
ST
AT

IS
TI

CS
M

ED
IC

A
L

SC
IE

N
CE

S

Fragility indices for only sufficiently likely
modifications
Benjamin R. Baera,1 , Mario Gaudinob , Mary Charlsonc, Stephen E. Fremesd,e , and Martin T. Wellsa,c

aDepartment of Statistics and Data Science, Cornell University, Ithaca, NY 14853; bDepartment of Cardiothoracic Surgery, Weill Cornell Medicine, New York,
NY 10021; cDepartment of Medicine, Weill Cornell Medicine, New York, NY 10065; dDivision of Cardiac Surgery, Schulich Heart Centre, Sunnybrook Health
Sciences Centre, Toronto, ON, M4N 3M5 Canada; and eDepartment of Surgery, University of Toronto, Toronto, ON, M5T 1P5 Canada

Edited by Larry Wasserman, Carnegie Mellon University, Pittsburgh, PA, and approved October 19, 2021 (received for review March 18, 2021)

The fragility index is a clinically meaningful metric based on
modifying patient outcomes that is increasingly used to interpret
the robustness of clinical trial results. The fragility index relies on a
concept that explores alternative realizations of the same clinical
trial by modifying patient measurements. In this article, we pro-
pose to generalize the fragility index to a family of fragility indices
called the incidence fragility indices that permit only outcome
modifications that are sufficiently likely and provide an exact
algorithm to calculate the incidence fragility indices. Additionally,
we introduce a far-reaching generalization of the fragility index
to any data type and explain how to permit only sufficiently likely
modifications for nondichotomous outcomes. All of the proposed
methodologies follow the fragility index concept.

evidence measure | fragility index | interpretability | P value | statistical
significance

S tatistical hypothesis testing is a mainstay in the scientific
method. Scientific conclusions typically rely on P values and

related summaries to achieve validity. However, P values are
widely misunderstood (1, 2). A complement to the P value for
2× 2 tables that is gaining a foothold in the medical literature is
the fragility index (3, 4), which is a measure of evidence that is in
“patient” units instead of probability units.

Here, a 2× 2 contingency table stores data from a clinical trial
that has a control and a treatment group and a dichotomous out-
come such as event or nonevent. A hypothesis test to determine
whether the first group and the second group have different event
rates is classically conducted by determining whether a P value is
less than a significance threshold.

The fragility index is defined as the minimum number of pa-
tients whose outcomes (i.e., event or nonevent) must be modified
to reverse significance of a statistical test (4). The measure is
used to determine whether the significance of a statistical test
is “fragile” and thus should not be firmly trusted. Researchers
in several fields have found that surprisingly often the primary
results in their field hinge on the outcomes of a few patients (5).

The concept underlying the fragility index is largely the same
as the P value. Both consider hypothetical outcomes from the
same clinical trial. In one case, P values rely on alternative patient
outcomes and their distributional impact on test statistics; in
the other, the fragility indices directly explore alternative patient
outcomes. We feel that this is the most fundamental aspect of the
fragility index: Each modification underlying the fragility index
could have been observed in the clinical trial due to random
variation.

The fragility index is commonly calculated using an algorithm
from Walsh et al. (4) or a close extension, which we call the
original algorithm. However, this algorithm can malfunction and
fail to return the correct value of the fragility index. Due to this,
some researchers have relied on ad hoc or alternative arguments
to calculate the fragility index (6, 7). In this work, we describe
serious shortcomings of the original algorithm and then present
an exact algorithm to calculate the fragility index.

In the years since Walsh et al. (4) reintroduced the fragility
index, the approach has been widely used but also criticized. One

of the more interesting criticisms has been raised by Walter et
al. (6). They argued that the modifications to patient outcomes
that are behind the fragility index can be unlikely to occur in
practice. This is certainly true, and we feel that the outcome
probability is a crucial companion to the fragility index. This
allows researchers to contextualize the fragility index in terms of
the likelihood of the outcome modifications that reversed statis-
tical significance. However, researchers currently cannot choose
this outcome probability associated and are forced to accept
whichever event modifications the algorithm happened to use. In
this way, the traditional fragility index is roughly associated with
an “anything goes” principle and is derived by assuming that any
outcome modification can occur.

Another thread of critique argues that the fragility index, which
is defined only for 2× 2 tables, is not defined for useful data
types and covariate controls and hence tends to be used inap-
propriately (8–13). Many who wish to use the fragility index in
this case coerce their data into a 2× 2 format, potentially losing
valuable information or fundamentally changing the research
question.

In this paper, we contribute methods that generalize the
fragility index. To do this, we change the relationship between
the fragility index and a fixed outcome probability and instead
provide a fragility index for any given outcome modification
probability. This enables researchers to have a version of the
fragility index that incorporates their assessment of which
outcomes in either group are too rare to permit modifications
into. For 2× 2 tables, the measures take into account the
incidence in each group and hence we call the measures the
incidence fragility indices (14). For general data types, we
propose the generalized fragility indices, a broad generalization
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In frequentist hypothesis testing, P values are used to establish
statistical significance. Currently, there is an active movement
to use alternative metrics, such as the fragility index, which
measures how many outcome modifications in a clinical trial
are required to reverse statistical significance. The fragility
index approach compares to alternative outcomes that could
have arisen from the same clinical trial. However, the existing
fragility index does not take into account the likelihood of the
outcomes and is defined only for 2 × 2 tables. We introduce
methods that provide intuitive remedies to these problems.
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Table 1. The nomenclature for the methods and algorithms for
various fragility measures

Method Algorithm

Forward fragility index Walsh’s algorithm
Reverse fragility index Johnson’s algorithm

Khan’s algorithm
Traditional fragility index Original algorithm

Exact algorithm
Incidence fragility index FIq Exact algorithm
Generalized fragility index
Sufficiently likely construction GFIq Greedy algorithm

of the fragility index, which are appropriate for any data type or
statistical test. These methods conform to the fragility index
concept that only variables subject to random variation are
modified. Several examples illustrate the incidence fragility
indices and generalized fragility indices and their corresponding
algorithms. Code to reproduce the examples is available in the R
package FragilityTools (15).

This article proceeds by developing the fragility indices and
algorithms presented in Table 1. In the next section, we review
the formulation of the fragility index for testing a treatment effect
on 2× 2 tables. After extending the existing formulations by
defining the traditional fragility index, we explain fundamental
shortcomings of the associated original algorithm. In the follow-
ing section, we introduce an extension of the 2× 2 fragility index
that permits only sufficiently likely modifications. In the following
section, we introduce a broad generalization of the fragility index
to any data type and statistical test, propose a class that permits
only sufficiently likely modifications, and present an efficient
approximation algorithm. In the final section, we summarize our
contributions and conclude the paper.

The Traditional Fragility Index
In this section we formalize and study the fragility index that
was introduced by Walsh et al. (4). We rely on Tables 2 and 3
to explain the fragility index. Table 2 shows the raw data from a
clinical trial of the kind considered in this paper, with two groups
and a dichotomous outcome. For example, there are a events
in group 1 with a + b total patients in group 1 and c events in
group 2 with c + d total patients in group 2. Table 3 shows the
result of modifying the outcomes within each group of the trial.
For example, when f1 is positive, f1 patients have their outcome
modified from nonevent to event in group 1; when f1 is negative,
−f1 patients have their outcome modified from event to nonevent
in group 1. These outcome modifications preserve the number
of patients in each group and are the driving force behind the
fragility index.

We will frequently refer to statistical significance without de-
scribing a particular statistical test. The authors believe that re-
searchers should determine statistical significance for the fragility
index in the same manner that they initially determined statistical
significance. For example, if a researcher is using Fisher’s exact
or Pearson’s χ2 test, the same test should be used for the fragility
index.

We can view the fragility index as being a supplementary
measure of evidence to this underlying statistical test. However,
the fragility index concept is more broadly applicable than just
to P values. For example, the fragility index concept has been

Table 2. The hypothetical sample data

Event Nonevent

Group 1 a b
Group 2 c d

Table 3. The hypothetical sample data with outcome modifica-
tions

Event Nonevent

Group 1 a + f1 b − f1

Group 2 c + f2 d − f2

applied to sensitivities instead of P values (16). In this article,
we mostly use P values with the significance threshold 0.05 for
the underlying statistical test because this is standard in the
fragility index literature; however, readers should contextualize
the presentation in terms of their preferred measure of evidence.

In this section, first, we briefly review the fragility index def-
initions and algorithms used in the literature. Next, we explain
and appraise existing critiques of the fragility index. Next, we
define the traditional fragility index and the original algorithm
as modest extensions of the definitions of and algorithms for the
reviewed fragility indices. Next, we highlight three shortcomings
of the original algorithm in calculating the traditional fragility
index. Next, we introduce an exact algorithm that remedies the
shortcomings.

“Forward” and Reverse Fragility Indices
We start by reviewing the variants of the fragility index commonly
used for 2× 2 tables and their associated algorithms. We will
sometimes refer to the fragility index as the "forward" fragility
index to maintain parity with the reverse fragility index.
Forward fragility index. The fragility index was defined by Walsh
et al. (4) for only statistically significant results. In their work,
Walsh et al. extended an earlier fragility measure discussed by
Feinstein (3).

When modifying a small number of a trial’s outcomes reverses
the significance of a statistical test, the trial result is said to be
fragile. The algorithm provided in Walsh et al. (4) is widely used
to calculate the fragility index. It has three steps:

1) Choose the group with the fewest events.
2) Within that group, modify nonevents to events until statis-

tical significance vanishes.
3) Report the total number of outcome modifications as the

fragility index.

The algorithm starts by determining a group in which to mod-
ify outcomes. Then, the algorithm iteratively modifies patients’
outcomes from nonevent to event until the statistical test is no
longer significant. We stress that Walsh’s algorithm can be used
to (approximately) calculate the fragility index but is not itself the
fragility index defined earlier.
Reverse fragility index. Johnson et al. (17) defined a fragility
index for clinical trials with statistically insignificant results by in-
troducing the reverse fragility index. The reverse fragility index is
defined as the minimum number of patient outcome modifications
that reverses the significance of a nonsignificant statistical test.

To calculate the reverse fragility index, Johnson et al. (17) used
an algorithm that changed the number of patients in either group
but kept (approximately) constant the total number of events.
However, this algorithm is plainly inappropriate since it violates
the fragility index concept that the number of patients within each
group should be kept constant.

More recently, Khan et al. (18) reintroduced the reverse
fragility index and proposed an accompanying algorithm, which
has three steps:

1) Choose the group with the fewest events.
2) Within that group, modify events to nonevents until statis-

tical significance appears.
3) Report the total number of outcome modifications as the

reverse fragility index.
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Khan’s algorithm is similar to Walsh’s, except that Khan’s
algorithm modifies events to nonevents in a particular group
instead of vice versa. The algorithm iteratively removes events
from the group with the fewest events to increase the effect size
and drive toward statistical significance.

Existing Fragility Index Critiques. First, there is a critique of the
fragility index from Walter et al. (6) that the fragility index can
be driven by inappropriately rare outcome modifications. The
incidence fragility index and the sufficiently likely construction
will be introduced in part to address this critique.

A second critique is that the fragility index can be calculated
only for clinical trials with a particular kind of data structure such
as a 2× 2 table. This was true, but additional methods for other
data types are increasingly being published. We review these
methods, explain that they do not conform to the fragility index
concept, and then present an improved measure that does.

A third critique is that well-designed clinical trials will tend to
have low fragility indices because P values from such trials are
designed to only barely cross the significance threshold (9, 13).
A consequence of this critique would be that the fragility index
should not be considered because it will always be low in well-
designed trials. However, this critique is based on a statistical
misunderstanding. There is no evidence that the distribution of
P values under the alternative hypothesis will tend to cluster
around the significance threshold after a sample size calculation
with chosen power such as 0.80. Indeed, previous work shows that
natural quantiles of the fragility index in well-designed studies are
not always a low number such as one (19).

A fourth critique is connected to the dependence of the
fragility index on the sample size (20–22). It has empirically
been observed that larger trials tend to have larger fragility
indices. Potter (22) made this critique by reviewing properties
of posterior odds as evidence measures. In particular, Potter
(22) reviewed that larger trials provide less evidence for the
alternative hypothesis than smaller trials with the same P value.
Then, in contrast, Potter (22) showed via a simulation that larger
trials tend to have higher fragility indices (and hence more
evidence for the alternative hypothesis) than smaller trials with
the same P value. This conflict led Potter (22) to argue that the
fragility index had been dismantled.

However, the conflict is immediately resolved by considering
the fragility index quotient instead of the fragility index (23).
The fragility index quotient is the fragility index divided by the
sample size. Throughout simulations, we found that the sample
size consistently had a negative relationship with the fragility
index quotient while controlling for the P value.*

Further, researchers who prefer Bayesian measures of evi-
dence could use or study a variant of the fragility index that
determines statistical significance using Bayesian methods since
the fragility index is more broadly applicable than just to P values.

We ultimately feel that, despite critiques and along with our
extensions, the fragility index is sufficiently compelling to war-
rant thorough investigation. Connecting statistical significance to
practical matters such as patient outcomes is clinically meaning-
ful and can have an impact on statistical practice.

Definition. There are several disparate approaches to fragility
indices and their calculation in the literature. To simplify our
later discussion and to clarify concepts, we simply use a single
traditional fragility index that combines the forward and re-
verse fragility indices. This definition is faithful to the previous
definitions.

*The simulated trials had a given effect size (such as p1 = 0.10 and p2 = 0.15) and
independent Poisson(100)-distributed sample sizes for each group. The analysis was
done with a Poisson generalized additive model among only significant trials. The
response was the fragility index quotient, and the explanatory variables were the P
value (smooth term) and the sample size (linear term).

The traditional fragility index is the forward fragility index
when the test is initially significant and is the negative of the
reverse fragility index when the test is initially insignificant. We
use the notationFI 0 for the traditional fragility index, for reasons
that will become clear in the next section. The choice of the
sign is consistent with treating the traditional fragility index as
connected to the P value and specifically the significance margin
α− p associated with a significance threshold α (20). If α− p is
negative, so is the traditional fragility index that represents the
reverse fragility index. If α− p is positive, so is the traditional
fragility index that represents the forward fragility index.

For example, if FI 0 =−99, then 99 patients must have their
outcome modified to turn an insignificant test into a significant
test. Similarly, if FI 0 = 99, then 99 patients must have their
outcome modified to turn a significant test into an insignificant
test.

The traditional fragility index FI 0 is formally determined for
a given way to assess statistical significance by the number of
patient outcome modifications defined below:

min
f1,f2∈Z

|f1|+ |f2|

subject to Table 2 and Table 3 have reversed significance
− a ≤ f1 ≤ b, −c ≤ f2 ≤ d , [1]

where the second constraint and that f1, f2 ∈ Z are integers en-
sure that the entries of Table 3 are not negative. The tradi-
tional fragility index is then either that value if the statistical
test is initially significant or minus that value otherwise. Under
these constraints, the optimization problem returns the fewest
total outcome modifications |f1|+ |f2| which reverses statistical
significance.

Unifying the forward and reverse fragility indices is concep-
tually useful. We can determine whether a statistical test is
significant at level α by checking whether FI 0 > 0 since this is
equivalent to p < α by definition. By preferring that the number
of patients whose outcomes need to be modified to reverse statis-
tical significance is not small, we are expressing that FI 0 > ϕ for
some positive number ϕ. From this perspective, the traditional
fragility is a more stringent test that is stacked on top of the usual
P-value–based test. Having a test that is more stringent than the
usual significance level 0.05 has been widely called for and is well
justified using Bayesian arguments (24).

We could have also chosen ϕ to be a small negative number
so that the rejection region FI 0 > ϕ provides a test that is less
stringent than the usual P-value test. In this case, the traditional
fragility index being a small negative number or higher would
indicate a soft rejection of the null hypothesis (18). Throughout,
the cutoff ϕ can be interpreted in a clinically meaningful manner
since it is a count of patients (19).

We can calculate the traditional fragility index simply by using
Walsh’s algorithm when the statistical test is initially significant
and Khan’s algorithm otherwise. This calculation procedure is
called the original algorithm.

Algorithmic Shortcomings. The original algorithm suffers from
several shortcomings. Despite being intuitive, the algorithm does
not reliably find the minimum defined in the traditional fragility
index and hence malfunctions and is not exact. This is becoming
increasingly well known in the fragility index literature (6, 7).
Below, we consider two ways in which the original algorithm fails.
Each failure is illustrated with an example. We will see that the
original algorithm clearly should not be trusted to calculate the
traditional fragility index.

An immediate but minor shortcoming is that, in step 1, the
algorithm does not prescribe how to choose a group when both
groups have the same number of events.
Direction of outcome modifications. In step 2, there is a more
interesting limitation: The direction of outcome modifications is
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constant within Walsh’s and Khan’s algorithm and so depends
only on the initial statistical significance in the original algorithm.
There are two prominent ways in which this limitation can lead
to the algorithm failing.

First, there is an implicit assumption that events are rarer
than nonevents. Because the statistical tests commonly used, such
as Fisher’s exact and Pearson’s χ2 tests, treat the event and
nonevent outcomes symmetrically, Walsh’s algorithm is really
intending to just move the most likely outcome to the least
likely outcome within the chosen group and vice versa for Khan’s
algorithm.

For example, in the case that there are no events within the
chosen group, step 2 in Khan’s algorithm would be impossible to
carry out and so the statistical significance could not reverse. In-
stead of meaning that the statistical significance cannot reverse,
in this example Khan’s algorithm seeks to make modifications in
an inappropriate direction.

Second, the original algorithm was designed for two-sided sta-
tistical tests and can severely malfunction for one-sided tests. The
problem is particularly clear when the statistical test is initially
insignificant. In that case, both groups’ estimated event rates
( a
a+b

and c
c+d

) are close enough that the expected difference
is not statistically significantly distinct from zero. Running the
original algorithm will drive the chosen group’s event rate down-
ward since events will be modified to nonevents. If the alternative
hypothesis is one sided in the opposite direction, then the original
algorithm will increase the P value rather than decrease the P
value. This makes the statistical significance impossible to reverse
for any number of outcome modifications considered by the
original algorithm.
Modifying outcomes in only one group. A third shortcoming is
that the original algorithm fixates on only one group to make
outcome modifications. This is overly restrictive and unnecessary.
Modifying patient outcomes in both groups can help to find fewer
patients for which modifying their outcomes reverses statistical
significance. This shortcoming was nicely discussed by Lin (8).

A clear example of this deficiency can be found in the exper-
iment that motivated R.A. Fisher in 1935 to introduce Fisher’s
exact test and also provide an early use of a null hypothesis (25).

The goal of the experiment was to determine whether Fisher’s
colleague, Muriel Bristol, could taste whether milk or tea was
added first to her cup of tea. The experiment was roughly con-
ducted by presenting Bristol with eight cups of tea: four cups with
milk added first and four cups with tea added first. She then tasted
the cups of tea and predicted which four cups had milk added
first. Table 4 shows the data that are commonly taken to be the
outcome of the experiment (26). The test is one sided and was
insignificant with P = 0.24.

Interestingly, no number of outcome modifications within a
single group can reverse the statistical significance of this test.
Certainly then, the original algorithm would return that the
traditional fragility index is not finite. However, this is not true.
Modifying one incorrect guess to a correct guess in both the
groups where milk was poured first and tea was poured first
produces statistical significance (P = 0.014) and shows that the
traditional fragility index is −2.

An Exact Algorithm. To close the gap between the output of the
original algorithm and the correct minimum number of patients
defined through the optimization problem (1), we study an exact
algorithm for the traditional fragility index. The exact algorithm

Table 4. The lady tasting tea experiment, introduced by Fisher
(25)

Guessed milk Guessed tea

Poured milk 3 1
Poured tea 1 3

addresses all three shortcomings described in the previous sec-
tion. As we were writing this article, we found an excellent article
by Lin (8) that already presents this same algorithm. The steps of
the algorithm are shown below:

1) Initialize the total number of outcomes modifications
f = 0.

2) Increase the total number of outcome modifications f by 1.
3) Calculate the statistical significance of Table 3 for all out-

come modifications (f1, f2) that satisfy |f1|+ |f2|= f and
make Table 3 have nonnegative entries.

4) Repeat steps 2 and 3 until significance reverses and then
report ±f as the traditional fragility index, where the sign
is determined by the initial statistical significance.

In step 3 of the exact algorithm, there is an exhaustive search
over all outcome modifications (f1, f2) that have a given to-
tal number of outcome modifications. For example, when f =
2, all (f1, f2) pairs among (2, 0), (1, 1), (0, 2), (−2, 0), (−1, 1),
(1,−1), (0,−2), and (−1,−1) that make Table 3 have nonneg-
ative entries have their corresponding P value calculated. This
addresses the shortcomings of the previous subsection by not
restricting the values of f1 and f2 so that only one is nonzero.

The Incidence Fragility Indices
In this section, we introduce and study a generalization of the tra-
ditional fragility index that allows researchers to specify that they
want to permit only sufficiently likely outcome modifications. As
in the previous section, we again use Tables 2 and 3 to define the
sample data of a clinical trial and the sample data with outcome
modifications, respectively.

Definition. Define the incidence fragility index FI q for any prob-
ability q ∈ [0, 1] as the minimum number of patient outcome
modifications that have probability at least q and reverses the
significance of a statistical test, appropriately signed. Compared
to the index defined in the previous section, the incidence fragility
index includes a restriction on the permitted patient outcome
modifications to permit only sufficiently likely modifications. The
line between modifications that are sufficiently likely or not is
determined by the likelihood threshold q, which adds an extra
dimension to the traditional fragility index.

We measure the probability of an outcome modification as the
in-sample probability of observing the outcome for a given group.
For example, in Table 2 the in-sample probability of a patient in
group 1 having an event is a

a+b
since there were a events among

a + b patients. Therefore, we take the in-sample probability a
a+b

as the probability of a patient in group 1 having the event instead
of a nonevent.

The incidence fragility index FI q is formally determined for
a given way to assess statistical significance by the number of
patient outcome modifications defined below:

min
f1,f2∈Z

|f1|+ |f2|

subject to Table 2 and Table 3 have reversed significance
− a ≤ f1 ≤ b, −c ≤ f2 ≤ d

f1 ≤ 0 if a
a+b

< q , f1 ≥ 0 if b
a+b

< q

f2 ≤ 0 if c
c+d

< q , f2 ≥ 0 if d
c+d

< q , [2]

where the second constraint and that f1, f2 ∈ Z are integers en-
sure that the entries of Table 3 are not negative. Like the tradi-
tional fragility index, the incidence fragility index is then either
that value if the statistical test is initially significant or minus that
value otherwise.

This definition differs from the traditional fragility index via
Eq. 1 by the inclusion of the last four constraints which ensure
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that all outcome modifications are sufficiently likely. For exam-
ple, the f1 ≤ 0 constraint prevents patients in group 1 from having
their outcome modified from nonevent to event if the group 1
event probability is not sufficiently likely, i.e., a

a+b
< q .

Note that when q = 0, the incidence fragility index FI 0 is
the traditional fragility index defined in Walsh et al. (4) since
any outcome modification has probability at least 0 and thus
all outcome modifications are permitted. In terms of the formal
definition in the optimization problem in Eq. 2, having q = 0
forces the last four constraints to be inactive since none of the
in-sample probabilities are negative.

When q = 1, the value of the incidence fragility index FI 1 is
more complicated. If no outcome for either group has probability
one, the possible outcome modifications are restricted so severely
that reversing significance is not possible. In this case, we write
that FI 1 is infinite. In terms of the formal definition in the
optimization problem in Eq. 2, having q = 1 when no outcome in
either group has probability 1 forces all of the last four constraints
to be active so that f1 ≤ 0, f1 ≥ 0, f2 ≤ 0, and f2 ≥ 0 (that is, f1 = 0
and f2 = 0). This makes Table 3 necessarily equal to Table 2 and
thus makes reversing the statistical significance impossible. Note
that the value infinity is chosen in a theoretically natural way: The
minimum in the optimization problem in Eq. 2 is considered to
be an infimum, and the infimum of an empty set is infinity (27).

For likelihood thresholds q between 0 and 1, the incidence
fragility index FI q shows the result of intermediate probability
constraints that fine tune the researcher’s preferences; for exam-
ple, the incidence fragility index FI 0.5 results from permitting
only outcome modifications that are more likely than not.

Basic Properties. In this subsection we establish three basic prop-
erties of the incidence fragility indices. These are helpful to
develop an initial intuition for the incidence fragility indices and
are also crucial for the algorithm in the next subsection. Define
the sample size n = a + b + c + d . First, the incidence fragility
index FI q for any q ∈ [0, 1] will be an integer between −n and n,
inclusive but not including 0, whenever it is finite. The number
of outcome modifications associated with the incidence fragility
index cannot exceed the sample size n, and statistical significance
cannot be reversed by modifying the outcomes of 0 patients. In
fact, we can tighten the range of the incidence fragility indices
further. Since outcomes within a group will never be modified
both from events to nonevents and vice versa, the incidence
fragility index will actually be between −m and m, inclusive but
not including 0, where m = max{a, b}+ max{c, d}.

Second, the incidence fragility index FI q has at most five
possible values as the likelihood threshold q varies over [0, 1],
because the value of the incidence fragility index for a given trial
is determined by which outcome modifications are permitted.
There are four kinds of outcome modifications: modifying a non-
event to an event in group 1, vice versa, and likewise for group 2.

When q = 0, any outcome modification is permitted. As q
grows, incrementally fewer kinds of outcome modifications will
be permitted. When q crosses the lowest outcome probability in
either group min{ a

a+b
, b
a+b

, c
c+d

, d
c+d

}, there will be at least one
fewer kind of outcome modification permitted since the rarest
outcome across both groups can no longer receive modifications.
As q grows, eventually q will be so high that no outcome modi-
fications of any kind are permitted. Therefore, there are either
all four kinds of outcome modifications permitted (e.g., when
q = 0) or three, two, one, or zero kinds of outcome modifications
permitted.

Third, the incidence fragility index FI q grows away from zero
as q increases, because fewer of the four kinds of outcome
modifications are permitted as q increases. When fewer outcome
modifications are permitted, the incidence fragility index is in-
creasingly handicapped, and the method needs to work harder to
reverse statistical significance. In terms of the formal definition

of the incidence fragility index in the optimization problem in
Eq. 2, this is due to minimums being as large or larger when the
constraint set is smaller.
An Exact Algorithm for Calculating FIq for q > 0. We now define
an exact algorithm to compute the incidence fragility indices.
We previously described an exact algorithm to calculate the
traditional fragility index FI 0. Therefore, we now propose an
algorithm to exactly calculate other incidence fragility indices
FI q for q > 0.

The algorithm relies heavily on the properties established in
the previous subsection. Starting at the traditional fragility index
FI 0, we know that any incidence fragility index FI q for q > 0
will necessarily correspond to an as great or greater number of
outcome modifications by the third basic property. Therefore,
the exact algorithm will next choose the likelihood threshold q1 =
min{ a

a+b
, b
a+b

, c
c+d

, d
c+d

} and find FI q1 . To find FI q1 , the exact
algorithm searches through outcome modifications under the
constraints in the optimization problem in Eq. 2 with increasingly
many total outcome modifications.

By the second basic property, we know that FI q = FI 0 for
any q < q1. The exact algorithm then iteratively continues this
process by finding the incidence fragility index corresponding to
each outcome probability in either group, in increasing order.

The steps of the exact algorithm are shown below:

1) Find FI 0 through the exact algorithm for the traditional
fragility index and set this equal to f. Choose q to be the
smallest nonzero outcome probability in either group.

2) Calculate the P value for all feasible outcome modifications
(f1, f2) that have the given total number of outcome modi-
fications f.

3) If statistical significance reverses, report FI q = f . If not,
increase f by one and go to step 2.

4) Go to step 2 for q equaling each outcome probability in
either group, in increasing order.

A feasible outcome modification is a modification that satisfies all
but the first constraint in the optimization problem in Eq. 2, i.e.,
which ensures all entries of Table 3 are not negative and permits
only sufficiently likely modifications. The algorithm terminates
when the total number of outcome modifications f exceeds the
highest possible fragility index, as described in the first basic
property.

Both of the presented algorithms for the traditional fragility
index and for the incidence fragility indices are exact.

Examples. In this subsection we consider several examples of the
exact algorithm applied to the incidence fragility indices FIq .
There are many possible behaviors as the likelihood threshold q
varies and here we explore some of them. We will rely on both real
and simulated trials. In each example, we use Fisher’s exact test to
determine statistical significance at the α= 0.05 level. The trial
examples are arranged into subsections according to the apparent
stability of the fragility indices.
Stable incidence fragility indices examples. Walter et al. (6) ar-
gued that the traditional fragility index FI 0 can be driven by
unlikely modifications by considering a simulated trial for which
data are given in Table 5. In the trial, note that group 2 has no
observed events. The trial has a statistically significant treatment
effect, with a P value of 0.029. The original algorithm produces
a traditional fragility index of 1, indicating that the statistical sig-
nificance is fragile. Walter et al. (6) argued that the (traditional)

Table 5. A simulated trial example due to Walter et al. (6)

Event Nonevent

Group 1 5 90
Group 2 0 96
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fragility index being 1 is not evidence of the fragility of the trial
result because the original algorithm reversed the significance
of the test by modifying a nonevent to an event in group 2, a
modification that seemingly has probability 0.

We agree with this argument in principle but note that the
incidence fragility indices show that the simulated trial is not
an example supporting the argument. [Based on the writing in
Walter et al. (6), they seem to be aware of this.] The incidence
fragility indexFI q = 1 for any q < 0.947 and is infinite otherwise.
The likelihood threshold 0.947 is so high that perhaps even the
most conservative researcher would declare that 1 is a reasonable
fragility measure of the simulated trial.

The three dots in Fig. 1, Top Left show the in-sample probabili-
ties for various outcomes in either group. By the basic properties,
these points are the only possible change point of the incidence
fragility indices. The first two points (at q = 0 and q = 0.053)
are the event probability in each group, and the last point (at
q = 0.947) is the nonevent probability in group 1. There is no
value plotted for q > 0.947 since the incidence fragility index is
infinite there, indicating that reversing statistical significance is
not possible.

Second, the second Leicester Intravenous Magnesium Inter-
vention Trial (LIMIT-2) (28) example considered by Walsh et
al. (4) shows similar behavior. The 2× 2 data for the trial are
shown in Table 6. While introducing the modern version of the
fragility index, Walsh et al. (4) highlighted that the fragility index
was merely 1 in the trial despite the trial having thousands of
patients. The incidence fragility indices show that this finding is
stable in that FI q = 1 for any q < 0.897 and is infinite otherwise.
The 0.897 threshold corresponds to survival probability in the
placebo group.

Table 6. A clinical trial example due to Woods et al. (28)

Death Survival

Magnesium 90 1,060
Placebo 118 1,032

Third, a stable example is demonstrated in the simulated trial
whose data are shown in Table 7. There are only six patients
in the trial, and the test is insignificant with a P value of 1.
Every incidence fragility index is infinite, though: No number of
outcome modifications can produce a significant test.

Fourth, a borderline stable example is demonstrated in the
simulated trial whose data are shown in Table 8. The test for a
treatment effect is initially insignificant with a P value of 1. The
original algorithm returns a fragility index of −8 patients. The
incidence fragility index FI q =−8 when 0≤ q < 0.8375, FI q =
−13 when 0.8375≤ q < 0.84, and FI q is infinite when q ≥ 0.84.
These values are shown in Fig. 1, Top Right.
Unstable incidence fragility indices examples. We now focus on
simulated trials for which the interpretation of the traditional
fragility index FI 0 is strained upon taking into account the
incidence fragility indices.

First, we consider the simulated trial whose 2× 2 data are
shown in Table 9. The test for a treatment effect is initially
significant with P value of 1.6× 10−12, and the original algorithm
returns a fragility index of 24 patients. On the other hand, the
incidence fragility index FI q = 24 when 0≤ q < 0.063, FI q = 52
when 0.063≤ q < 0.50, and FI q is infinite when q ≥ 0.82. These
values are shown in Fig. 1, Bottom Left.

This example has the opposite properties of the fourth example
in the preceding subsection. The incidence fragility indices agree

Fig. 1. Visualizations of the incidence fragility indices. Top Left, Top Right, and Bottom Left and Bottom Right correspond to Tables 5, 8, and 9 (top two
rows and bottom two rows), respectively.
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Table 7. A simulated clinical trial example

Event Nonevent

Group 1 2 1
Group 2 1 2

with the traditional fragility index only for very small likelihood
thresholds q. For a wide range of likelihood thresholds q from
nearly zero to one-half, the incidence fragility index is roughly
double the traditional fragility index FI 0.

Second, a final example is given by the simulated trial whose
data are provided in Table 10. The test for a treatment effect
is initially insignificant with a P value of 0.48, and the original
algorithm returns a fragility index of −8. The incidence fragility
index is −4 when q < 0.37, −8 when 0.37≤ q < 0.63, −11 when
0.63≤ q < 0.71, and infinite otherwise. These values are dis-
played in Fig. 1, Bottom Right. The presence of three possible
finite values makes the determination of a single fragility measure
especially difficult.

The Generalized Fragility Indices
In this section, we introduce the generalized fragility indices,
which provide a natural generalization of the fragility index to
any data type or statistical test.

There have been various approaches to generalizing the
fragility index beyond the case of 2× 2 contingency tables and
dichotomous outcomes. All existing approaches that we are
familiar with in the literature violate the fragility index concept of
considering alternative realizations of the same clinical trial. That
is, none of the approaches fix the sample size, fix any assigned
variables such as control or treatment group, and then modify
other measurements such as outcomes. Instead, one category of
approach modifies the group of patients (29, 30), another adds
patients into the study (30–32), and another removes patients
from the study (17), each in such a way that statistical significance
reverses. These approaches are interesting in their own right, but
they must be interpreted differently from the fragility index.
We provide a framework that offers particularly interpretable
examples of generalized fragility indices by permitting only
sufficiently likely modifications, analogous to the incidence
fragility indices.

Restricting Outcome Modifications. The most foundational ele-
ment underlying the fragility index concept is modifications to
observed measurements. For the 2× 2 data case considered in
the traditional and incidence fragility indices, this can be ac-
complished trivially. Since there are only two possible outcomes,
either event or nonevent, each patient’s outcome can be kept con-
stant or modified to the other one. However, the definitions are
not readily generalizable to outcomes that are nondichotomous.

As a case study, let us consider a naive generalization of
the traditional fragility index to nondichotomous outcomes that
preserves that “fragility index is defined as the minimum number
of patients whose outcomes must be modified to reverse signifi-
cance of a statistical test” while ignoring the context of a dichoto-
mous outcome. Therefore, this tentative generalization of the
fragility index permits a patient’s outcome to be modified to any
value. For illustration we calculate this tentative generalization of
the fragility index for the simplest statistical test associated with
nondichotomous data: the one-sample t test. Naturally, the ideas

Table 8. A simulated clinical trial example

Event Nonevent

Group 1 24 126
Group 2 13 67

Table 9. A simulated clinical trial example

Event Nonevent

Group 1 75 75
Group 2 5 75

developed in this case study generalize to other data types, such
as time to event.

Write that there are a total of n samples with observations
Y1, . . . ,Yn . Suppose that the t test is initially significant and
we use the significance threshold of 0.05. In the extreme, a
patient’s outcome could be modified by sending it to infinity.
When we do this (without loss of generality) for the first
patient, the t-test statistic becomes limY1→∞

√
n(Ȳ − 0)/S =

n−1/
√

(1− n−1)/(n(n − 1)) = 1, where Ȳ is the sample mean
and S is the sample SD. A test statistic of 1 corresponds to a
nonsignificant test at the α= 0.05 level for any sample size n.
For example, when the sample size n = 100, the P value is ∼0.32.
Therefore, this tentative generalization of the fragility index of a
statistically significant one-sample t test will always be 1.

We conclude that there is no information in this tentative
generalization of the fragility index for this case: It does not
depend on the characteristics of the clinical trial or the patient
observations. Additionally, this case study is unsettling because
measurements being arbitrarily large may not be possible in
physical reality. The modifications permitted by a proper gener-
alization of the fragility index must be restricted in some way.

Definition. We now define the generalized fragility index. The
measure suitably generalizes the fragility index to any data type
and statistical test. Crucially, we will see that the generalized
fragility indices are faithful to the fragility index concept.

There are three elements that compose the definition of the
generalized fragility indices:

• A data frame Z for which each row represents patients and
each column represents relevant measurements such as co-
variates and outcomes. Write that there are n patients so that
Z has n rows.

• A rejection regionR for which interest lies in whether the data
frame Z is in R.

• A function m that maps one row Zi, of the data frame Z
to a set of modified values. The function is the outcome
modifier and returns permitted modifications of each patient’s
measurements. We force by convention that the original mea-
surements are possible modifications; i.e., Zi, ∈m(Zi,).

The generalized fragility index will be uniquely determined by
the data Z, rejection region R, and outcome modifier m. We
refer to (Z ,R) as the statistical setup since they are necessary for
any statistical testing problem; on the other hand, the outcome
modifier m is designed for the generalized fragility index itself.

The outcome modifier m incorporates two noteworthy proper-
ties. First, we can specify that some measurements are not subject
to modifications; i.e., (m(Zi,))j = Zi,j for all patients indexed by
i = 1, . . . ,n . Following the fragility index concept, all measure-
ments that were assigned (and hence would be constant across
all possible observed trial realizations) should have this property.
Second, we can specify that the modified observations within
m(Zi,j ) are close to the original observation Zi,j in some way.

Table 10. A simulated trial example

Event Nonevent

Group 1 10 17
Group 2 27 65
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This would resolve the degeneracy highlighted in the previous
subsection for the one-sample t test if done appropriately. For
example, one choice of m that immediately presents itself is to
permit outcomes to be modified by up to a constant translation
so that m(y) = [y − c, y + c] for some constant c.

We define the generalized fragility index for the outcome
modifier m and statistical setup (Z ,R) as follows: Let Zmod be a
variant of the data frame Z that has the same dimensions but with
some rows possibly modified. Recall that each row represents a
patient indexed by the notation i. Then we define the generalized
fragility index to be a signed count of patients with modified
outcomes, where the count of patients with modified outcomes is

min |M |
subject to Z ∈R ⊕ Zmod ∈R

Zmod
i, ∈m(Zi,) for all i = 1, . . . ,n

Zmod
i, �= Zi, for i ∈M . [3]

The sign of the generalized fragility index is determined by
whether Z ∈R : The generalized fragility index is positive if
Z ∈R and is negative otherwise.

We now interpret the terms in the definition. The first con-
straint includes the exclusive or, ⊕, which denotes that either
the original data frame Z or the modified data frame Zmod is
in the rejection region R, but not both. This formalizes that
the modified data frame reverses inclusion in R, i.e., statistical
significance. The second constraint forces that the considered
outcome modifications are permitted according to the outcome
modifier m. The set M contains the indices of the patients whose
outcomes are modified, due to the last constraint. Since the
optimization problem is minimizing the cardinality |M | of the set
M, the generalized fragility indices find the fewest possible per-
mitted modifications to patient outcomes that reverse whether
Z ∈R.

Note that we could have rewritten the optimization problem in
Eq. 3 as a projection onto the space of modified data frames (i.e.,
Zmod) spanned by the first two constraints. The objective of this
would be ‖Z − Zmod‖#, where ‖ · ‖# is the norm that counts
the number of nonzero rows, i.e., the number of patients with
modified outcomes.

The generalized fragility indices are indeed a generalization
of the fragility index described by Walsh et al. (4). Let the
data frame Z have two columns, with the first column repre-
senting the group (either control or treatment) and the second
column representing the outcome (either event or nonevent).
Let the outcome modifier fix the first entry since the group is
assigned and permit any outcome modification so that m(Zi,) =
{[Zi,1, event], [Zi,1, nonevent]}. Then, this generalized fragility
index is the traditional fragility index.

The Breakdown Point. In this subsection, we review a close rela-
tionship between fragility indices and the field of robust statistics
(33). In the following subsection, we propose a construction tech-
nique for an outcome modifier m that permits only sufficiently
likely modifications.

The field of robust statistics (33) studies the behavior of sta-
tistical methodologies under data distributions that deviate from
standard distributions. A major body of work studies the sensitiv-
ity of statistical methods to outlier contamination. A fundamental
measure in this context is the breakdown point (34), which classi-
cally measures how many patient outcomes must be modified for
a statistic to diverge. When viewed as a proportion similar to the
fragility index quotient (23), the breakdown point measures what
percentage of patient outcomes must be arbitrarily contaminated
for a statistic to lose all meaning. The tentative generalization of
the fragility index we considered at the start of the section is an
example of a sample breakdown point. The same calculation was

done in Zhang (35) and Jolliffe and Lukudu (36) to show that
the breakdown point of the one-sample t test when the test is
significant is merely 1/n for sample size n. In robust statistics, this
result shows that the t test is highly sensitive to outliers; however,
we have different interests in this article. We are interested in the
impact of minor perturbations of the data on rejection decisions,
for which the breakdown point is not suitable.

Sufficiently Likely Modifications. The sufficiently likely construc-
tion of the outcome modifier requires information beyond the
statistical setup (Z ,R) minimally needed to conduct a statistical
hypothesis test. The source of additional information we use is
the outcome distribution. We develop this approach for univari-
ate numeric and categorical data types.
Numerical data types. First, we consider how to operationalize
the sufficiently likely construction technique for numeric data
types. We describe the construction for continuous variables
with probability density functions, but an analogous construction
works for discrete variables with probability mass functions.

There are three intuitive principles that underlie the
construction:

1) The observed value should be in the set of permitted values,
2) likelier values have priority to be in the set, and
3) the set of permitted modifications is an interval.

The first principle is simply a restating of an assumption given
in the previous section in the definition of the outcome modifier
m. The second principle ensures that the set of outcome modi-
fications contains values that plausibly could have arisen. This is
the principle that relies on knowing the probabilistic distribution
of the outcome. The third principle is reasonable because it arises
from allowing the unobserved statistical error to smoothly vary,
although it cannot hold for categorical data types.

From considering these three intuitive principles, a clear
choice of the outcome modifier m emerges. The modifier
function m should return the highest-density interval that
includes the observation. Since highest-density regions are
indexed by a coverage 1− q ∈ [0, 1], this construction provides
a family of outcome modifiers mq . We call q the likelihood
threshold, as we did for the incidence fragility indices. Define
GFI q to be the generalized fragility index with modifier mq and
likelihood threshold q.

Note that GFI 0 is the breakdown point since the set of per-
mitted modifications has full coverage and GFI 1 is infinite since
the set of permitted modifications has coverage 0 and hence is
empty.

To determine the likelihood of the permitted values, we use the
most informative distribution possible. In general for parametric
statistical testing problems, this will involve the estimated distri-
bution that has the parameter estimated using all of the available
data under no constraint.

An illustration of the intervals that could be returned by mq

is in Fig. 2 for the case of a one-sample t test. Specifically, we
consider the permitted modifications when the observation has
the value −1.2, denoted by the vertical black line segment. Since
an assumption for the t test to have exact error rates is that the
outcome is normally distributed, we assume that the outcome
satisfies this. The data we assume in Fig. 2 have sample size n =
100, sample mean Ȳ ≈ 1, and sample variance S2 ≈ 1. We con-
sider the possible values of mq(−1.2) following the sufficiently
likely construction. The density of the normal distribution with
parameters X̄ and S2 is included in Fig. 2.

We consider a family of outcome modifiers mq for q ∈ [0, 1].
Note that we abuse the function notation and treat simply the
outcome as the domain. The interval returned by the modifier
mq is the set of values that span the shaded region in Fig. 2,
where each shaded region is chosen to have area equal to a
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Fig. 2. An illustration of four possible intervals that could be returned by the sufficiently likely construction of the outcome modifier relying on a normal
distribution, for varying levels of confidence.

user-supplied likelihood threshold q ∈ [0, 1]. The Fig. 2, Top Left
interval m.855(−1.2) = [−1.2, 0] is derived with the likelihood
threshold q = 0.855. It is the highest-density region that includes
the observation. The Fig. 2, Top Right interval m.322(−1.2) =
[−1.2, 1.5] is similar yet with q = 0.322. The Fig. 2, Bottom Left
interval m.028(−1.2) = [−1.2, 3.2] is derived with q = 0.028 and
is the largest interval that does not include any values lower
than the observation −1.2. The Fig. 2, Bottom Right interval
m.007(−1.2) = [−1.7, 3.7] is derived with q = 0.007 and is sym-
metric. These sets returned by the modifiers mq illustrate a
clear pattern: As the likelihood threshold q grows, the interval
grows and covers higher-density, more central values until the
interval starts to grow symmetrically. More extreme values of
the outcome are not permitted until the likelihood threshold q
is large.
Categorical data types. Second, we consider how to operational-
ize the sufficiently likely construction for categorical nonnumeric
data types. In this case, each of the three intuitive principles
above cannot hold. Indeed, the third principle fails because the
space is not ordered.

Therefore, we abandon the third principle while retaining the
first two. This naturally leads to outcome modifications that
contain the observation and some of the other possible values
that are most likely. Let us now formally describe this set when,
say, the observation is x. Let Sp = {x} ∪ {x ′ : P[x ′]> p} be
such a set, where P is the (possibly estimated) probability of
the outcome. Then, for any probability q ∈ [0, 1], the sufficiently
likely construction technique returns the set Sp(q), where p(q) is
the minimum p such that P[Sp ]≤ q .

When the outcome and explanatory variable are each dichoto-
mous, the generalized fragility indices are simple transformations
of the incidence fragility indices. Instead of using the set Sp(q)

as the permitted outcome modifications, the incidence fragility
indices directly use the set Sq .

We can readily observe a basic property of the generalized
fragility indices with outcome modifiers that follow the suffi-
ciently likely construction. When q grows larger, the outcome
modifier mq covers a smaller region and hence fewer modi-
fications are permitted. Therefore, in view of the variational
definition, the generalized fragility indices grow away from zero
as q grows.

A Greedy Algorithm. We now study calculating the generalized
fragility indices. An exact algorithm can be readily derived by
following the same approach as for the traditional and incidence
fragility indices. First, all modifications that lead to the gener-
alized fragility index to be ±1 could be checked. If any modifi-
cation does reverse significance, then the algorithm terminates;
otherwise, the algorithm does the same for ±2 and continues
iteratively increasing until finding a modification that reverses
statistical significance or all patient outcomes have been modified
and reversal is deemed impossible. However, this combinatorial
algorithm is intractable in practice: The first iteration considers
modifications for each of the n patients, and the second iteration
considers all

(
n
2

)
patient pairs, etc.

Since the above exact algorithm is slow in general, we propose
a much faster approximate algorithm, inspired by the fast yet
approximate original algorithm. The algorithm is a greedy ap-
proximation (37) and is stated in Algorithm 1. Note we assume the
original data frame Z /∈R for notational simplicity. Write that
R= {Z : p(Z )> c} for some significance threshold c.

Algorithm 1. Approximately find the modification count for gen-
eralized fragility indices
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1) GFIcount ← 0

2) Zmod ← Z
3) SameSig← TRUE
4) while SameSig do
5) GFIcount ←GFIcount + 1
6) if GFIcount > n then
7) GFIcount ←∞; break
8) for each patient i not yet modified do
9) Si ←{Z a : Z a

k , = Zmod
k , for k �= i , Z a

i, ∈m(Zmod
i, )}

10) pi ← minZa∈Si p(Z
a)

11) Z a(i) ← arg minZa∈Si p(Z
a)

12) I ← arg mini pi
13) Zmod ← Z a(I )

14) if p(Zmod)≤ c, then
15) SameSig← FALSE
16) return GFIcount

Algorithm 1 works by iteratively looking through outcome mod-
ifications for each patient. Within each iteration, the algorithm
determines which patient has the outcome modification that
makes the P value as small as possible. To do this, the best
outcome modification for each patient is found. By best, we
mean specifically the modification that drives p as low as possible
within the set Si of permitted modifications for each patient,
where p is the P value. This is a sensible goal because recall that
we are seeking a modified data frame Zmod for which p(Zmod)
is lower than the cutoff c. This optimization to find the best
outcome modification may be time consuming, depending on the
structure of p and m. With this information for each patient, the
algorithm can readily determine which patient has the outcome
modification that makes p as small as possible. The algorithm
then commits to that modification and restarts the process, again
exploring the permitted outcome modification of the remaining
patients. This is repeated until inclusion of R reverses or there
are no longer patients to receive outcome modifications.

This approach to approximating a fragility index has appeared
earlier in the literature. Atal et al. (7) and Xing et al. (38)
similarly relied on a greedy algorithm to calculate an extension of
the fragility index for meta-analyses and network meta-analyses.
They were in a data setting that was close to that originally
considered by Walsh et al. (4): They had a dichotomous out-
come variable (such as event or nonevent) and a dichotomous
explanatory factor (such as control or treatment), together with
an additional explanatory factor representing the study. They
also explored altering the algorithm to consider only outcome
modifications for a restricted class of patients, such as those in
a particular study, for computational acceleration at the cost of
further approximation.

We now explain more carefully why Algorithm 1 is greedy.
Imagine that the generalized fragility index is 1 or −1 so that
the corresponding count of outcome modifications is 1. Then,
the proposed greedy algorithm will find an outcome modification
that reverses inclusion in R and hence terminates at the correct
value. When the generalized fragility index corresponds to a
count of patient outcome modifications that is larger than 1, the
same argument holds: The algorithm iteratively makes the best
possible modification. Hence, it is greedy.

The algorithm creates a modified data frame Zmod that re-
verses inclusion inRwhen the algorithm finishes running, assum-
ing it did not decide that reversing inclusion in R is impossible
given the permitted outcome modifications via the modifier m.
By construction, this modified data frame is feasible for the
optimization problem in Eq. 3 defining the generalized fragility
index; hence the corresponding count of patient modifications is
an upper bound of the patient count for the generalized fragility
index. The bound will tend to be tight due to the greedy nature
of the algorithm, and we explore specific examples via simulation
studies and real data examples in the following subsection.

Example. We now study the generalized fragility indices when
they are applied to modify normally distributed outcomes com-
pared via the one-sample t test. We used this example throughout
the previous subsections to motivate the techniques. An existing
approach for finding fragility measures for continuous outcomes
was developed by Caldwell et al. (29); however, this method
violates the fragility index concept. It modifies the control or
treatment group of patients, which is assigned by the experi-
menter and hence not subject to variation.

We study a random vector y ∈ R
500, where each entry yi ∼

N (μ,σ2) is normally distributed and independent, where μ=
0.1 and σ2 = 1. We estimate the sample mean ȳ = 0.099 and
variance S2 = 1.008. Note that we use simulated data so that we
can leverage the statistical model being known.

The data frame Z has only one column and contains the out-
come. There are as many rows as there are patients, which is 500.
The rejection region R is determined by whether a one-sample t
test rejects at the 0.05 significance level. A data frame lying within
R is equivalent to rejecting the null hypothesis μ= 0. Using the
simulated data, the one-sample t test is statistically significant
with P = 0.027, so we initially reject the null hypothesis and the
generalized fragility indices must be positive yet.

We define the outcome modifier by following the sufficiently
likely construction with an assumed normal distribution. Since
the parameters of the normal distribution are not known in
advance, we use the estimated distribution N (ȳ ,S2). The suf-
ficiently likely construction then defines a family of modifiers mq

for each likelihood threshold q ∈ [0, 1]. For each combination
of Z, R, and the modifier mq , a generalized fragility index is
determined.

We efficiently approximate the generalized fragility indices
using the greedy algorithm. Each pass of the greedy algorithm
requires maximizing the P value over the interval returned by mq .
The maximizer must either make the derivative of the P value
vanish or lie on the boundary of the interval. In the algorithm,
we simply check each of these points. Note, for statistical tests or
data types where the maximizer cannot be found in closed form,
numerical procedures can be used.

In Fig. 3, we visualize the generalized fragility indices. We used
an equally spaced grid of 50 distinct values of q in an equally
spaced grid to create Fig. 3. Fig. 3 illustrates some expected but
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Fig. 3. The generalized fragility indices for the t test indexed by the
sufficiently likely threshold q.
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notable behavior. The generalized fragility index is large when
q is small so that outcomes can only marginally be modified;
the generalized fragility index is near 1 when q is large, as
shown earlier. For moderate q, the generalized fragility indices
take many intermediate values. For example, with q = 0.5, the
generalized fragility index equals 3. We interpret this as follows:
There exist only three permitted outcome modifications that
reverse statistical significance, where permitted is interpreted
as being within the highest-density interval that includes the
observation and has 0.50 coverage. The broad spectrum of gen-
eralized fragility index values here makes especially difficult the
determination of a single number to summarize the family of
generalized fragility indices. We note, however, that there is a
sharp scree behavior in the generalized fragility indices, where
the count approximately stabilizes at approximately q ≈ 0.1. The
calculation of the generalized fragility indices took in total 112 s
or ∼2.25 s per generalized fragility index.

Conclusion
We introduced the traditional fragility index and an exact algo-
rithm to calculate it. Next, we introduced the incidence fragility
indices, which are fragility measures that permit only outcome
modifications that are more likely than the likelihood threshold
q, and considered an exact algorithm to calculate them. We then
considered several examples of the incidence fragility indices,
and the exact algorithm crucially enabled us to have an honest
look at the fragility measures and use values that are not biased
due to algorithmic complications. The methodological develop-
ment culminated with the definition of the generalized fragility
indices that follow the sufficiently likely construction. The de-
velopment finalized with the greedy algorithm for calculating
generalized fragility indices.

Our analyses have shown that the incidence fragility indices
can be sensitive to the outcome modification likelihood threshold
q that is chosen. Therefore, the fragility index itself can be
fragile, that is, sensitive to the likelihood threshold, if not handled
appropriately. By being explicit about the likelihood threshold,
the incidence fragility indices also allow researchers to be more
precise about the likelihoods underlying the traditional fragility
index. Of course, the incidence fragility indices are also inter-
esting measures in their own right. Generalized fragility indices
following the sufficiently likely construction can analogously be
compared with the breakdown point.

The generalized fragility indices have a broad scope, far
beyond Fisher’s exact test and the one-sample t test for

illustration. The approach suitably defines fragility measures
for tests with covariates. Some further examples are given in
the R package FragilityTools (15). The sufficiently likely
construction was defined only for univariate modifications, al-
though higher-dimensional modifications are possible with a box
construction.

There are many reasons why a fragility measure could be
small. In small studies, the most compelling result possible could
produce a small fragility index. For the lady tasting tea experi-
ment reviewed previously, the largest possible fragility index is
only 1: In some sense, the study was doomed to be insignificant
or fragile. A recently proposed method to design studies to
have nonfragile results can be directly modified to accommodate
generalized fragility indices (19). This would allow studies to be
designed to have a large enough fragility measure. Additionally,
to better understand the largest possible fragility measure and
other probabilistic summaries, researchers could visualize their
fragility measure under null or alternative distributions (39).

There is much more work to do with fragility measures. In
methodological future work, we plan to study alternative mecha-
nisms for choosing patients’ underlying fragility measures. The
generalized fragility indices establish only the existence of pa-
tients for which modifying their outcomes reverses statistical sig-
nificance. However, these patients may be peculiar in some way
and hence not readily interpretable (34). A measure that instead
ensures that a random collection of patients with a given cardinal-
ity are more likely than not to have outcome modifications that
reverse statistical significance seems to be an interesting direc-
tion. Additionally, we plan to study overall discrepancy measures
between the original data and the modified data to supplement
per-patient likelihood measures. Finally, theoretical descriptions
of the sampling distribution of the measures described in this
article would be very interesting.

Data Availability. All study data are included in the main text.
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