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Abstract

Two-component systems (TCSs) are a ubiquitous family of signal transduction pathways that 

enable bacteria to sense and respond to diverse physical, chemical, and biological stimuli outside 

and inside the cell. Synthetic biologists have begun to repurpose TCSs for applications in 

optogenetics, materials science, gut microbiome engineering, and soil nutrient biosensing, among 

others. New engineering methods including genetic refactoring, DNA-binding domain swapping, 

detection threshold tuning, and phosphorylation cross-talk insulation are being used to increase 

the reliability of TCS sensor performance and tailor TCS signaling properties to the requirements 

of specific applications. There is now potential to combine these methods with large-scale gene 

synthesis and laboratory screening to discover the inputs sensed by many uncharacterized TCSs 

and develop a large new family of genetically-encoded sensors that respond to an unrivaled 

breadth of stimuli.

Introduction

Synthetic biologists program cells to sense and respond to extra- and intracellular stimuli 

for applications in medicine[1], agriculture[2], chemicals synthesis[3] and many other areas. 

For example, a probiotic strain of E. coli that naturally colonizes tumors was recently 

engineered to lyse and release immune checkpoint-inhibiting nanobodies upon reaching 

high intra-tumoral density[4]. By enabling local delivery of these potent biologic drugs, 

this approach could improve the efficacy of cancer immunotherapy while decreasing side 

effects. In other work, researchers are engineering bacteria to sense stresses imposed by 

heterologous metabolic and genetic pathways and activate the expression of enzymes or 

stress-response systems that ameliorate these effects [5]. Such ‘host-aware’ design strategies 
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could increase the stabilities of engineered genetic systems and improve the yields of 

industrial fermentations, among other benefits.

To program cells to sense and respond to stimuli, synthetic biologists utilize genetically-

encoded sensors. The canonical synthetic biological sensor is an RNA or protein that binds 

to a ligand or perceives a biochemical or physical property of the environment and responds 

by altering gene expression. Riboswitches are a well-studied family of RNA-based sensors. 

The prototypical riboswitch is encoded on the 5’ end of a messenger RNA and comprises 

an aptamer domain linked to a gene regulatory domain. In the presence of a cognate 

stimulus (a.k.a. input), the aptamer domain undergoes a conformational rearrangement that 

is transmitted to the gene regulatory domain, resulting in a change in the level of expression 

of the gene encoded on the mRNA in cis [6]. Riboswitch inputs are often involved in 

fundamental biological processes and include metal ions, molecules involved in RNA 

metabolism, and amino acids[7]. The gene regulatory domains of riboswitches most often 

modulate transcription of the downstream mRNA by exposing or obscuring transcriptional 

terminators, translation of the downstream open reading frame by exposing or obscuring 

a ribosome binding site, or mRNA splicing[8]. Synthetic riboswitches that sense inputs 

not known to be detected by their natural counterparts have been engineered by rational 

design[9-11], directed evolution[12], and machine learning[13]. One notable recent study 

utilized a physics-based model of riboswitch structure and function to engineer translation-

regulating sensors of theophylline, tetramethylrosamine, fluoride, dopamine, thyroxine, and 

2,4 dinitrotoluene with activation ratios up to several hundred-fold [14]. Though good 

progress is being made on riboswitch design, the repertoire of inputs that these RNA-based 

sensors can detect remains small. On the other hand, nature has provided a wealth of 

protein-based sensors that sense diverse inputs relevant to synthetic biology applications.

One-component systems (OCSs) are the largest family of bacterial signal transduction 

pathways [15,16] and the most frequently-used family of genetically-encoded sensors. 

The typical OCS comprises an allosteric transcription factor (aTF) and a target (a.k.a. 

output) promoter. The aTF usually consists of an N-terminal sensor domain linked to a 

C-terminal DNA-binding domain (DBD). In the presence of the input, the aTF sensor 

domain allosterically modulates the activity of the DBD, and thus the rate of transcription 

from the output promoter. A handful of well-characterized OCSs (e.g. LacI, TetR, AraC, 

LuxR) are often used as model sensors in synthetic biology studies. Recent efforts based on 

genome mining, directed evolution, protein engineering, and computational protein design 

have generated several dozen new OCS sensors, including those that detect inputs linked to 

bacterial or host physiology [17-21]. It is likely that many new OCSs will be characterized 

and engineered for synthetic biology applications going forward.

Two-component systems (TCSs) are the largest class of multi-step signal transduction 

pathways in nature[22] and an important family of sensors for synthetic biology. The 

classical TCS sensor comprises a sensor histidine kinase (SHK), a response regulator (RR), 

and an output promoter (Fig. 1). A given SHK contains an N-terminal sensor domain linked 

to C-terminal transmitter domain, often by a transmembrane region[23]. The presence of 

the input causes the SHK sensor domain to undergo a conformational rearrangement that 

is relayed to the transmitter domain, typically increasing kinase activity. In the activated 
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state, the transmitter domain phosphorylates the partner RR on a conserved aspartate 

residue within an N-terminal receiver (REC) domain. Similar to aTFs, most RRs contain 

C-terminal DBDs that regulate transcription[24]. Phosphorylation induces a conformational 

switch that activates the DBD, often via REC-mediated homodimerization[25-27]. Most 

SHK transmitter domains also dephosphorylate their cognate RRs in the absence of input, 

thus de-activating the TCS response. A spectrum of signal transduction pathways that 

elaborate upon the core TCS architecture are present in bacteria, archaea, and non-animal 

eukaryotes[28-30]. However, the prototypical TCS is predominantly found in bacteria.

TCS performance features

Though OCSs are simpler and more abundant, TCSs offer several advantages for synthetic 

biology. First, SHKs can be membrane-bound or cytoplasmic while OCSs are almost 

exclusively cytoplasmic[15]. Accordingly, TCSs can sense extracellular, intra-membrane, 

or intracellular inputs while OCSs typically sense intracellular inputs. From a sensor design 

perspective, a transporter must be co-expressed alongside an OCS if the input does not 

naturally diffuse or is not naturally transported across the membrane [31]. As transporters 

are not readily available for many compounds (e.g. large molecular weight species), OCSs 

tend to sense a more restricted range of inputs than TCSs. Second, the bi-functional kinase/

phosphatase activity of SHKs makes TCS output signals (phosphorylated RR and thus 

transcription rate) relatively insensitive to changes in the expression levels of SHKs and 

RRs[32,33]. This built-in robustness can buffer TCS responses against gene expression noise 

or fluctuations in SHK and RR expression that arise from changing growth conditions. 

Third, we recently demonstrated that SHK phosphatase activity acts as a built-in knob 

for tuning TCS detection threshold[34]. In particular, by introducing transmitter domain 

mutations that specifically reduce SHK phosphatase activity, TCSs can be made to respond 

to their inputs at up to two orders of magnitude lower concentrations. Furthermore, we 

demonstrated that the first variable residue in the transmitter domain GXGXG motif, which 

is present in 64% of SHKs, can be mutated to different hydrophobic residues to tune the 

detection thresholds of TCSs even in the absence of well-characterized phosphatase-altering 

mutations. This phosphatase tuning method is simpler to implement than computational 

design and directed evolution, which are frequently used to tune OCS sensitivity.

TCSs have evolved to sense a remarkable assortment of inputs. Classes of known TCS 

inputs include light, temperature, pH, metals, nutrient availability, respiratory electron 

acceptors, oxidizing agents, small molecule metabolites, inter-bacterial communication 

signals, antibiotics, antimicrobial peptides, oligosaccharides, proteins, hormones, and other 

host-derived signals (Table 1). Some SHKs are highly specific for a single input. For 

example, E. coli NarX and Shewanella halifaxensis ThsS are activated by the terminal 

electron acceptors nitrate (NO3
−) and thiosulfate (S2O3

2−), but discriminate against closely-

related compounds such as nitrite (NO2
−) and tetrathionate (S4O6

2−), respectively[35,36]. 

Other SHKs sense multiple inputs characteristic of a specific environment. For example, 

Salmonella Typhimurium PhoQ is activated by low divalent cation concentrations, acidic 

pH, and antimicrobial peptides – three distinct stimuli that are likely to be encountered 

by the bacterium during the infection of a host[37]. SHKs can detect multiple inputs via 

multiple binding sites in a single sensor domain[37], or via multiple sensor domains[38]. 
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Finally, many SHKs sense general phenomena such as membrane disruption that occur in 

the presence of a wide range of inputs[39].

Repurposing TCSs as sensors for synthetic biology

Researchers have begun to utilize TCSs as sensors for synthetic biology applications. 

For example, light-responsive TCSs (Table 1) have been used to spatially manipulate 

gene expression across two-dimensional bacterial lawns[40-42], program bacteria to 

perform the image processing function of edge detection[43], pattern biofilm deposition 

on ceramics, polystyrene, and cotton[44], introduce single-base pair edits in genomic 

DNA[45], characterize the input/output dynamics of transcriptional regulatory circuits[46], 

dynamically control metabolic pathway flux[47-49], and characterize how gut bacterial 

metabolite secretion can impact host health and longevity[50]. In another series of studies, 

TCSs activated by thiosulfate, tetrathionate, and acidic pH (Table 1) have been used to 

program bacteria to sense and report intestinal inflammation in mouse models of colitis 

and Crohn’s Disease [36,51,52]. Such diagnostic gut bacteria could be advanced to enable 

long-term monitoring and treatment of inflammatory bowel diseases with less invasiveness 

and fewer side-effects compared to current standards of care.

It is often necessary to replace the evolved gene regulatory systems that govern TCS 

function prior to using them as sensors (Fig. 2a). First, shk and rr genes are generally 

regulated by multiple interacting pathways[53]. These evolved TCS regulatory networks can 

cause problems such as silencing[54] or transient input responses[55] that can compromise 

TCS sensor function. These challenges can often be overcome using genetic refactoring 

(Fig. 2b). Here, evolved promoters, ribosome binding sites (RBSs), and terminators are 

replaced with well-characterized alternatives that function reliably in a bacterium of interest. 

The open reading frames (ORFs) of shk, rr, and any required auxiliary genes can also be 

computationally redesigned to eliminate known and unknown regulation while increasing 

translational efficiency in a heterologous host[56]. Though TCSs are relatively insensitive to 

the levels of their component proteins, it is still important to optimize shk and rr expression 

levels during refactoring. TCSs are generally more sensitive to RR than SHK levels. If 

total RR abundance is too low, there will be too few phosphorylated RRs to bind to 

output promoters and activate transcription in response to the input. Conversely, if total 

RR abundance is too high, output promoters will often exhibit strong activity in the absence 

of any input. This problem can arise due to promoter binding by non-phosphorylated RRs, 

which exist in an equilibrium between inactive and active conformations[24,57]. It can also 

arise due to residual SHK kinase activity in the absence of input, or alternative sources 

of RR phosphorylation such as small molecule donors[58] or non-cognate SHKs[59], 

the effects of which become pronounced at high total RR expression. Very low and 

very high SHK expression often degrade TCS responses[34,36,52,60,61] and should be 

avoided. SHK and RR abundances can be co-optimized using orthogonal gene expression 

inducers (e.g. IPTG, aTc) or libraries of constitutive promoters or RBSs of different 

strengths[34,36,52,54,60-62].

Unfortunately, many evolved TCS output promoters can only be activated to a small extent. 

Furthermore, TCS output promoters are often cross-regulated by alternative pathways or 
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silent in heterologous hosts[36,54,61,62]. These challenges can be addressed by introducing 

mutations or truncations into output promoters to remove unwanted regulatory sites or 

nested constitutive promoters that generate leaky transcription[36,54,60,61]. TCSs can 

also be rewired to non-cognate output promoters with superior performance features. 

The traditional approach to TCS rewiring is to make a chimera between an SHK sensor 

domain of interest and a non-native transmitter domain. Here, the chimeric SHK controls 

the phosphorylation of a non-cognate RR and thereby transcription from a non-cognate 

output promoter. Though sensor domain swapping has been used to engineer numerous TCS 

sensors[40,63-71], the allosteric mechanisms that enable communication between sensor and 

transmitter domains are intricate and incompletely understood. As a result, general strategies 

for TCS sensor domain swapping remain elusive. Approaches based SHK-RR interface 

swapping[72] and protein scaffolds that redirect SHK phosphorylation to non-cognate 

RRs[73] have also shown promise for TCS rewiring. However, these approaches tend to 

yield TCSs whose activity is not dependent on the presence of the input.

Recently, we developed a general method for rewiring TCSs to well-characterized output 

promoters by modularly swapping RR DBDs[61]. In particular, we identified standard 

amino acids at which the DBDs of RRs from the OmpR/PhoB or NarL/FixJ sub-families 

can be removed and replaced with those from structurally-related but functionally unrelated 

RRs. In addition, we developed standard output modules (e.g. the CcaR DBD and its 

PcpcG2-172 output promoter for OmpR/PhoB family RRs, and the YdfI DBD and its 

PydfJ115 output promoter for NarL/FixJ RRs) to which TCSs from those families can be 

rewired with high rates of success. OmpR/PhoB and NarL/FixJ constitute over 70% of all 

transcription-regulating RRs[24], suggesting that thousands of TCSs could be characterized 

and potentially deployed as sensors using this approach.

Due to similarities in the sequences and structures of their interaction interfaces, SHKs 

and RRs from different TCSs may cross-talk with one another in the same cell. Such 

phospho-signaling cross-talk could compromise the fidelity of a given TCS sensor in the 

complex cellular environment. However, work by Laub and colleagues has demonstrated 

that SHKs generally exhibit a high degree of specificity toward their cognate RRs in the cell 

due to a large and relatively unoccupied interaction sequence space[70]. This result suggests 

that synthetic biologists can utilize multiple TCS sensors in a single cell without a high risk 

of phospho-signaling cross-talk. In the event that phoshpo-signaling cross-talk is a problem, 

this group also demonstrated that the evolved interaction interfaces can be replaced with 

insulated versions that have been shown not to cross-talk with other TCSs. The authors used 

this approach to engineer a system based on a sensor domain-swapped version of PhoQ that 

responds to the plant cytokinin trans-zeatin and does not cross-talk with any native TCS in 

E. coli[70] (Table 1).

Porting TCSs into eukaryotes

There is substantial interest in using TCSs to endow eukaryotic cells with novel sensing 

capabilities. In early work, an engineered E. coli Trg-PhoR system was used to sense 2,4,6-

trinitrotoluene via an interaction with the computationally-designed extracellular accessory 

protein TNT.R3 in A. thaliana[74,75]. To achieve transcription regulation in plants, the 
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RR PhoB was fused to a VP64 transactivation domain and used to activate a minimal 

plant promoter engineered to contain multiple Pho operator sites. Porting TCSs into plants 

more broadly remains a challenge. In other work, Benenson and colleagues expressed the 

E. coli TCSs EnvZ-OmpR, NarX-NarL, and DcuS-DcuR in mammalian cells[76]. Similar 

RR:transactivator domain fusions and synthetic eukaryotic output promoter design strategies 

were used to enable control of transcription. While these three TCSs were capable of 

phospho-signaling and transcriptional activation, they did not respond to their cognate 

inputs. The reasons for sensing failure are unclear and warrant further investigation. One 

likely source of the problem is an incompatibility between bacterial SHK transmembrane 

regions and eukaryotic membranes. In an interesting recent follow-up study, this group fused 

two NarX transmitter domain mutants that must be brought into close physical proximity 

to phosphorylate NarL to a G-protein coupled receptor-β arrestin pair that heterodimerize 

in the presence of ligands including procaterol[77]. This engineered pathway generates 

large transcriptional responses to these ligands in mammalian cells. This approach may be 

useful for engineering synthetic mammalian signaling pathways that do not cross-talk with 

endogenous systems.

Harnessing nature’s treasure trove of TCS sensors

Despite exciting progress, TCSs remain a largely untapped treasure trove of sensors for 

synthetic biology. The number of TCSs with well-characterized inputs is on the order 

of one hundred (Table 1). However, many thousands of TCSs are present in bacterial 

genomes[34,78] and the inputs of most of these systems cannot currently be predicted. A 

major impediment to identifying the inputs of these orphan TCSs is that most bacteria are 

intractable; they cannot be cultured nor genetically-manipulated in the laboratory. Synthetic 

biology methods are helping to overcome this challenge. If an output promoter of an orphan 

TCS is known or can be inferred from genomic context, the system can be introduced into a 

tractable organism such as E. coli or B. subtilis[36]. If an output promoter is not known or 

does not function well in laboratory conditions, sensor domain swapping or DBD-swapping 

can be used to replace it with an alternative that functions reliably. In either case, the orphan 

TCS can then be screened against targeted input panels designed by analyzing the function 

of genes residing adjacent to the TCS or the environment in which the native organism 

lives[36], complex samples representative of those environments, or even large panels of 

untargeted chemicals. If inputs of interest are known, commercial gene synthesis can be used 

to apply this process to hundreds or thousands of orphan TCS pathways in order to identify 

novel sensors. For example, libraries of orphan TCSs from the human gut microbiome 

could be synthesized and screened against disease biomarkers found in the gut. If a TCS 

responsive to the biomarker is found, it can be converted into a high-performance sensor 

using genetic refactoring and phospho-signaling insulation. Finally, the detection threshold 

of the new sensor can be matched to the needs of applications such as engineering bacteria 

that diagnose and treat disease[79]. Similar approaches are being taken to engineer bacteria 

to detect soil nitrate levels [34], which could eventually be coupled with engineered nitrogen 

fixation pathways[2] to maintain nitrogen homeostasis in soil without fertilizer.
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Conclusions

Though they are more complex than alternatives such as riboswitches and OCSs, TCSs 

offer a number of benefits as sensors for synthetic biology. First, due to the transmembrane 

architecture of most SHKs, TCSs can sense inputs that are both accessible and inaccessible 

to cytoplasmic sensors. Additionally, TCS phospho-signaling increases the reliability of 

sensor function in the face of variable protein expression levels while also providing a built-

in knob for tuning TCSs to respond to different input concentrations. It is likely that bacteria 

have exploited these and other features of TCSs to better adapt to diverse environmental 

conditions. Synthetic biologists are increasingly taking advantage of these same properties 

to endow bacteria with artificial sense and respond capabilities for new engineering 

applications. However, we have only reached the tip of the iceberg. Bacterial genomes 

host a huge number of uncharacterized TCSs that likely sense inputs of agricultural, 

biotechnological, environmental, medical, physiological, and scientific relevance for which 

no biosensors are currently available. Recent methods for porting TCSs into laboratory 

bacteria are accelerating the pace at which their inputs can be discovered. Recapitulating 

TCS function in eukaryotes remains an important challenge that will likely require both new 

biological insights and new engineering approaches to solve. Overall, the breadth of inputs 

that they sense combined with the robustness and programmability of their performance will 

make TCSs an important family of sensors for synthetic biology in the future.
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Highlights:

• Two-component systems (TCSs) are a large class of bacterial signaling 

pathways that can detect an incredibly wide variety of stimuli

• Recent synthetic biology methods can reduce cross-talk, increase dynamic 

range, and adjust TCS detection thresholds

• Many TCSs can now be reliably rewired to synthetic output promoters, 

facilitating elucidation of their inputs

• TCSs are being applied to the gut microbiome, metabolic engineering, and 

biomaterial production among other applications.
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Figure 1. 
Bacterial two-component systems and their function. Inputs are shown inside of the rounded 

box. Sensor histidine kinase (SHK): Black/dark blue. Phosphoryl group: black circle. 

Response regulator (RR): light blue. Poutput: output promoter.
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Figure 2. 
Refactoring and rewiring TCSs. (A) Evolved TCSs can be computationally identified in 

bacterial genomes due to the conservation of SHK and RR domain architectures and the 

fact that the genes encoding interacting SHK-RR pairs often reside adjacent to one another. 

However, the promoters (dashed bent lines) and RBSs driving the expression of shk and rr 
genes can be difficult to predict and characterize from sequence information. This problem 

is exacerbated for output promoters, which may or may not reside adjacent to shk and rr 
genes. (B) TCSs can be engineered to function more reliably by replacing native promoters 

and RBSs with well-characterized synthetic versions. Promoters and RBSs of different 

strengths should be screened to achieve optimal SHK and RR expression levels. If an 

evolved output promoter is unknown or has undesirable features, it can be replaced by DBD 

swapping, wherein the native rr gene is replaced by a chimeric rec-DBD gene and the native 

output promoter is replaced by a well-characterized promoter that responds to the Rec-DBD 

protein (PDBD). yfg: your favorite gene.
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