecast. These sets are created by
initializing the reforecast ensemble on the same calendar date over the
previous 20 y. This procedure results in a model climatology of 9 × 11 ×
20 = 1,980 members covering the 1999 to 2018 period. Throughout this
article, we use the model climatology defined for the forecast initialized on
11 February 2019. Climatologies defined for other initialization dates are
virtually identical.

Statistical Methods.
Significance testing. For the significance stippling displayed on the maps,
we use a nonparametric (binomial) pairwise sign test at a 90% confidence
level.
Distribution fitting. When fitting statistical distributions to the ensembles
during the risk-ratio calculation, we employ the method of L-moments (60),
due to its numerical stability under small sample sizes.

Datasets Used.
ERA5. We use the latest generation climate reanalysis from ECMWF,
ERA5 (61).
E-OBS. We use the E-OBS analysis v20.0e at 0.1◦ resolution (20).
HadISD. We use HadISD v3.1.1.202003p (62–65).
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Data Availability. Python analysis notebooks have been deposited in
Zenodo (https://doi.org/10.5281/zenodo.5416058). Original forecast data
is publicly available from the Centre for Environmental Data Analysis
archive (https://catalogue.ceda.ac.uk/uuid/dd6a312c701f47778390de50cd05
2071) (66).
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