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Abstract

RNA editing exerts critical impacts on numerous biological processes. While millions of RNA 

editings have been identified in humans, much more are expected to be discovered. In this 

work, we constructed Convolutional Neural Network (CNN) models to predict human RNA 

editing events in both Alu regions and non-Alu regions. With a validation dataset resulting from 

CRISPR/Cas9 knockout of the ADAR1 enzyme, the validation accuracies reached 99.5% and 

93.6% for Alu and non-Alu regions, respectively. We ported our CNN models in a web service 

named EditPredict. EditPredict not only works on reference genome sequences but can also 

take into consideration single nucleotide variants in personal genomes. In addition to the human 

genome, EditPredict tackles other model organisms including bumblebee, fruitfly, mouse, and 

squid genomes. EditPredict can be used stand-alone to predict novel RNA editing and it can be 

used to assist in filtering for candidate RNA editing detected from RNA-Seq data.

*Corresponding Authors.
Authors’ contributions
JW, HY, OO, JL, and QS performed the analysis and constructed the web server. YG, ZYY, DCS and JT wrote the manuscript. SN and 
RB conducted the RNA-Seq and ADAR1 KO experiement.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Availability of data and materials
EditPredict web application is freely accessible to the public at http://www.innovebioinfo.com/Sequencing_Analysis/RNAediting/
RNA1.php. The programming code to implement EditPredict is publicized at GitHub at https://github.com/wjd198605/EditPredict.
The RNA-Seq data on ADAR1 KO with CRISPR/CAS9 has been submitted to NIH under BioProject number PRJNA604003.

Competing interests
Each co-author has no financial and non-financial competing interests.

Ethics approval
NA.

HHS Public Access
Author manuscript
Genomics. Author manuscript; available in PMC 2022 November 01.

Published in final edited form as:
Genomics. 2021 November ; 113(6): 3864–3871. doi:10.1016/j.ygeno.2021.09.016.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.innovebioinfo.com/Sequencing_Analysis/RNAediting/RNA1.php
http://www.innovebioinfo.com/Sequencing_Analysis/RNAediting/RNA1.php
https://github.com/wjd198605/EditPredict


INTRODUCTION

In humans, RNA editing is a common molecular process that causes nucleotide substitutions 

in RNA as compared to the corresponding DNA sequence. Of all 12 possible types of single-

base substitutions, adenosine-to-inosine (A-to-I) RNA editing is the primary canonical RNA 

editing type, comprising over 95% of all known RNA editing events. Functional impacts 

of RNA editing are increasingly appreciated, as studies have shown that RNA editing can 

alter protein products [1], affect drug sensitivity [2], and be associated with prognosis [3]. 

Through high-throughput genomic research efforts during the last decade, a few million 

human RNA editing events have been curated in dedicated databases such as REDIportal 

[4] and DARNED [5]. Because RNA editing takes effect at the co-transcriptional or 

post-transcriptional level, the identity and quantity of RNA editing events in differential 

spatiotemporal contexts are different. The complete landscape of RNA editing in the human 

genome still is not fully characterized [6].

Mass identification of human RNA editing events began with the rapidly increasing use 

of high throughput sequencing (HTS) technologies [7]. Consequently, typical RNA editing 

identification strategies inevitably involve comparing sequencing data from paired RNA 

and DNA samples. Approaches have also been developed for when DNA sequencing data 

is absent, which heavily rely on post-processing filters [8]. Candidate RNA editing sites 

screened by these HTS dependent pipelines must go through gold standard validation by 

RT-PCR or Sanger Sequencing. Unfortunately, HTS data are subject to various types of 

bias and noise [8], which typically lead to substantial inflation of false-positive discoveries 

in the final candidates of RNA editing. For instance, controversies [8] surrounded the 

2011 impressive report of “Widespread RNA and DNA sequence differences in the human 

transcriptome,” and many groups attributed non-canonical editing events exclusively to 

sequencing biases and bioinformatics flaws [9, 10].

Given the imperfect quality of sequencing-detected RNA editing, an RNA editing prediction 

algorithm independent of sequencing data may substantially reduce the false positive rate 

of a candidate list and alleviate the overall financial and labor cost of RNA editing studies. 

Like other genomic features, RNA editing sites are probably dependent on proximal DNA 

context to some extent; indeed, sporadic studies [11, 12] have leveraged flanking nucleotides 

to improve sequencing data-independent prediction of RNA-editing. A Convolutional Neural 

Network (CNN) was wrapped in a method DeepRed [13] to identify RNA editing events 

from RNA-Seq data, adding to successful Deep Learning applications on genomic sequence 

features such as splicing junctions and transcription factor binding targets [14–16].

In this study, we developed EditPredict, a Deep Learning solution of RNA editing prediction 

from genome DNA sequence. Specifically, we utilized CNN to model flanking DNA 

sequences of known A-to-I RNA editing events, with consideration of alternate flanking 

directions and variant sequence lengths. Other than working with reference genome 

sequences, EditPredict can take in individualized Single-Nucleotide Variants (SNVs) to 

make dynamic RNA-editing prediction with variable sequence context. EditPredict does 

not involve HTS data in either the training or the application process, thus rendering itself 

a completely parallel workflow in complement to sequencing-based pipelines. EditPredict 
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empowers researchers to gain a good estimation of RNA-editing propensity at any adenosine 

position in the whole genome, prior to an actual HTS experiment that entails tedious sample 

collection, library preparation, sequencing, and HTS data processing. While being designed 

as a self-contained tool independent of HTS data, EditPredict produces results that can be 

checked against HTS output.

Our resultant models have been implemented as an online tool, EditPredict. The default 

application model facilitates users to comprehend the RNA-editing propensity of interested 

genomic sites in the human reference genome. When given an optional input in Variant Call 

Format (VCF) file, it makes personalized RNA-editing inferences for a particular subject 

characterized by individualized genomic variants. In addition to humans, EditPredict can 

also tackle genome sequences of bumblebee, fruit fly, mouse, and squid.

METHODS

Flanking sequences of RNA-editing sites and non-edited sites used for training CNN 
models

We utilized a vast positive dataset comprising all known RNA-editing sites (~4.67 million) 

curated in REDIportal [4]. Of the 4.67 million reported RNA editing sites, around 10% are 

non-Alu RNA editing. The point positions were converted to DNA sequences by extracting 

neighboring nucleotides in either or both directions. Precisely, three direction modes were 

considered: upstream, downstream, and bi-direction. If the RNA editing is on the reverse 

strain, sequence from the reverse strand was extracted. Eight sequence length values were 

tested: 10, 30, 50, 70, 90, 100, 150, and 200 nucleotides. Of note, for the bi-directional 

mode, the actual sequence lengths were magnified to 2*l+1, with l taken from the foresaid 

series. It is for narrative ease that we refer to the sequences under bi-directional mode with 

the corresponding length under a uni-directional mode.

Additionally, we randomly selected non-edited genomic sites from the human genome and 

extracted their flanking sequences to build negative datasets. The sequence number and 

length of the negative datasets were chosen to match those of the positive datasets with 

the same region type (e.g. Alu, non-Alu, coding, etc.) and were at least 200 base pairs 

away from known RNA editing sites. Millions of positive sequences and negative sequences 

were first converted to binary data vectors in four series through the One-Hot Encoding 

process [17], with each series corresponding to one of the four possible nucleotide variants 

(A/T/C/G). The value of 1 affirmed the identity of a particular nucleotide variant at the 

particular position, while a value of 0 negated that identity.

In addition to the primary focus of humans, we also trained CNN models for another four 

species. Mouse (8,823 A-to-I sites) and fruitfly (5,025 A-to-I sites) RNA editing data were 

downloaded from RADAR [18]. Bumblebee (65,534 A-to-I sites) RNA editing sites were 

obtained from the publication by Porath et al. [19]. Squid (62,250 A-to-I sites) RNA editing 

sites were obtained from the publication by Liscovitch-Brauer et al. [20]. Negative genomic 

sequences in these additional species were extracted similarly as we did in the human 

genome.
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CNN architecture and parameters

In the preliminary design phase, we tested recurrent neural networks (RNN) for RNA 

editing prediction. It turned out that the performance of RNN models was inferior to CNN 

models. So, the final classifiers used deep CNN networks to infer RNA-editing from One-

Hot-encoded input sequences (Figure 1). The CNN models consist of multiple convolutional 

layers following the input layer and two traditional fully connected layers right before 

the output layer. Pooling operations, batch normalization, and neuron dropout (rate=0.25) 

were implemented. For the activation function of hidden layers, we chose the rectified 

linear unit (ReLU), defined as ReLU(x) = max(0, x), with x being the input to a neuron. 

For the output layer, logistic regression for binary classification was applied to derive the 

prediction score (x) = 1
1 + e−x , where x denoted the input to an output neuron and s(x) the 

prediction score. The loss function for iterative optimization was set as cross-entropy loss, 

defined the entropy between a true distribution p and the estimated class probabilities q, as 

H(p, q) = − ∑x (p(x)) log q(x). where x takes value among the possible class labels (in our 

case, 0 and 1).

To accommodate varied input sequence lengths, we designed variant CNN architectures 

with differences in kernel size, pooling size, and possibly other parameters. A representative 

CNN architecture that handles bi-directional 50-nucleotide flanking sequences (i.e., 101-

nucleotide full length) is illustrated in Figure 1 (A and B), and its more technical details are 

provided in Supplementary Table 1.

CNN models were trained with the assistance of Python library Keras. We took advantage 

of GPU processing with an NVIDIA 1080TI. The most cost-effective model, entitled 

“EditPredict,” was put online through PHP scripts for user application. EditPredict is 

capable of inferring RNA-editing propensity for any user-interested positions in the 

reference genome, and can also parse an optional input of individualized genomic variant 

set to achieve personalized inference of RNA-editing propensity for a particular individual 

(Figure 1C).

Evaluation of CNN prediction performance

Four prediction metrics were calculated to measure the performance of the initially trained 

CNN model: Precision, Recall, F1 score, and Accuracy. These metrics are defined in Eq. 

1–4, where TP, FP, TN, FN represent the numbers of true positive (correctly predicted 

RNA-editing sites), false positive (non-edited sites incorrectly predicted as editing sites), 

true negative (non-edited sites predicted as non-edited), and false negative (RNA-editing 

sites predicted as non-edited), respectively.

Precision = TP /(Inferred Positives) (Equation 1)

Recall = TP /(TP + FN) (Equation 2)
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F1 = 2 ∗ Precision ∗ Recall
Precision + Recall (Equation 3)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (Equation 4)

Validation of CNN Model

An independent validation experiment was conducted using RNA-Seq. CRISPR/Cas9 

experiments were carried out to the knockout of the primary Adenosine Deaminase acting 

on RNA (ADAR1), the enzyme responsible for the A-to-I RNA editing reaction. Jurkat cells 

(4x106) were electroporated using the NEON transfection system at 1,350 volts for 10 ms 

and 3 pulses. Electroporation of cells introduced HiFi Cas9 (IDT 1081061) complexes with 

tracRNA-550 (IDT 1075927) and gsRNA targeting the PAM sequence “AGG” starting at 

chr1: 154,601,042 (HG38). Cells were harvested at 48 hours post electroporation for RNA 

isolation and collection. Total RNA was extracted from fresh frozen tissues (30mg) using the 

RNeasy Universal Kit (QIAGEN) according to the manufacturer’s instructions. Synthesis 

of cDNA and library preparation was performed using the SMARTer Universal Low Input 

RNA Kit for Sequencing (Clontech) and the Ion Plus Fragment Library Kit (ThermoFisher) 

as previously described [21–23]. Sequencing was performed using the Ion Proton S5/XL 

systems (Life Technologies) in the Analytical and Translational Genomics Shared Resource 

at the University of New Mexico Comprehensive Cancer Center.

To filter out potential false positives in our data sets, we included nucleotide sites that 

had >20 read coverage in both samples, including the replicates. Only sites occurring at a 

frequency of >0.10 were reported. Putative RNA-editing sites were identified by comparing 

the editing sites between wild-type Jurkat cells and ADAR1 knockout Jurkat cells. A 

second ADAR1 KO RNA-Seq data of HEK293T cells were downloaded from Short Read 

Archive (GSE99249). The RNA-Seq data were processed following GATK’s RNA-Seq 

variant calling best practice protocols to produce binary alignment map files (BAM). A-to-I 

RNA editings were inferred by comparing HEK293T cells BAMs with and without ADAR1, 

knockout using REDItools [24].

RESULTS

Model performance in cross-validation

A positive set of RNA editing sites (4.67 million, Alu and non-Alu combined) and a negative 

set (also 4.67 million) of non-edited sites were used for training the CNN model. The 

complete model design and CNN architecture are illustrated in Figure 1. The first set of 

models we trained were without distinguishing Alu and non-Alu RNA editing. We employed 

ten-fold cross-validation to evaluate the performance of the various CNN models dependent 

on alternate modes and length parameters. As shown in the result summary (Figure 2A), our 

CNN models achieved good classification performance, returning accuracy, precision, recall, 

and F1 score as high as 95-97%. For up to 50 nucleotides, the sequence length showed a 

positive effect on model performance: the elongation of sequence length from 10 nucleotides 

to 50 nucleotides boosted the accuracy by more than 10% for uni-directional models, 
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and by 6% for the bi-directional model. The bi-directional model generally outperformed 

the counterpart uni-directional models by 2%~10% increased accuracy. The bi-directional 

model on flanking sequences of length 100-nucleotide (50 nucleotides in both downstream 

and upstream directions) returned an accuracy of 96.1%, which exceeded 100-nucleotide 

uni-directional models by 3% accuracy. Increasing sequence length beyond 100 nucleotides 

did not yield a substantial performance gain. The results for RNA editing CNN models for 

other non-human species are available in Supplementary Table 2.

Following a prior research example [25], we investigated the CNN models’ robustness 

against wrong training data. For this sake, we replaced a moderate portion (5%-20%) of 

the 4.67 RNA-editing sites with random genomic sites and built new models resulting from 

the perturbed data. With CNN models trained for Alu and non-Alu sites separately (details 

below), cross-validation accuracies decreased from 92~95% to 78~80% when the training 

data contained up to 20% false positive datapoints (Figure 2B). This label-perturbation 

experiment reassured us that a moderate noise level in training data does not impede the 

CNN performance significantly, which is consistent with the earlier investigation conclusion 

[25].

Alu vs. non-Alu RNA editing models

It is well known that A-to-I RNA editing occurs mostly in Alu elements [26]. The location 

of A-to-I RNA editing is also not random within the Alu elements, with noticeable peak 

patterns (Figure 3A). There are 1,131,306 Alu elements in the human genome, and 78.1% 

of Alu elements have a length between 250 nucleotides and 340 nucleotides. These Alu 

elements of more regular length were enrolled to reveal a noticeable spatial pattern of 

RNA editing occurrence (Figure 3A). The full length of each Alu element was divided into 

100 bins, and we counted the number of RNA edits falling into each bin. The bin-wise 

occurrence of RNA edits across all Alu elements was divided by the number of analyzed Alu 

elements, thus giving rise to an RNA editing rate of each bin (Figure 3A).

The overwhelming enrichment of A-to-I RNA editing in Alu elements and the spatial pattern 

of A-to-I RNA editing within Alu elements suggest that our overall CNN model could be 

identifying a pattern specific to Alu elements. To remove the potential confounding effect of 

Alu/non-Alu distinction, we divided the training set into Alu and non-Alu set and retrained 

the models. The Alu RNA editing model achieved an accuracy of 99.6% and the non-Alu 

model achieved an accuracy of 94.1%. Applying the human Alu model on human non-Alu 

data yielded an accuracy of around 50%. Cross-species application of the human Alu model 

on mouse RNA editing data which is considered mostly Alu-free RNA editing sites also 

yielded an accuracy of around 50%. These results suggest that Alu model and non-Alu 

model captured distinct flanking sequence patterns of two disparate types of RNA-editing 

sites: The Alu model captured the Alu sequence patterns, and non-Alu model captured the 

sequence patterns for non-Alu RNA editing sites.

To learn the motif which led to the positive prediction of RNA editing, we tried to visualize 

filters and feature maps in our CNN models. Specifically, we inspected and visualized the 

two-dimensional filters and the activation maps output by convolutional layers to understand 

exact features for a given input sequence. We retrieved filter weights and feature maps 
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for the first convolutional layer. Then, we backtracked to the input sequence which is 

corresponding to the feature maps. The size of the sequence motif was determined by 

the filter size of the CNN model. The top motifs, as ranked by the first-layer edge 

weight of the CNN model, are displayed in Figure 3B for upstream, downstream, and 

bi-directional models, respectively. We utilized R package Biostrings [27] to performed 

global Needleman-Wunsch alignment between the current six motifs and 13 previous motifs 

[12], and displayed the best alignment pattern for each current motif (Figure 3B). These six 

current motifs were congruent with three of the previous 13 motifs (#4, #6, and #7 in Table 

1 of the previous study [12]), so our new results have helped to narrow down the valid RNA 

editing motifs.

We applied EditPredict to predict the RNA edit propensity for the entire chromosome 

2 of 121,450,757 positions. Overall, 5% nucleotides of chromosome 2 were predicted 

to be potential RNA editing sites; this percentage far exceeds a baseline editing rate of 

0.16% obtained by dividing the total number of known RNA-editing events (4.67 million) 

by nucleotide volume of the human reference genome (3 billion). By overlaying known 

Alu elements, known A-to-I RNA editing, and predicted A-to-I RNA editing sites, clear 

concordance can be observed (Figure 3C).

Validations

Adenosine Deaminases acting on RNA (ADAR) are responsible for A-to-I RNA editing, 

consisting of two major isoforms ADAR1 and ADAR2 in mammals. We conducted an 

independent validation experiment for the trained CNN models using RNA-Seq. Knockout 

of ADAR1 in Jurkat cells was performed with CRISPR/Cas9 (Figure 4A). The knockout 

of ADAR1 was verified by western blot (Figure 4B). RNA editing sites were identified 

by comparing RNA-Seq data pre- and post-ADAR1 knockout. By comparing RNA-Seq 

data pre and post ADAR1 knockout, 5,372 novel RNA-editing sites (5,076 Alu and 296 

non-Alu) outside the scope of the training dataset were identified. These 5,372 novel RNA 

editing sites and the same amount of novel negative sites were used as the validation dataset 

for testing trained CNN models. Receiver operating characteristic curves show that the 

bidirectional models performed the best (Figure 4C). Alu bi-directional model achieved an 

overall accuracy of 99.4% and non-Alu bi-directional model achieved an overall accuracy of 

95.2%. These two models also obtained respectable sensitivity and specificity (Figure 4D).

Another independent novel RNA editing dataset was obtained by analyzing RNA-Seq data 

from HEK293T (GSE99249) cells pre and post ADKAR1 knockout which identified 889 

novel Alu and 100 novel non-Alu RNA editing sites [28]. Validation on these data produced 

accuracy 99.0% and 91.4% for Alu and non-Alu CNN bidirectional models, respectively. All 

models tested in the validation phase were constructed from 101-nucleotide long sequences.

Comparison with Other Tools

Many other RNA editing detection tools have been developed previously, such as RNAeditor 

[29], REDItools [24], etc. These tools detect RNA editing from sequencing data and are 

fundamentally different from EditPredict which predicts the binary RNA editing outcome 

from the reference genome. EditPredict should be used as a supplement to existing 
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RNA editing detection tools. After novel RNA editing sites are detected from sequencing 

data, EditPredict can be applied to select top candidate for further wetlab validation or 

downstream analysis. DeepRed [13] is another tool that uses flanking sequences to predict 

RNA editing. There is one major technical difference between EditPredict and DeepRed. 

DeepRed is a deep learning-based hybrid framework integrated with ensemble learning. It 

combined multiple ensemble Deep Neural Networks (DNNs) by using an averaging method. 

EditPredict is based on deep learning model using CNN which can take the advantage of 

inherent properties of nucleotide sequence. DNN does not see any order in their inputs. If 

the nucleotide sequence is cut into pieces and reorder, DNN may not be able to recognize 

it. On the other hand, CNN takes the advantage of local spatial coherence of the sequence 

and can reduce the number of operations needed to process input by using convolution on 

patches of adjacent pixels. CNN contains pooling layers, which downscale the input and 

thus allow faster computation.

In addition to the technical difference, EditPredict has several notable advantages. DeepRed 

applied a bootstrap resampling method to avoid class imbalance problem. EditPredict is 

trained with 4.6 million real RNA editing data. EditPredict also identifies different flanking 

patterns between Alu and non-Alu RNA editing and employs a personalized genome 

approach. Furthermore, DeepRed was developed with MATLAB commercial software. 

EditPredict is developed in Python and freely usable online without any complication due 

to installation and software dependencies. To compare the performance between EditPredict 

and DeepRed, we used RNA editing derived from U87 cell. The same data were used in 

the original DeepRed study. DeepRed achieved an accuracy of 93.23%, while EditPredict 

achieved an accuracy of 97.89%. The complete comparison result including precision, recall, 

and F1 statistics are available in Supplementary Table 3.

EditPredict Implementation

Based on the cross-validation and independent validation results, the bi-directional 100-

nucleotide model achieved an optimal balance between accuracy and runtime. EditPredict 

is capable of inferring RNA-editing propensity for any user-interested positions in the 

human reference genome (GRCh38 and GRCh37), and can also parse an optional input 

of individualized genomic variant set to achieve personalized inference of RNA-editing 

propensity for a personal genome. EditPredict is also equipped with CNN models for 

bumblebee, fruity fly, mouse, and squid. The parameters of models populated in EditPredict 

for all five species are detailed in Supplementary Table 1. EditPredict is developed using a 

combination of Python, R, PHP, JavaScript, and HTML. CNN models were trained with the 

assistance of Python library Keras by taking advantage of GPU processing with an NVIDIA 

1080TI. The online server can make predictions for up to 300 candidate genomic positions 

in less than two minutes, but it may take an appreciably longer time when the position 

total number goes beyond a thousand. If the user invokes the personalized inference with 

a custom VCF file, the computational time normally increases by 20% compared to the 

counterpart job session without a VCF input.
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DISCUSSION

So far, there have been many successful applications of deep learning algorithms in genomic 

sequence analyses. Through this work, we developed yet another deep learning application 

EditPredict to add to this expanding research direction, which was proved to predict editable 

RNA-editing sites with an accuracy of ~95% in general. We implemented the validated 

cost-effective CNN model in a user-friendly online tool, where users can employ our server 

to predict RNA editing propensity for any adenosine sites within five genomes: human, 

bumblebee, fruit fly, mouse, and squid. Of note, for humans, both the reference genome or a 

particular personal genome defined by a set of individualized genomic variants.

Here, through ten-fold cross-validation of 4.67 million RNA editing sites and two 

independent tests of novel editing sites, we proved that sequence patterns hidden in RNA 

editing flanking sequences can be modeled by CNN and that the established model can 

reach an accuracy of ~95% in general. Our analyses also show that Alu and non-Alu 

RNA editing have different sequence patterns. The models constructed for Alu did not 

perform well for non-Alu RNA editing data, and vise versa. Also, models did not perform 

well when used cross-species, which suggests sequence pattern uniqueness within each 

species. In parallel to the study of RNA editing sites, we had tried predicting expression 

quantitative loci (eQTL) with a similar CNN approach. With 2.6 million sequences flanking 

GTEx eQTLs [30] as a positive dataset, a CNN model configured similarly to the one of 

EditPredict attained a 60% accuracy at best – not much better than a random coin-flip 

classifier. The unsuccessful trial with eQTL suggests that a sequence pattern permissive for 

accurate prediction is not intrinsic with all genomic features, but it must be embedded 

in RNA-editing sites’ flanking sequences. The CNN model from our tool EditPredict 

was capable of discerning the intricate sequence context pattern shared by general A-to-I 

RNA editing events and thereby precisely discriminating editable Adenosine sites from 

non-editable ones.

EditPredict achieves a comparable performance to the existing tool DeepRed [13], which 

is also built upon Deep Neural Networks. The major difference between EditPredict and 

DeepRed lies in the degree of independence of HTS data. DeepRed trained its classifiers 

on a set of RNA editing sites called ab initio from 64 RNA-Seq samples, and it is expected 

to distinguish probable RNA-editing events from SNVs, a typical output from general 

sequencing data analyses. Our strategy, however, is purely based on genomic sequences, 

which are always accessible through the public human reference genome. At the application 

interface, both DeepRed and EditPredict can accept a set of SNVs as input, but these SNVs 

were interpreted in fundamentally different ways. DeepRed takes these SNVs as candidate 

sites and, by analyzing the flanking sequences retrieved from the reference genome, sets 

out to assess RNA-editing likelihood for each candidate site independently. In contrast, 

EditPredict requires another mandatory input of candidate sites and takes the optional set 

of SNVs as personal alterations in relation to the human reference genome. In this way, the 

flanking sequences fed to EditPredict are tailored to reflect the individualized local context 

of candidate sites, thus allowing a personalized RNA-editing inference for an individual 

genome (Figure 1C).
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While we investigated a wide range of possible length values for flanking sequences [15], 

the pursuit of the optimal tradeoff between performance and computation burden motivated 

us to settle on a full sequence length of 101-nucleotide for the bi-directional mode (50-

nucleotide on each side of the central candidate site). Coincidentally, this sequence length is 

roughly the same length used by DeepBind [15], a well-known Deep Learning application in 

transcription factor binding analysis. The sequence length of 100-nucleotides is apparently 

longer than the corresponding parameter of an earlier logistic regression classifier [12] but 

is only half the size as required by DeepRed. Theoretically, EditPredict should compete 

favorably against DeepRed in terms of computation time.

In the compilation of the positive dataset for CNN training, we have decided to include 

all A-to-I RNA editing sites but none of the other RNA-editing subtypes. This is because 

A-to-I RNA editing events remarkably dominate an RNA editome with a percentage of 

over 95%, and this biological mechanism has been resolved to the most rigorous extent. 

Cytidine-to-uridine changes form another minor yet canonical class of RNA editing, but 

these editing events tend to harbor less functional importance than A-to-I RNA editing sites 

[31]. Given the quantitative and functional advantage of A-to-I RNA editing events, we 

decided to build a CNN model for this class of RNA editing events only. This restricts the 

application of EditPredict to A-to-I RNA editing events only. In the future, it may be feasible 

to extend EditPredict with additional models tailored towards other classes of RNA-editing 

events or other genomic features, as long as we obtain sufficient positive examples with 

satisfactory experimental evidence.

Our study has limitations. For example, we did not attempt to refine the enormous RNA-

editing sites curated by REDIportal, but have included all 4.67 million RNA-editing sites as 

positive examples in our CNN model. It is possible that a certain number of false positives 

were present in our training data. Additionally, RNA editing has different efficiencies. 

Such efficiency is not captured by our model. We treated RNA editing as a binary event 

for simplicity. Furthermore, in our knockout experiment, we only knocked out ADAR1 
instead of both ADAR1 and ADAR2. While ADAR1 and ADAR2 work similarly, they 

could have slightly different recognition sequence patterns. By only knocking out ADAR1, 

we didn’t independently validate ADAR2 RNA editing. However, the high performance of 

cross-validation and independent ADAR1 validation is a good indication of overall model 

performance which includes ADAR2 induced RNA editing. Our positive results of CNN 

predicting RNA editing sites add to the growing successes of Deep Learning applications 

on various genomic sequence features such as splicing junctions and transcription factor 

binding targets. Despite its optimistic performance estimation, EditPredict is a sequence-

only, sequencing-independent tool, which is not purported to replace sequencing technology 

as the definitive method for detecting RNA editing events. EditPredict can be used stand-

alone to predict novel RNA editing sites as most genomic prediction tools. However, it can 

be applied to enhance RNA editing detection by offering an independent layer of confidence 

filtering. For example, RNA editing sites detected by other RNA editing detection tools from 

RNA-Seq data, can be compared to EditPredict results and ranked by EditPredict’s editing 

probability to select most likely true RNA editing sites for downstream analysis.
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• Using Convolutional Neural Network, we trained a human RNA editing 

prediction model based on flanking sequence.

• The model was validated in two independent datasets.

• The same strategy was used to train four non-human species.

• The models were implemented into an online application.
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Figure 1. EditPredict model schema. The two left panels with light grey shading correspond to 
the training (top) and application (bottom) processes, respectively.
A. Approximately, flanking sequences of ~4.6 million known RNA editing sites were 

extracted as the positive set, and matched negative sites were constructed. One-hot encoding 

for a segment of 11 nucleotides was illustrated. B. The CNN architecture handles bi-

directional long flanking sequences of potential A-to-I editing sites. The number of layers 

and the number of neurons per layer are depicted. The convolution process has been omitted 

for clarity. C. An example of a personalized genome approach. Multiple flanking sequences 

for a real subject may be generated based on mutation and INDELs.
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Figure 2. Performance of various models of RNA editing prediction out of ten-fold cross-
validation.
A, Performance of the overall models (with Alu and non-Alu RNA editing sites combined) 

of various directional modes and handling sequence lengths. “Upstream” and “downstream” 

refer to sequences adjoining the concerned sites in only one direction, while “both sides” 

refer to sequences extended from the central concerned sites bidirectionally. Compared to 

the uni-directional models, the corresponding bi-directional models deal with sequences of a 

roughly doubled length, although they are depicted with the same series of length parameters 

for illustrative symmetry. B, Performance of the Alu/non-Alu models trained on perturbed 

training datasets, where a percentage of positive datapoints were replaced with random 

negative datapoints.

Wang et al. Page 15

Genomics. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. A-to-I RNA editing associations with Alu elements.
A) A-to-I RNA editing site distribution over the span of an Alu segment (normalized to 

100 bins). Hotspot of A-to-I RNA editing can be observed near the boundary (10th & 92th 

bins), and the other peak is near the center point (45th & 57th bins). The precise boundary 

sites have the least likelihood of editing, and the absolute center has a moderate level of 

editing. This figure used data only from the positive strand perspective, thus producing a 

symmetry effect. B) Motifs from upstream, downstream and bi-directional models filters 

with highest weight. Each sequence logo is converted to an oligo nucleotide sequence by 
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taking the nucleotide of the highest probability, and the alignment of the motif sequence 

with the best-hitting previous RNA editing motif is displayed on the top. C) Overlay of Alu 

elements, known A-to-I RNA editing sites, and predicted A-to-I RNA editing sites across 

chromosome 2. Similar peaks location can be observed.
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Figure 4. 
Validation results for CNN RNA editing models. A. Location of the ADAR1 KO with 

CRISPR/Cas9. B. Western blot shows the successful knockout of ADAR1. C. ROC curves 

suggest the excellent performance of CNN Alu and non-Alu models on the independent 

validation set of novel RNA editing sites. Models used 50-nucleotide flanking sequences 

for upstream, downstream, and bi-directional modes. D. Confusion tables display both true 

positive and true negative validation results for both Alu and non-Alu models.
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