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Abstract

Drug repurposing aims to find new uses for already existing and approved drugs. Normally this 

has occurred through serendipity while high throughput screening of FDA approved drug libraries 

has been responsible for increasing its popularity. Computational repurposing is a newer credible 

approach to drug discovery that has been steadily building a foundation with applications and 

examples of experimental validation. One particular area of computational repurposing is using 

machine learning. We now provide a brief overview of recent developments in drug repurposing 

using machine learning alongside other computational approaches for comparison. In addition, 

we will highlight several applications of computational drug repurposing using machine learning 

for cancer indications targeting kinase inhibitors, Alzheimer’s disease as well as COVID-19 

from many different groups as well as our own. This overview should serve to rebalance the 

‘repurposing hype’ of the past year, set expectations of what is possible as well as suggest areas 

for future development.
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Introduction

Bringing a new small molecule drug to the clinic is a lengthy and costly process that has 

been widely described [1] taking anywhere from over a decade and may range from over 

$700M to $2.7Bn by recent estimates [2]. Naturally, any advancements in technology which 

could accelerate the process or decrease the cost significantly would be a true paradigm 

shift. Drug repurposing is a simple concept with a long history which promises a great 

deal in this respect [3]. Drug repurposing aims to develop a new use for a drug beyond its 

original purpose and has been applied more widely as FDA approved drug libraries became 

more commercially accessible, allowing academics and small companies to run medium 

to high throughput screens on thousands of molecules [4]. In several cases, new uses for 

existing drugs were found and some candidates have progressed to the clinic [5–7]. Drug 

companies also started to pay more attention to repositioning compounds that perhaps were 

either on the shelf or failed for another indication. Interestingly, this view of repurposing 

molecules is not new, a bibliometric analysis of PubMed showed that, since at least the 

1940s, many molecules have been tested against a large number of diseases. For example 

189 drugs were linked with over 300 diseases [3]. More recently one approach that has 

been swiftly gaining traction over the past 5–10 years is computational drug repurposing. 

This method became especially relevant in 2020 as scientists attempted to find a quick 

solution for treating COVID-19, and drug repurposing offered a quick path to treatment 

[8]. Several computational tools, such as similarity searching, docking, pharmacophores, and 

machine learning can be used for small molecule drug discovery. We will focus primarily 

on the machine learning in this review which can encompass a wide array of data resources 

and computational approaches (Figure 1). In our view this requires several steps such as 

identification and curation of dataset/s, building and validation (internal and preferably 
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external) of the machine learning models, scoring and prioritization of a drug library (or 

clinical assets), before final validation of these predictions in vitro and / or in vivo (see 

graphical abstract). Previous reviews by us or others have described some of the earlier 

computational repurposing successes, data sources available to enable this [9,10] as well 

as some of the opportunities and limitations of repurposing industry provided clinical stage 

molecules [11]. As will be seen, machine learning applications can still be quite broad in 

how they are implemented whether with small molecule, genomics, image assay data or 

combinations of these or other data types (Figure 1). We will also describe several areas 

where there have been significant repurposing efforts, beginning with COVID-19, kinases 

for cancer and Alzheimer’s disease (AD) as well as for other diseases.

1. COVID-19 repurposing

Since the outbreak of SARS-CoV-2 in late 2019 there have been hundreds of papers and 

likely many more preprints describing computational approaches or short communications 

proposing compounds with likely activity against SARS-CoV-2 [8]. 2020 brought drug 

repurposing a level of recognition that was unimaginable before the COVID-19 epidemic. 

As researchers were generally isolated from their labs, this led to many using computational 

tools to propose compounds for possible testing against the virus. To see thousands of 

researchers turning their attention to the COVID-19 problem and the flood of papers that 

followed, the expectation is that a drug will surely follow. In the case of treatments for 

COVID-19, however, while there have been a few small successes, and many clinical trials 

ongoing, a drug candidate has yet to emerge from all this computational repurposing. A 

number of causes likely contributed to the lack of success stories. While researchers used 

computational tools to propose compounds for testing against the virus, the lack of BSL3 

lab availability (during 2020) often meant little to no experimental data existed to back up 

their proposals other than some computational score or a docked molecule in a protein (and 

sometimes both). This has perhaps also sown more confusion as the general public is unable 

to discern the difference between a computational prediction and one that is experimentally 

verified. In very few of these computational derived examples, compounds were tested 

in vitro against a target protein or in virus infected whole cells. There were also many 

examples of studies in which a small number of drugs or other molecules were selected 

for various reasons (not computationally) and then tested [12], and these have tended to 

outnumber the computational repurposing papers. While not all of the following approaches 

use machine learning, several other computational approaches will also be described.

One of the earliest molecules to be computationally repurposed using a knowledge graph 

approach was the AAK1 and JAK1/2 kinase inhibitor baricitinib [13] (Table 1). The 

mechanism was eventually validated in vitro and in human patients [14,15] as well as in 

combination with hydroxychloroquine [16]. As the outbreak progressed there were also 

examples of high throughput screens against SARS-CoV-2 targets or in infected cells as well 

[17–22]. A cheminformatics and protein interaction map identified FDA and clinical stage 

compounds binding to sigma-1 and 2 receptors which act as host factors for COVID-19. 

The most potent compound identified in Vero cells was PB28 (IC90 280nM), which is 

not an approved drug, while several approved drugs such as clemastine and cloperastine 

were also identified (Table 1), albeit with much weaker μM activity [23]. To some extent 
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the use and efficacy of atypical antipsychotics (likely targeting sigma receptors) was also 

shown using real world data analysis of hospitalized SARS-CoV-2 patients [24]. For all 

the clinical failures associated with hydroxychloroquine [25,26] it has still served as a 

starting point for computational repurposing. In one example it was used as a template 

for ligand based virtual screening of 3981 molecules that had obtained regulatory approval 

worldwide. Amodiaquine (antimalarial) was the most active in vitro in Vero EG cells along 

with zuclopenthixol (typical antipsychotic) and nebivolol (beta blocker) [27]. Docking FDA 

drugs in the Mpro structure has identified dipyridamole (IC50 0.53μM) and this showed 

activity in Vero cells (EC50~0.1 μM), subsequently it was taken to a small clinical trial with 

8 patients and demonstrated positive responses [28]. There have been many other examples 

of computational docking in a target followed by assessment of binding to the target or 

assay of activity, but in most cases the activity in infected cells is not described [29,30]. 

Another approach has been to repurpose molecules that were previously computationally 

identified using machine learning for another virus then applying them to SARS-CoV-2. 

This is an approach we have taken and in due course demonstrated that the Ebola inhibitors 

tilorone, quinacrine and pyronaridine may also be sub μM inhibitors of SARS-CoV-2 

infected A549-ACE2 cells [12]. As yet there has not been a “home-run” that has derived 

from the repurposing approach for SARS-CoV-2 although it has intensified the interest in 

kinase inhibitors as potential antivirals.

2. Kinase repurposing and cancer applications

The human genome encodes about 634 kinases (pseudokinases included), which are 

enzymes that transfer a polar phosphate group from ATP to regulatory serine, threonine, 

or tyrosine residues on proteins and have a role in hundreds of diseases [31,32]. To date 

the FDA has approved 62 small molecule protein kinase inhibitors which have a market 

in the tens of billions of dollars per year [31,32]. Most of these are delivered orally apart 

from temsirolimus (IV) and netarsudil (eye drops). As of 2019, eleven of them inhibited 

protein-serine/threonine protein kinases, two are dual specificity protein kinases, eleven 

target non-receptor protein-tyrosine kinases, and 28 block receptor protein-tyrosine kinases. 

46 are used in the treatment cancers (e.g leukemias, breast and lung cancers) whereas 

8 are for non-malignancies such as myelofibrosis, polycythemia vera, chronic immune 

thrombocytopenia, rheumatoid arthritis, renal graft vs. host disease, idiopathic pulmonary 

fibrosis, glaucoma, Crohn disease, and ulcerative colitis [31,32]. There are many hundreds 

of kinases, so this creates challenges to ensure selectivity depending on the target or the 

degree of polypharmacology that is permissible. The wealth of publicly available data on 

this target class also represents an opportunity to leverage to design and develop new 

classes of compounds as well as repurposing existing kinase inhibitors for other kinases not 

tested. The market for anticancer drugs is considerable [33]. Commercial interest in kinase 

inhibitors is at an all-time high in recent years with Merck acquiring Arqule for $2.7Bn 

for a single clinical stage candidate (ARQ531 a BTK inhibitor) and acquiring Peloton 

Therapeutics for $2.2Bn. Pfizer bought Array Biopharma for $10.6Bn for their pipeline 

which included two marketed kinase inhibitors, and in early 2019 Eli Lilly bought Loxo 

Oncology for $8Bn which has several kinase inhibitors in their pipeline. There still appears a 

significant commercial opportunity in this target area.
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Kinases are therefore a very heavily studied class of proteins in cancer and yet a large 

part of the kinome is “dark” with no drugs or probes [34]. There is hence considerable 

interest in accelerating the identification of molecules that might be probes or potential 

drugs for proteins belonging to the protein kinase families that are currently unannotated. 

There have been notable efforts to create public structure activity (SAR) datasets such as the 

Published Kinase Inhibitor Set (PKIS) as a resource for developing new probes for kinases 

[35]. The illuminating the druggable genome (IDG) program began in 2014 with the goal of 

developing techniques and information about proteins targets for this protein class as well 

as G-protein coupled receptor, ion channels and nuclear receptor classes of proteins which 

had not been characterized or for which molecules or biologics had not been identified 

[36–38]. The number of proteins that are listed on the IDG website as of February 2021 is 

328 (162 are kinases [39,40]). Currently there are only 18 previously dark kinases for which 

chemical probes have been identified. In parallel with this effort, another NIH common 

fund project called the library of integrated network -based cellular signatures (LINCS) 

consortium which has generated public data which relates to how cells respond to various 

genetic or environmental stressors with results obtained in cultured and primary cells whose 

state has been perturbed by a “perturbagen” [41]. This data collected by 15 institutions has 

been made available to the community through many different tools and workflows [41] 

which enables various different types of evaluations [42].

For example, one of the datasets and tools in the LINCS is the connectivity map (CMap) 

which brings together data on genes, thousands of drugs and disease states. The original 

basis for the CMap was 164 drugs and tool compounds tested in 3 cell lines with microarray 

data that was subsequently used in several repurposing projects to identify new uses for 

old drugs [43–45]. The approach was recently expanded with a reduced expression profile 

limited to 1000 landmark genes and tested with ~19,000 small molecules (as well as 

thousands of shRNAs, cDNAs, and biologics) in 6 cancer cell lines. A connectivity score 

was developed with three confidence measures [46]. Such a tool provides the capability to 

predict the mechanism of action of molecules based on similarity profiles of compounds of 

known function. 1902 of these compounds were mapped to known protein targets. When 

using an external set of compounds, 76% could be connected in the correct perturbagen 

class. Some drugs were also found to associate to multiple targets for which they were 

similarly active. CMap was used to discover the mechanism of action for new small 

molecules and this was demonstrated for kinase inhibition with several drugs. Working 

in the opposite direction, to discover a molecule specific for another protein kinase was 

also demonstrated by querying the database for signatures of what knockdown of the target 

would look like and then find molecules sharing a similar signature [46]. Such studies have 

inspired others to use compound-induced transcriptomic data generated from cell lines in 

order to predict compound activity to molecular targets. Random forest models generated 

with this data for a small subset of 69 genes had similar results to or outperformed Morgan 

fingerprints [47]. The same group has also demonstrated how the transcriptomic data can 

also be used with a generative adversarial network to design molecules that address desired 

targets (although it should be mentioned that these two studies were theoretical and lacked 

experimental verification using molecule synthesis and testing) [48].
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It can be summarized that de-orphaning kinases is a very slow process involving 

biochemical, enzymatic and cellular profiling often followed by assessment of 

phosphorylation, cellular target engagement and structural analyses which may occasionally 

result in a single molecule illuminating more than one of the dark kinases [40]. There are 

now many data sources relevant to kinases that could be integrated to develop computational 

approaches for assisting in de-orphaning dark kinases that have not been attempted or 

validated. In most cases the computational tools leverage molecule similarity analysis. For 

example, Virtual Kinome profiler was used to profile ~37 million compound-kinase pairs 

and predict 151,708 compounds against 248 kinases simultaneously [49]. This approach 

identified 19 small-molecule inhibitors (including already approved drugs) of EGFR, HCK, 

FLT1, and MSK1 protein kinases [49]. Earlier work by the same group identified 4 new 

off targets (FRK, FYN A, ABL1, SLK) for tivozanib, an approved VEGF tyrosine kinase 

inhibitor approved to treat renal cell carcinoma [50]. Others have focused on developing 

the optimal kinase library for screening which made use of molecule similarity to existing 

small molecule kinase inhibitors [34]. Some researchers have used machine learning to map 

the activity of compounds across the kinome using the t-distributed stochastic neighbor 

embedding (t-SNE) algorithm. Validation of this model focused on the FLT3 kinase [51]. 

Some of the largest kinome-wide screening efforts have combined public and proprietary 

data and modeled 280 kinases, with most random forest models having AUCs > 0.7. 

The models were evaluated with leave out tests but not prospective testing [52]. Other 

groups have narrowed their efforts to modeling a single kinase, such as a model for JAK2 

inhibitors which was used to select 13 compounds, out of which 6 had IC50 values less 

than 100nM [53]. Different algorithms have been used including deep neural networks 

(DNN) [54], Bayesian and Recursive partitioning models [55], other quantitative structure 

activity relationship (QSAR) methods [56] or deep generative models [57]. All of these 

computational tools could be potentially of use for drug repurposing. For example, a 

multitask deep learning model built with data for 391 kinases was used to find targets 

for clinically approved and investigational kinase drugs for which the researchers validated 

their predictions [58].

Most groups working on computational predictions for kinases have focused on identifying 

novel molecules. Some have also taken different approaches combining different data types 

or using whole cell or genomic data. An early study demonstrated how machine learning 

could be used to predict cancer cell sensitivity using genomic and chemical properties as 

well as proposed the potential for repurposing but without providing any examples of this 

[59]. A more recent version of this (although not focused on kinases) used deep learning 

with transcriptomic and molecular data in order to identify pimozide for repurposing for 

non-small cell cancer as well as tested in vitro (IC50 19.54 μM in A549 cells) which 

while weak, was at a comparable activity level to gemcitabine [60]. One group developed 

a platform called 3D-REMAP to use ligand binding site information and protein-ligand 

docking to propose a cardiovascular drug levosimendan as a kinase inhibitor (RIOK1, Kd 

0.82 μM as well as inhibited FLT3, MAP2K5, PIP5K1A, GAK and KIT) and potential 

repurposing candidate [61]. We have recently generated Bayesian machine learning models 

for a rare cancer called chordoma using datasets from two independent cell-based screens. 

These were then used to prioritize a small number of clinical stage kinase inhibitors and 

Urbina et al. Page 6

Curr Opin Chem Biol. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demonstrated that one of these AZD2014 (mTOR1 and mTOR2) possessed comparable sub 

μM in vitro activity as the approved drug afatinib (EGFR, currently in a clinical trial for this 

disease) in two chordoma cell lines [62].

Machine learning approaches can also be used with multiple omics datasets to predict a 

therapeutics response signature which can be used to optimize patient treatment and this 

application was then validated with a wide array of kinase inhibitors, both approved and 

clinical candidates [63]. There is therefore considerable scope for using these types of 

computational machine learning approaches for repurposing of pre-existing kinase inhibitors 

or clinical stage compounds for cancer and potentially other disease indications.

3. Alzheimer’s disease repurposing

AD is widely known as the most common type of dementia, it is an irreversible 

neurodegenerative disease that is also the 6th leading cause of death in USA, affects 

over 5.1 million adults over age 65, and costs over $150 billion per year [64]. AD is a 

typical age-dependent neurodegenerative disease that affects 5% of individuals >65 years, 

20% of those >85 years, and more than one- third of those >90 years [65]. However, 

approximately 200,000 individuals under age 65 have younger-onset AD, though there 

is greater uncertainty about the younger-onset estimate. Therefore, in the absence of 

proper preventative and therapeutic efforts, its prevalence will continue to increase as life 

expectancy increases. The mechanisms underlying the AD pathophysiology are still unclear. 

Aggregation of tau and amyloid beta (Aβ) proteins as well as decreased acetylcholine are 

hallmarks of the disease and the focus of many studies [66]. The only therapies currently on 

the market for treatment of AD, namely four cholinesterase inhibitors (tacrine, rivastigmine, 

donepezil and galantamine) and one N-methyl-D-aspartate (NMDA) receptor inhibitor 

(memantine), are only symptomatic and do not affect the underlying disease mechanisms 

or alter the disease course [64]. Therefore, drug repurposing may offer a potential avenue to 

identify additional clinical stage molecules.

A recent study described an approach using machine learning to quantify the pathology 

and AD severity as well as using neuronal cell lines treated with 80 kinase inhibitors to 

access the gene expression profile [67]. Some of the best scoring compounds included 

ruxolitinib (JAK1/2) and regorafenib (RET, VEGFRs) which were assessed for mechanism, 

however experimental validation against AD was not tested in vitro or in vivo [67]. 

Post-mortem examination of brains with Alzheimer’s disease shows increased levels of 

activated Glycogen Synthase Kinase 3β (GSK3β) [68,69]. GSK3β is a proline-directed 

serine/threonine kinase that is involved in several intracellular signaling cascades, and is 

involved in a host of cellular functions, including gene transcription, glucose regulation 

and apoptosis [70–72]. GSK3β figures prominently in Alzheimer’s disease as the main 

kinase responsible for the phosphorylation of the microtubule-stabilizing protein tau [73–

75]. Extracellular Aβ deposits, are also connected to the activity of GSK3β because this 

activity is linked to the improper processing of the amyloid-precursor protein APP [76]. 

The β-site APP-cleaving enzyme 1 (BACE1) is responsible for the pathogenic β-cleavage 

of APP that results in aβ peptides, and GSK3β inhibition downregulates expression of 

the BACE1 gene reducing aβ production [77]. GSK3 inhibitors are of interest to the 
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pharmaceutical industry for their potential use in various diseases, including diabetes, 

cancer, AD, Parkinson’s Disease, psychiatric diseases, and stem cell proliferation [78]. 

There are dozens of commercially available GSK3 inhibitors, of varying potency and 

selectivity, however most of these inhibitors are not suitable as therapeutics due to their 

toxicity [79]. Only a few GSK3β inhibitors have made it to clinical trials for AD and only 

two of these have been tested for efficacy in treating AD, and neither one has shown great 

effect in treating the disease [80,81]. We have curated and validated a Bayesian machine 

learning model (using extended connectivity fingerprints) for inhibition of GSK3β which 

has over 2300 molecules (from ChEMBL) and a 5-fold cross validation ROC > 0.90 [82]. 

This computational model was used to prioritize commercial compounds for testing. The 

clinical candidate ruboxistaurin was identified as an inhibitor of GSK3β and was validated 

using the ADP-Glo™ Kinase Assay with an IC50 of 39 nM. A secondary in vitro assay 

using the Z’LYTE™ Kinase Assay, demonstrated an IC50 of 155 nM [82]. The IC50 for 

Ruboxistaurin against GSK3β was higher than for the initial target PKCβ (6 nM) but lower 

than the closely related kinase PKCα (360 nM). Ruboxistaurin has been independently 

patented as an inhibitor of GSK3β for the treatment of neurological or psychiatric disorders 

with (US 9,265,764 B2). To date we have curated and validated Bayesian machine learning 

models for 10 AD targets (Figure 2). In general, the 5-fold cross validation statistics are 

ROC > 0.8 and MCC > 0.5. There are definitely limitations as some datasets are small, but 

those with thousands of molecules look ideal. These computational models could then be 

used to find novel modulators of these proteins which could be used alone or in combination 

to treat AD. This type of approach could also be taken for additional AD targets to develop 

a suite of machine learning models that will represent structure-activity data from public 

sources.

4. Antibacterial machine learning

As has been documented many times, antibiotic drug discovery has been profoundly difficult 

with very low hit rates from high throughput screening. There is also an urgent need for new 

drugs due to the occurrence of drug resistance. The lack of market support has also made it 

commercially treacherous for any companies working in this area. Computational machine 

learning approaches have been widely applied for antibacterial drug discovery for over a 

decade. We and others [83] have published extensively using the naïve Bayesian approach 

(with functional connectivity fingerprints descriptors) for tuberculosis drug discovery 

[84,85]. These models based on whole cell screening data from Mycobacterium tuberculosis 
were used to score (repurpose) molecules from the GSK antimalarial dataset [86] and from 

the seven compounds that were selected and tested, five had MIC ≤ 2 μg/mL, the most active 

being 0.0625 μg/mL [87]. Further examples include using two different whole cell models 

to score three vendor libraries and then 124 actives were found from testing 550 compounds 

[88], while after filtering a library of >150,000 molecules, 11 out of 48 compounds were 

active [89]. Overall hit rates were 15–71% for suggested compounds, much higher than the 

0.6 – 1.5% from random library HTS [87–89]. We have also developed machine learning 

models with 18,886 molecules (with activity cut offs of 10 μM, 1 μM and 100 nM)[90] 

and used them to evaluate multiple machine learning methods (including deep learning and 

support vector machines). Bayesian machine learning models were on a par with Deep 
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Neural Networks with external test sets [90]. These models could be used to virtually screen 

FDA approved drugs, although actual high throughput screens were carried out over a 

decade ago, since then hundreds of new non-antibacterial drugs have been approved, but it 

is likely many of them have never been tested against Mycobacterium tuberculosis, and this 

represents a future repurposing opportunity.

A recent deep neural network trained on E. coli data for 2335 molecules was used to 

score > 107 million molecules and one of these, halicin (a repurposed c-Jun kinase 

inhibitor SU3327) had an MIC of 2 μg/ml [91]. This molecule also showed broad spectrum 

bactericidal activity as well as activity in a mouse model of Acinetobacter baumannii 
infection. After screening other large compound collections, 2 further molecules with broad 

spectrum antibacterial activity were identified [91]. An example of a much larger library of 

compounds used for machine learning was 74,567 molecules tested against E. coli in order 

to generate models with gradient boosting, random forests, feed forward neural networks, 

support vector machines and Sammon mapping (average classification accuracy for internal 

testing 77.5–83.2%) [92]. These computational models were used to score a library of 5000 

compounds that was also tested in vitro. It was not described how each method performed 

with this external test set, although actives that were correctly predicted were shown, of 

which several had MIC < 1 μg/ml [92]. While this approach was applied to identify novel 

antibacterials it could also be applied for repurposing, although this was not apparently 

attempted. These efforts further suggested how ligand-based machine learning approaches 

can search through the vast chemical space of molecules to prioritize small numbers of 

compounds to test and provide a higher hit rate than random screening.

5. Applying machine learning for drug repurposing to other diseases and 

applications

High throughput image-based assays used to generate ‘fingerprints’ have been used with 

deep neural networks on a glucocorticoid receptor translocation dataset of over half a million 

compounds which was then used to predict compounds against a kinase target (50-fold 

enrichment) and a CNS target (289-fold enrichment) [93]. Rather than a drug repurposing 

application per se, this is more of a data repurposing demonstration. However, this approach 

could clearly be used for drug repurposing projects. The therapeutic performance mapping 

system was used with rat proteomic data to identify repurposed molecule combinations 

for nerve root avulsion [94]. This systems proteomics approach combines network maps, 

and mathematical models and was used to select compounds for in vitro testing and the 

combination of acamprosate and ribavirin was found to be neuroprotective when tested in 
vivo as it accelerated nerve regeneration and recovery [94]. A Bayesian machine learning 

approach used transcriptional data and in vitro screening data to identify synergistic drug 

combinations for use in malaria by developing compound pathway signatures [95]. 35 

compound pairs were selected and tested (precision 83.5% and recall 65.1%) demonstrating 

hydroxyzine and tacrolimus as well as raloxifene and thioridazine had high levels of 

synergy [95]. As a final example, computational target prediction approach (cheminformatic 

similarity ensemble approach) was used to predict the activity of pharmaceutical excipients 

against 3117 medically relevant proteins. Those target excipient pairs with high probability 
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were prioritized and 69 were tested in vitro. 19 were active against one of 12 targets 

(36% success rate) [96]. Thus, many of these molecules had relevant activities and in some 

cases the concentration of excipient would be at a level to have a physiological effect (e.g. 

cetylpyridinium chloride and the dopamine receptor 3) [96]. This could be considered an 

excipient repurposing application. These repurposing applications are literally scratching 

the surface of what may be possible with different datasets that are used to train machine 

learning models for various applications relevant to drug repurposing.

5. Discussion

Drug repurposing using machine learning has grown steadily over the past decade as 

we have started to see the application of deep neural networks and the revolution in 

computer power provided by graphics processing units (GPUs). This has in turn led 

to the growth in venture capital backed artificial intelligence drug discovery companies 

using purely computational approaches to discover drugs or repurpose existing drugs. As 

we have described herein there has been considerable use of computational approaches 

(including machine learning) to COVID-19, cancer, Alzheimer’s disease and antibacterial 

drug discovery amongst other areas. While it could still be considered as nascent in terms 

of the development and applications, we are already starting to see some of the benefits, 

namely leveraging the large amounts of public data that is available in the public domain to 

identify new uses for these drugs that are already approved. This may ultimately offer faster 

identification of drugs for new disease applications in a manner that may also be more cost 

effective. It is likely that the use of drug repurposing using machine learning will become 

even more mainstream after episodes like COVID-19. What is of course key to continued 

viability of this approach is that the computational predictions are not used in isolation but 

are always backed up by convincing in vitro and in vivo verification of the predictions. 

Ultimately, repurposed drugs reaching patients will be the ultimate mark of success of this 

approach.

Acknowledgments

We kindly acknowledge Dr. Patricia Vignaux, Dr. Thomas Lane, Ms. Kimberley Zorn, Ms. Eni Minerali, Mr. Daniel 
Foil and Ms. Jennifer Klein as well as other colleagues for their assistance with some of the research on machine 
learning repurposing studies described by our group.

Funding

We kindly acknowledge NIH funding: R44GM122196-02A1 from NIGMS, 3R43AT010585-01S1 from NCCAM, 
R41GM131433-01A1 from NIGMS and 1R43ES031038-01 from NIEHS. “Research reported in this publication 
was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under 
Award Number R43ES031038. The content is solely the responsibility of the authors and does not necessarily 
represent the official views of the National Institutes of Health.”

Abbreviations

Aβ amyloid beta

AD Alzheimer’s Disease

BACE1 β-site APP-cleaving enzyme 1

Urbina et al. Page 10

Curr Opin Chem Biol. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CMap connectivity map

DNN deep neural networks

FDA food and drug administration

GSK3β Glycogen Synthase Kinase 3β

IDG illuminating the druggable genome

LINCS library of integrated network-based cellular signatures

NMDA N-methyl-D-aspartate

PKIS Published Kinase Inhibitor Set

QSAR quantitative structure activity relationship

SAR structure activity relationship
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Highlights

• Machine learning for drug repurposing was increasing before 2020.

• It has been applied to model small molecule screening data, transcriptomics 

and proteomics.

• Computationally repurposed approved kinase inhibitors have been identified 

by several groups.

• Opportunities exist for computational machine learning in areas of difficult 

drug discovery e.g. antibiotics and Alzheimer’s disease.
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Figure 1. 
Overview of computational machine learning approaches for drug repurposing.
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Figure 2. 
Alzheimer’s disease Bayesian machine learning models generated with ECFP6 descriptors 

and 5-fold cross validation statistics [82].
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Table 1.

Examples of computationally derived molecules from drug repurposing for SARS-CoV-2.

Structure Drug Method In vitro/ in vivo activity Reference

Baricitinib knowledge graph Significantly reduced viral load in human liver 
spheroids at 400 and 800 nM

[13–16]

Clemastine Protein interaction map pIC50 5.67 [23]

Cloperastine Protein interaction map pIC50 5.27 [23]

Amodiaquine Ligand-based virtual screen EC50 0.13 μM and 5.4 μM [27]

Zuclopenthixol Ligand-based virtual screen 1.35 μM and 15 μM [27]

Nebivolol Ligand-based virtual screen 2.72 μM and 2.8 μM [27]

Dipyridamole Docking in Mpro IC50 0.53 μM, EC50~0.1 μM [28]
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