
Reconsidering pathway choice: a sequential model of 
mammalian DNA double-strand break pathway decisions

Tanya T. Paull
The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, 78712.

Abstract

DNA double-strand breaks can be repaired through ligation-based pathways (non-homologous 

end-joining) or replication-based pathways (homologous recombination) in eukaryotic cells. The 

decisions that govern these outcomes are widely viewed as a competition between factors that 

recognize DNA ends and physically promote association of factors specific to each pathway, 

commonly known as “pathway choice”. Here I review recent results in the literature and propose 

that this decision is better described as a sequential set of binding and end processing events, with 

non-homologous end joining as the first decision point. Physical association and co-localization of 

end resection factors with non-homologous end-joining factors suggests that ends are transferred 

between these complexes, thus the ultimate outcome is not the result of a competition but is more 

akin to a relay race that is determined by the efficiency of the initial end-joining event and the 

availability of activated DNA end-processing enzymes.

DNA double-strand breaks (DSBs) are a challenging type of genomic lesion for all cells, as 

the discontinuity in both strands has the potential for irreversible loss of genetic information 

and for misrepair events that can generate translocations, insertions, and deletions. The 

molecular mechanisms of DSB repair have been elucidated over the last several decades 

starting with genetic studies in bacteria and yeast, followed by in vitro reconstituted assays 

with purified proteins, single-molecule and structural studies, cell biology and genetics in 

mammalian systems, and by genome-wide studies facilitated by next-generation sequencing 

[1–5]. Pathways of DSB repair are generally separated into mechanisms that do not 

require an intact homologous template (non-homologous end joining (NHEJ), alternative 

NHEJ, single-strand annealing) and those that utilize a template for replication-driven 

repair (homologous recombination (HR), break-induced replication)(Figure 1). For in-depth 

comparisons of these mechanisms see these recent reviews [6–8].
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DSB repair outcomes are regulated by resection

One of the key regulation points that affects the outcomes of DSB repair is the resection 

of 5′ strands at DSBs, a step that is controlled in eukaryotes by cell cycle timing to 

occur most efficiently and extensively in S and G2 phases [9,10]. The canonical resection 

process in mammalian cells is initiated by the Mre11-Rad50-Nbs1 (MRN) complex which 

makes endonucleolytic incisions adjacent to the end, promoted by phosphorylated forms 

of CtBP-interacting protein (CtIP)[11–14]. The combined actions of MRN and CtIP also 

promote the binding and activity of the Exo1 and Dna2 nucleases that perform extensive 

resection of the broken end, degrading hundreds or even thousands of nucleotides depending 

on the availability of homologous sequences for repair [15–18]. MRN/CtIP-dependent 

end resection can promote non-templated forms of repair (alternative NHEJ, single-strand 

annealing) but is considered here primarily as part of the HR pathway.

The outcomes of DSB repair are generally portrayed as a competition between MRN/CtIP 

and the proteins that recognize breaks and promote NHEJ—the Ku70/Ku80 heterodimer 

(Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs)(Figure 2). Ku binds 

to DSB ends and recruits DNA-PKcs, forming the holoenzyme DNA-PK [19] that facilitates 

the processing of breaks and joining by Ligase IV with the assistance of several accessory 

factors, including XRCC4, XLF/Cernunnos, Artemis, Cyren/MRI, and polymerases μ and λ 
[8]. Ku is thought to be the primary end recognition factor for NHEJ and associates very 

rapidly with laser-induced DNA damage sites in mammalian cells [20,21].

The utilization of replication-dependent homologous recombination pathways versus NHEJ 

differs greatly across organisms, with NHEJ playing a much more prominent role in 

mammals, coincident with the emergence of DNA-PK [22]. In organisms that predominantly 

use homologous recombination for DSB repair such as budding and fission yeasts, DNA-

PKcs is not present and Ku is expressed at much lower levels compared to mammalian cells 

[23]. Nevertheless, Ku is still one of the first complexes appearing at a break site in budding 

yeast [24] and is still an effective block to enzymes other than MRN(X), based on work 

showing that deletion of Ku subunits allows for DSB 5′ processing in the absence of the 

MRN complex or CtIP(Ctp1/Sae2)[25–29].

Evidence for competition during pathway choice

A competitive model for DSB repair pathway choice has derived over the years from 

observations that DNA ends generated in mammalian cells could be repaired by either 

pathway and that alteration of repair factor levels can skew repair outcomes toward NHEJ 

or HR [7,30]. Depletion or removal of NHEJ factors reduces the efficiency of NHEJ in 

rodent and human cells and also increases the relative efficiency of resection or homologous 

recombination [31–34], indicating that there are compensatory mechanisms that can act to 

resolve breaks by homology-directed pathways if NHEJ is compromised. NHEJ and HR 

factors have been shown to associate with DNA ends independently [21,35,36], and in 

reconstituted biochemical assays in vitro, the presence of Ku inhibits nucleolytic processing 

of ends [17,37]. These observations are consistent with a competition model in which the 
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initial binding of Ku or MRN dictates whether breaks are resolved by NHEJ or homologous 

recombination pathways, respectively (Figure 2A).

Despite the attractive simplicity of the competition model, however, other observations are 

more difficult to reconcile with this view and suggest that we need to reconsider this model.

Observations in support of a sequential model for DSB repair decisions

It is clear in yeast and in mammalian cells that NHEJ factors associate with break 

sites earlier than HR factors [21,24,35,38,39]. These observations parallel studies of DSB 

resolution in mammalian cells showing that a fast, NHEJ-dependent joining phase precedes 

a slower, HR-dependent phase [40,41]. The findings contradict the idea that a subset of 

breaks is initially designated for resection based on MRN or CtIP association, but are 

more consistent with a model in which nearly all DSB ends are initially bound by NHEJ-

promoting factors. The micromolar levels of DNA-PKcs and Ku in mammals favor this 

outcome, and human cells contain approximately 50-fold higher levels compared to rodent 

cells [42], with levels of MRN and CtIP orders of magnitude lower [8].

There are also many observations of co-localization of NHEJ factors with HR factors 

during the course of DNA repair. Super-resolution microscopy was used to image Ku foci 

at sites of radiation damage and showed significant co-localization with Mre11 [20], an 

observation also made in cells exposed to Topoisomerase I inhibitors during replication 

[43]. In agreement with this finding, purified recombinant MRN complexes and DNA-PK 

often associate with the same DNA ends in vitro, observed using a single-molecule platform 

for DNA binding and resection [14,36]. Mre11 was identified as a binding partner for 

Ku in a recent screen of the Ku interactome [44], reminiscent of Mre11-Ku interactions 

previously observed in yeast [45]. DNA-PK also phosphorylates the ATM protein kinase, an 

enzyme that binds to the MRN complex and is recruited via MRN to DNA ends [46], and 

ATM phosphorylates and regulates DNA-PK [47]. These observations suggest co-occupancy 

of MRN and Ku as these complexes are the DNA-binding components of ATM and DNA-

PKcs, respectively.

Lastly, Ku is enriched at DSB sites in the absence of Mre11 or CtIP(Ctp1/Sae2), including 

enzymatically induced DSBs in fission yeast and single-ended break sites generated during 

replication in mammalian cells [25,48]. Importantly, loss of the nuclease activity of Mre11 

was shown in both cases to have similar effects on Ku occupancy compared to loss of the 

protein, therefore Mre11 nuclease activity is inferred to remove the Ku protein from DNA 

ends in wild-type cells.

In agreement with the idea of MRN/CtIP physically removing Ku from DNA ends, loss 

of Ku and DNA-PK from ends was observed with the addition of MRN/CtIP using the 

DNA curtains single-molecule platform [14,36]. In ensemble assays with recombinant 

human MRN, CtIP, and DNA-PK, the site of MRN cleavage of DNA is approximately 

45 nucleotides from the end and absolutely requires the presence of DNA-PKcs as well as 

Ku [14]. Thus, the presence of DNA-PK promotes the initiating steps of DNA end resection 

by MRN and CtIP.

Paull Page 3

Curr Opin Genet Dev. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In reconstituted assays with purified MRN, CtIP, and DNA-PK, MRN-catalyzed nicking of 

the DNA on the 5ʹ strand is significantly more efficient than simultaneous cuts on both 

strands, suggesting that single-strand processing is possible and perhaps even a preferred 

mechanism. Results in fission yeast showed that limited resection of Ku-bound DSBs could 

occur under conditions of Mre11 nuclease deficiency or Ctp1 loss, such that RPA-bound 

single-stranded DNA is produced adjacent to a (presumably) double-stranded DNA end 

bound by Ku [25]. This type of single-strand gap formation was initially shown to occur via 

the endonuclease and exonuclease activities of the MRX complex in budding yeast at sites of 

Spo11 covalent DSBs [49], consistent with the idea that this is an evolutionarily conserved 

function of the complex.

Taken together, these observations lead to a view of DSB repair decision-making in 

mammalian cells that is fundamentally different from a simple competition model and 

has previously been proposed in varying ways as a NHEJ-first scenario [7–9,50]. In 

this sequential model (Figure 2B), NHEJ-related factors associate with DNA ends first 

and promote end-joining if the ends are compatible. If NHEJ is unsuccessful, DNA-PK 

complexes become long-lived on the ends, promoting the binding and processing step of 

resection by MRN and CtIP. Since DNA-PK is an essential component of this reaction, 

the process is necessarily a physical transfer from NHEJ to HR pathways that is enforced 

by the fact that MRN in collaboration with phosphorylated CtIP appears to be the only 

“key” that opens the “lock” generated by DNA-PK on ends. Recent mechanistic modeling 

of DSB repair using a meta-analysis of experimental data also supports the idea of a 

“entwined relationship” between NHEJ and HR rather than simple competition scenarios 

[51]. Observations that correlate the complexity of DSB ends with the efficiency of resection 

[52] also are consistent with this model, since the presence of adducts or unligatable ends 

reduces the likelihood of successful NHEJ.

A sequential model may also be attractive as a framework for understanding DNA end 

processing events during NHEJ as well as alternative NHEJ (alt-NHEJ), where limited 

deletions of DNA at the ends (<20 nt) facilitate end joining, often utilizing microhomologies 

at the breakpoints [8]. The Artemis endonuclease is generally considered to be the primary 

nuclease facilitating NHEJ, although the MRN complex and ATM have also been shown 

to be required for processing and joining of DNA ends through an Artemis-dependent 

subpathway of NHEJ that is responsible for repair of approximately 10% of radiation-

induced DSBs [53]. The MRN complex was also found to bind to and promote the activity 

of ligase III/XRCC1, a complex that functions in alt-NHEJ when the major NHEJ pathway 

is inactive [54]. It is conceivable that these pathways may be promoted by MRN at DNA-

PK-bound ends when classical NHEJ is unsuccessful.

The role of DNA-PKcs catalytic activity

Unlike ATM, DNA-PK has relatively few verified protein targets in mammalian 

cells; however, DNA-PKcs autophosphorylation on conserved clusters of sites and 

phosphorylation of Ku70 definitely occur in cells and have important consequences [19,55]. 

These phosphorylation events lead to conformational changes that are essential for the 

process of NHEJ but also ultimately result in the disassociation of DNA-PKcs and Ku from 
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DNA [56–61]. Inhibition of DNA-PK kinase activity with chemical inhibitors promotes 

higher levels of DNA end resection and homologous recombination [33,62,63], consistent 

with the idea that blocking release of DNA-PK from DNA leads to a stable, perhaps 

irreversible, complex that promotes MRN/CtIP activity. Other results using catalytic mutants 

of DNA-PKcs also show that the presence of the mutant enzyme induces levels of HR 

that are significantly higher than in the absence of DNA-PKcs [64]. This is an important 

finding since NHEJ is equivalently blocked in both the absence of DNA-PKcs and with 

expression of the mutant kinase yet higher HR is only seen with the protein present, 

indicating an important pro-resection role for the catalytically inactive protein. It should be 

noted, however, that other studies utilizing different mutants and other chemical inhibitors 

showed contradictory results [52,65,66], so the picture is not entirely clear.

Catalytic mutants of the DNA damage-related PI-3-like kinases ATM, DNA-PKcs, and ATR 

generally have very different biological effects compared to complete loss of the enzymes 

[67]. DNA-PKcs catalytic mutants for instance cannot sustain embryonic viability in mice, 

despite the mild, immune system-specific phenotype of a DNA-PKcs deletion in the same 

organism, and deletion of Ku from DNA-PKcs kinase-deficient mice rescues this lethality 

[59].

Conclusions and further questions

The recent insights into mechanisms of DSB pathway decisions in mammalian cells suggest 

a sequential hand-off model as an alternative to the simple competition model usually 

depicted in the literature (Figure 2). However, many questions remain about the details of 

this process as it occurs in the context of living cells.

What are the patterns of single-strand or double-strand processing by MRN at sites of 

DNA-PK binding and how do these change with cell cycle phase? A modified ChIP assay 

was developed to isolate small fragments of DNA bound by DNA-PK that are released from 

chromatin by MRN (“Gentle Lysis and Size Selection”“ or GLASS-ChIP)[14], but it is not 

yet clear what the patterns are genome-wide and how prevalent or extensive gap formation 

is.

What happens in organisms lacking DNA-PKcs? Phylogenetic analysis of DNA-PKcs 

evolution shows that there are orthologs in a broad range of eukaryotes [68], although 

several commonly used model organisms, e.g. S. cerevisiae, S. pombe, D. melanogaster, C. 
elegans, lack an obvious DNA-PKcs enzyme. Ku antagonizes resection and HR pathways in 

budding and fission yeasts as described above, and in vitro experiments with budding yeast 

MRX have shown that Ku as well as other proteins can act as protein blocks that promote 

Mre11 endonucleolytic activity [69]. Whether this block occurs in the same way in other 

organisms is not clear, and whether other proteins functionally substitute for DNA-PKcs in 

these cases is not known. The relationship between the MRX complex and NHEJ factors is 

different in budding yeast compared to mammalian cells since MRX is required for efficient 

NHEJ in S. cerevisiae [45,70–73]. This physical association and functional relationship 

between MRX and NHEJ factors in budding yeast even led to an early suggestion that MRX 

may play the role of DNA-PKcs in yeast [72]. It is possible that Mre11-Rad50 complexes 
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have evolved to work cooperatively and in direct association with Ku, consistent with the 

observation that Rad50 (SbcC) acts in the same repair pathway as bacterial Ku in B. subtilis 
[74]. From this point of view, it may be useful to entertain the idea of Ku and MRN(X) as a 

functional unit, with repair outcomes determined by levels of each complex and the structure 

of the ends.

An important question that remains to be answered is: what determines the timing of MRN/

CtIP-mediated processing of DNA-PK-bound ends? The appearance of “toxic NHEJ” events 

at single-ended double-strand breaks and observations of enhanced NHEJ in ATM-deficient 

cells suggests that ATM plays a major role in orchestrating end processing and restricting 

NHEJ [75,76]. The critical ATM-dependent events are not yet clear, however, and it is 

not known if there is a conformational change in DNA-PK or other proteins on the ends 

that initiate the MRN processing. The phosphorylation of DNA-PKcs by ATM [47] could 

conceivably be part of this regulation.

Lastly, what is the relationship between transcription and the interplay between MRN and 

Ku at DNA ends? Many recent studies suggest that the formation of RNA-DNA hybrids 

have important effects on resection and HR efficiency and that transcription affects the 

occupancy of MRN at DNA ends [77–84]. MRN was also recently shown to associate 

directly with sites of RNA polymerase II binding in human cells [85].We know that 

transcription generally promotes resection and HR but the mechanisms and involvement 

of MRN in this process are not fully elucidated.

Answering these questions, attaining structures of the relevant multi-component complexes 

on DNA, and determining how the many chromatin-bound factors that influence MRN and 

Ku function are acting in these pathways will be essential for a mechanistic understanding of 

DSB repair decisions.
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Figure 1. DNA double-strand break repair pathways.
In mammalian cells, repair of DNA double-strand breaks occur via non-homologous end 

joining during all cell cycle phases and, depending on the structure of the ends, can 

generate small deletions or insertions (green) at the junction. In S and G2 phases of 

the cell cycle, resection of 5′ strands is much more efficient than in G1 or G0 phase. 

Removal of the 5′ strand generates a long, single-stranded 3′ end which is used for strand 

invasion into unbroken sister chromatids or homologous duplexes. One possible outcome 

is the formation of a double-Holliday junction and resolution as shown. Resection can also 

generate intermediates that are used in single-strand annealing, and resection-dependent 

DNA synthesis can also generate 3′ single-stranded ends that are joined by synthesis-

dependent strand annealing. In S phase, lesions in the DNA template can produce single-

ended DNA breaks which can be resolved by sister chromatid-mediated strand switching 

or by strand invasion during break-induced replication from a homologous template as 

shown (right). Single-ended breaks can also produce misrepair events such as translocations, 

insertions, and genome rearrangements.
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Figure 2. Competition versus Sequential models of DNA double-strand break repair.
In the simple competition model (A), NHEJ and HR pathways are shown as mutually 

exclusive, with the initial binding of DNA-PK or MRN/CtIP determining pathway 

outcomes. Binding of DNA-PK leads to recruitment of NHEJ factors and resolution through 

ligation, whereas association of MRN and CtIP generate the initial stages of resection 

followed by long-range resection, RPA association (not shown), Rad51 filament formation, 

and resolution by HR. For simplicity, DNA-PK is shown only as the holoenzyme (DNA-

PKcs with Ku) here. In the sequential model (B), essentially all ends are bound by DNA-

PK, with recruitment of NHEJ factors and resolution by ligation occurring when ends are 

compatible. In this model, failure to resolve (or perhaps failure to productively align) ends 

by NHEJ leads to the physical association of MRN and CtIP with these DNA-PK-bound 

breaks, promoting endonucleolytic processing of the ends by MRN, gap formation by 3′ 
to 5′ exonuclease activity, or double-strand processing. Long-range nuclease recruitment 

promotes the formation of 3′ single-strands which are subsequently bound by Rad51 and 

resolved by HR.
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