
ARTICLE

Convergent use of phosphatidic acid for hepatitis C
virus and SARS-CoV-2 replication organelle
formation
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Double membrane vesicles (DMVs) serve as replication organelles of plus-strand RNA

viruses such as hepatitis C virus (HCV) and SARS-CoV-2. Viral DMVs are morphologically

analogous to DMVs formed during autophagy, but lipids driving their biogenesis are largely

unknown. Here we show that production of the lipid phosphatidic acid (PA) by acylglycer-

olphosphate acyltransferase (AGPAT) 1 and 2 in the ER is important for DMV biogenesis in

viral replication and autophagy. Using DMVs in HCV-replicating cells as model, we found that

AGPATs are recruited to and critically contribute to HCV and SARS-CoV-2 replication and

proper DMV formation. An intracellular PA sensor accumulated at viral DMV formation sites,

consistent with elevated levels of PA in fractions of purified DMVs analyzed by lipidomics.

Apart from AGPATs, PA is generated by alternative pathways and their pharmacological

inhibition also impaired HCV and SARS-CoV-2 replication as well as formation of

autophagosome-like DMVs. These data identify PA as host cell lipid involved in proper

replication organelle formation by HCV and SARS-CoV-2, two phylogenetically disparate

viruses causing very different diseases, i.e. chronic liver disease and COVID-19, respectively.

Host-targeting therapy aiming at PA synthesis pathways might be suitable to attenuate

replication of these viruses.
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Chronic hepatitis C and COVID-19 are major medical pro-
blems. Both diseases are caused by viral infections inflicting a
large number of people and having led to millions of

deaths1,2. Chronic hepatitis C is caused by persistent infection with
the hepatitis C virus (HCV), while COVID-19 is due to acute
infection with the severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2). Both viruses are biologically very distinct e.g. by
having a very narrow tropism and a predominantly persistent course
of infection in the case of HCV, contrasting the rather broad tropism
and acute self-limiting course of infection in the case of SARS-CoV-
2. This biological distinction is reflected by their phylogenetic dis-
tance with HCV belonging to the Flaviviridae and SARS-CoV-2
being a member of the Coronaviridae virus family3. In spite of these
differences, both viruses possess a single strand RNA genome of
positive polarity that is replicated in membranous vesicles in the
cytoplasm of infected cells4,5. These vesicles are induced by viral
proteins, in concert with cellular factors, and composed of two
membrane bilayers, thus corresponding to double-membrane vesi-
cles (DMVs). These DMVs accumulate in infected cells and can be
regarded as viral replication organelle. Viral DMVs have morpho-
logical similarity to autophagosomes6,7, but while autophagy-
induced DMVs serve to engulf cellular content and damaged
organelles for subsequent degradation, viral DMVs create a con-
ducive and protective environment for productive viral RNA
synthesis. For HCV and SARS-CoV-2, DMVs are derived from the
ER8–10 and can be induced by the nonstructural proteins (NS)3, 4A,
4B, 5A and 5B in the case of HCV7 and the viral proteins nsp3-4 in
the case of MERS-CoV and SARS-CoV11,12, alongside with co-opted
host cell proteins and lipids. Here, we show that common host cell
factors are exploited by the phylogenetically distant HCV and SARS-
CoV-2 to build up their cytoplasmic replication organelle.

Results
Identification of AGPATs as critical host cell factors con-
tributing to HCV replication. Using HCV as model to study
DMV biogenesis, we purified DMVs under native conditions and
determined their molecular composition by proteomic profiling
(Fig. 1a, b and Supplementary Fig. 1a). To this end we employed
human hepatoma cells (Huh7) containing a self-replicating HCV
replicon RNA (designated sg4BHA31R13) in which NS4B was
HA-tagged. This RNA replicates autonomously and induces an
extensive array of DMVs that can be isolated by HA-affinity
purification13. Mass spectrometry-based proteomics analysis
identified a total of 1487 proteins significantly enriched in the
NS4B-HA sample relative to the untagged technical negative
control (using SAINT average P-values > 0.95) (Supplementary
Data 1). Label free quantitation (LFQ) revealed a major overlap of
proteins (1542) between the NS4B-HA complex and HCV-naive
ER membranes purified in parallel from Huh7 cells stably
expressing HA-tagged Calnexin (CNX-HA) (Fig. 1b and Sup-
plementary Fig. 1b). Of note, 309 proteins were significantly
enriched in the NS4B-HA sample relative to this ER control with
an over-representation of proteins involved in RNA metabolism,
intracellular vesicle organization and transport as well as endo-
membrane organization (Supplementary Fig. 2).

Given our interest in identifying proteins of relevance for DMV
formation, we selected 139 candidates with a bias for proteins
involved in vesicle transport and biogenesis as well as lipid
metabolism. These candidates were validated with respect to their
role in HCV replication by using RNA interference-based screening
(Fig. 1c and Supplementary Data 2). In this way, we could validate
38 hits as HCV dependency factors. Amongst identified hits were
acylglycerolphosphate acyltransferase (AGPAT) 1 and 2, two
enzymes that catalyze the de novo formation of phosphatidic acid
(PA), a precursor to di- and triacylglycerols as well as all

glycerophospholipids14,15. In addition, PA is involved in signaling
and protein recruitment to membranes and, owing to its small and
highly charged head group, promotes membrane curvature16–18.
Since these properties might be involved in DMV formation, we
focused our subsequent analysis on AGPATs.

AGPATs play crucial roles in lipid homeostasis, because
enzyme-inactivating mutations in AGPAT2 are linked to
congenital generalized lipodystrophy and defects in PA metabo-
lism as well as autophagy are associated with neurological
disorders and chronic obstructive pulmonary disease18,19. More-
over, severe lipodystrophy as well as extreme insulin resistance
and hepatic steatosis have been observed in AGPAT2−/− mice14.
To date, 11 AGPATs have been identified in mammalian cells.
AGPAT1 to 5 preferentially utilize lysophosphatidic acid (LPA)
as an acyl donor while AGPAT6 to 11 preferentially utilize
alternative lysophospholipid substrates or have a preference for
glycerol-3-phosphate. Thus, only AGPAT1 to 5 functions as true
LPA acyltransferases14. To establish which AGPAT family
members are found in NS4B-associated membranes, FLAG-
tagged versions of each of the 5 AGPATs were transiently
expressed in cells containing the HCV replicon sg4BHA31R
(Supplementary Fig. 3a). Pull-down of NS4B-HA revealed
association with AGPAT1 and 2, and to a lesser extent with
AGPAT3, but not with AGPAT4 and 5. In addition, endogenous
AGPAT1 and 2 were detected in NS4B-HA containing mem-
branes isolated from replicon-containing cells (Fig. 1d), whereas
AGPAT 3 was not enriched. Moreover, in HCV-infected cells
AGPAT1 and 2 were recruited to NS4B-containing sites that
most likely correspond to sites of DMV accumulation13 (Fig. 1e).

To validate the role of AGPAT1 and 2 in HCV replication, we
created knock-out (KO) cell pools using CRISPR/Cas9. Although
we observed reduced cell growth of stable double knock-out
(DKO) cells 8 days after transduction of guide RNAs, single KO
cell pools showed no such decrease in cell growth and could be
used for transient knock-out of the other AGPAT gene without
impacting cell viability for up to 8 days after transduction
(Supplementary Fig. 3b). Using this approach, we observed that
AGPAT1/2 DKO impaired lipid droplet formation (Supplemen-
tary Fig. 3c–e) as shown previously20,21, confirming disruption of
AGPAT1/2 function. To monitor the impact of single KO and
AGPAT1/2 DKO on HCV replication, cells were infected with an
HCV reporter virus and viral replication was determined by using
luciferase assay. While single KO suppressed HCV replication by
~50–70%, a reduction by ~90% was observed in DKO cells
(Fig. 2a). Even stronger replication suppression was observed
with a subgenomic replicon (Supplementary Fig. 4a), confirming
that AGPAT depletion affected viral RNA replication and not
virus entry or assembly. Of note, replication was completely
restored by stable expression of AGPAT1 and 2 in DKO cells,
which was not the case with either or both enzymatically inactive
mutants (Fig. 2b). Restoration of replication by addition of
exogenous PA was not successful due to low solubility of this lipid
in aqueous media and cytotoxicity exerted by organic solvents.

In the case of Dengue virus (DENV) and Zika virus (ZIKV) also
belonging to the Flaviviridae family, but inducing morphologically
different membrane alterations, i.e., ER membrane invaginations4,
replication was not affected by AGPAT depletion as determined by
plaque assay or with a reporter virus (Fig. 2c and Supplementary
Fig. 4b, respectively). These results suggest that enzymatically active
AGPAT1 and 2 are required for HCV replication with both
AGPATs having partially redundant functions.

Important role of AGPATs in HCV-induced DMVs and
accumulation of PA at these sites. Next, we determined the
impact of AGPAT KO on HCV-induced DMV formation. Since
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AGPAT1/2 DKO reduces RNA replication, we employed a
replication-independent system in which DMV production is
induced by the sole expression of an HCV NS3-5B polyprotein
fragment that undergoes self-cleavage to produce functional NS3,
4A, 4B, 5A, and 5B8,22 (Fig. 3a). To allow detection of the
replicase subcellular location by fluorescence microscopy, NS5A
was fluorescently tagged with EGFP. This tagging has no effect on
replicase functionality8,22. While expression of this polyprotein
induced a high number of DMVs in control cells, DMV abun-
dance was dramatically reduced in AGPAT1/2 DKO cells (Fig. 3a,
b), although amounts of viral proteins were comparable in control
and DKO cell pools (Fig. 3c). Moreover, DMVs had a smaller
diameter in AGPAT2 KO cells (Supplementary Fig. 4c). These
results argue for a pivotal role of AGPATs in HCV DMV
biogenesis.

Given that AGPAT1 and 2 are important for DMV formation
and their enzymatic activity is required for HCV replication, we
next focused on their reaction product, i.e. the lipid PA. To
quantify the amount of PA associated with HCV-induced DMVs
and compare it to PA associated with ER membranes, we
determined the lipidome of highly purified DMVs isolated from
cells containing the sg4BHA31R replicon (Fig. 3d). Consistent
with earlier results, these membranes contained elevated amounts
of cholesterol and sphingolipids, which served as positive
controls, relative to ER membranes purified in parallel from
Huh7 cells stably expressing HA-tagged Calnexin13,23. Of note,

PA abundance in DMVs also was increased in comparison to ER
membranes, whereas the level of diacyl phosphatidylcholine
(aPC) and several other lipids was not affected (Fig. 4d; for
further lipids see Supplementary Data 3).

To confirm these findings at the single-cell level, we used two
alternative methods to detect PA by fluorescence microscopy.
First, we generated a recombinant protein composed of GST that
was fused to the PA-binding domain (PABD) derived from yeast
Spo20p (Supplementary Fig. 5a, b). As specificity control, we
employed the analogous sensor protein containing a mutation in
the PABD that abolishes PA binding, and GST alone24. These
proteins were introduced via transient permeabilization into
Huh7 derived cells (Supplementary Fig. 5c). In cells treated with
phorbol 12-myristate 13-acetate (PMA), a potent activator of
phospholipase D-mediated PA production, as expected the intact
sensor predominantly stained the plasma membrane, which was
not the case with the PA non-binding mutant or GST alone,
confirming specificity of the signal (Supplementary Fig. 5d).
Moreover, also in cells that were not treated with PMA, the PA
sensor predominantly stained the plasma membrane (Supple-
mentary Fig. 5d, right panel). Using this assay, we monitored
intracellular PA distribution in HCV replicon-containing cells
and observed PA colocalization with NS4B (Supplementary
Fig. 5e). As second assay for intracellular PA detection, we
created an EGFP-tagged sensor fused to the PABD of Raf1, a
serine-threonine kinase recruited to cellular membranes via its
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Fig. 1 Proteome analysis of HCV-induced DMVs identifies AGPATs as host dependency factors critically contributing to viral replication. a
Experimental approach used to purify DMVs from HCV-replicating cells. b Volcano plot of differentially enriched interactors of NS4B and calnexin (CNX).
Q-values were calculated using the limma software package and corrected for multiple hypothesis testing. Viral proteins are highlighted with red letters. A
magnified view with protein hits labeled is given in Supplementary Fig. 1B. c A total of 139 genes were selected from the DMV proteome and validated by
siRNA screening (3 siRNAs per gene). CD81, PI4KA and Rluc were used as positive controls; NC (negative control)1, NC2, GFP and mock infection served as
negative controls. A summary of the screening is given in Supplementary Data 2. d Endogenous AGPAT1 and 2, but not AGPAT3 are contained in NS4B-
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HA-tag in NS4B (NS4B-wt and NS4B-HA, respectively). Captured proteins were analyzed by western blot, along with the input (2%). α-tubulin served as
loading control. Two biologically independent experiments showed similar results. e Colocalization of NS4B with AGPAT1 and 2. Huh7-Lunet cells stably
expressing AGPAT1- or AGPAT2-EGFP were transfected with in vitro transcripts of the HCV genome Jc1 and fixed 48 h post-transfection. Two biologically
independent experiments showed similar results. Source data for panels c and d are provided as Source Data file.
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interaction with Ras and PA25. While in control Huh7 cells this
PA sensor displayed a diffuse pattern (Supplementary Fig. 6a),
upon co-expression of the HCV NS3-5B polyprotein the sensor
accumulated in NS5A-positive puncta (Fig. 4a). Of note, a control
PA sensor containing mutations in the PABD of Raf1 (mutant
4E)26 displayed only a diffuse pattern in NS3-5B expressing cells
(Fig. 4a), supporting specificity of the signal and PA recruitment
to HCV replication sites. In addition, the wild-type PABD sensor
also showed diffuse pattern in NS3-5B expressing AGPAT1/2
DKO cells (Supplementary Fig. 6b).

Since these data suggest an important role of AGPAT1 and
2-dependent PA enrichment on HCV-induced DMVs, we
hypothesized that other pathways contributing to PA generation
in cells might also play a role in HCV replication. Apart from
AGPATs, one other route for PA synthesis is through hydrolysis
of phosphatidylcholine (PC) by phospholipase D1 (PLD1) and
D2 (PLD2) enzymes (Fig. 4b, top panel)17,27. To test the role of
PLD1/2 enzymes in HCV replication, we employed a pharma-
cological approach using 3 different PLD1/2 inhibitors. Treat-
ment with PLD2 inhibitor ML298 caused replication inhibition at
a concentration that did not significantly reduce cell viability
(~25 µM; Fig. 4b, bottom panel), whereas for the other drugs the
reduction in HCV replication correlated with cytotoxicity. To
support these findings, we performed siRNA-mediated PLD1/2
depletion in Huh7.5 cells followed by HCV infection. Forty-eight
hours post infection, we detected a significant reduction in HCV
replication as determined by NS5A-specific immunostaining
(Supplementary Fig. 6c). In summary, these results suggest that
PA generated via AGPAT1/2, and possibly by alternative PA

synthesis pathway, contributes to HCV replication by supporting
the formation of DMVs, which is the site of viral RNA
amplification.

Role of AGPATs and PA in autophagy. Virus-induced DMVs
are morphologically analogous to autophagosomes generated
during autophagy7; therefore, we tested if PA would be recruited
to and is required for autophagy-induced DMVs. To this end, we
monitored the localization of the EGFP-tagged PA sensor with
markers for DMVs induced during nonselective and selective
autophagy. To monitor DMV formation induced during non-
selective autophagy, cells were incubated in starvation medium
with or without bafilomycin A1 (BafA1), an inhibitor of the
vacuolar-type H+-ATPase inducing the accumulation of LC3-
positive puncta, which are indicative of autophagosomes. For
selective autophagy events, we focused on the induction of DMVs
during mitophagy induced by treatment of the cells with vali-
nomycin (Val)28,29. As shown in Fig. 4c (top row), the PA sensor
EGFP-PABD-Raf1 was rather uniformly distributed throughout
the cell in non-induced cells. However, induction of nonselective
autophagy by serum starvation led to a significant increase in the
number of LC3 puncta with EGFP-PABD-Raf1 relocalizing to
these puncta (Fig. 4c). Similarly, induction of mitophagy by Val
treatment caused an abundant association of mCherry-Parkin
puncta with EGFP-PABD-Raf1 (Fig. 4c, lower panel), whereas in
control cells not treated with Val, no such association was found
(Supplementary Fig. 6d).

Next, we investigated the role of PA generation during
nonselective and selective autophagy. Consistent with the
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relocalization of PA to LC3 puncta during nonselective
autophagy, PA inhibitors targeting PLD1, PLD2, and AGPATs,
applied as short-term treatments and at non-toxic concentrations,
significantly reduced the accumulation of LC3 puncta (Supple-
mentary Fig. 7). These findings are consistent with a recent study
suggesting that PA generated on the ATG16L1-positive autopha-
gosome precursor membrane contributes to autophagosome
formation30. Of note, a third pathway for PA production via

phosphorylation of diacylglycerol (DAG) by diacylglycerol kinase
(DAGK)27, did not contribute to PA accumulation or increase in
LC3 puncta during nonselective autophagy (Supplementary
Fig. 7).

Recruitment of AGPATs to SARS-CoV-2 induced DMVs and
contribution to viral replication. Having found that AGPAT1
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containing a GFP insertion in NS5A (construct pTM NS3-3’/5A-EGFP, top panel). Transcripts are generated in the cytoplasm via the T7 promoter and
terminator (T7-term) sequence and the HCV NS3 – 5B coding region is translated via the IRES of the encephalomyocarditis virus (EMCV). a After 24 h,
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comparable level of HCV replicase were selected for EM analysis. Significance was calculated by two-tailed paired t-test. p= 0.0128. c Expression levels of
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whereas the majority was subjected to lipidome analysis. Representative membrane structures are shown on the top: DMV-like vesicles in the NS4B-HA
sample (left) and single membrane tubes in the CNX-HA sample (right). Amounts of selected lipids determined by MS for the NS4B-HA sample were
normalized to those obtained for the CNX-HA sample that was set to one (bottom panel). The complete list of analyzed lipids is summarized in
Supplementary Data 3. Data are represented as mean ± SD from two biologically independent experiments. Source data for panels b and c are provided as
Source Data file.
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and 2, and their reaction product PA, are involved in DMV
formation induced upon HCV infection and in, morphologically
similar, DMVs generated during autophagy, we hypothesized that
AGPATs and PA might also be involved in the biogenesis of

replication organelles of other unrelated RNA viruses, e.g., cor-
onaviruses, which also utilize DMVs as viral replication sites9,10.
Hence, we investigated the role of AGPATs in the DMV bio-
genesis of SARS-CoV-2, the causative agent of the ongoing
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COVID-19 pandemic. In the first set of experiments, we studied
the recruitment of AGPATs to SARS-CoV-2 induced DMVs. In
the case of MERS-CoV and SARS-CoV, formation of DMVs with
structural resemblance to those observed in infected cells can be
induced by the sole expression of viral nonstructural protein
(nsp)3-4, which is an ~270 kilodalton large polyprotein fragment
undergoing self-cleavage12. Building on these results we first
determined whether the same applies to SARS-CoV-2. Huh7-

derived cells stably expressing T7 RNA polymerase were tran-
siently transfected with a T7 promoter driven SARS-CoV-2 HA-
nsp3-4-V5 expression construct or the empty vector (Supple-
mentary Fig. 8a). Using immunofluorescence with an HA-specific
antibody, in many cells we observed clusters of HA-nsp3 (Sup-
plementary Fig. 8b). Western blotting confirmed efficient self-
cleavage between nsp3 and nsp4 (Supplementary Fig. 8c). To
identify membrane alterations in HA-nsp3-4-V5 expressing cells,
we employed CLEM. Cells were transfected with the analogous
expression construct encoding in addition the mNeonGreen gene
to allow visualization of transfected cells by fluorescence micro-
scopy (Supplementary Fig. 8d). mNeonGreen positive cells were
recorded and examined by transmission electron microscopy,
revealing abundant clusters of DMVs (Supplementary Fig. 8d).
Comparison of DMVs induced by nsp3-4 expression and by
SARS-CoV-2 infection revealed similar morphology, although
expression-induced DMVs appeared to be smaller (~125 nm
compared to ~300 nm, respectively) (Supplementary Fig. 8e).
These results show that the sole expression of SARS-CoV-2 nsp3-
4 is sufficient to induce DMVs with structural similarity to those
generated in infected cells.

As the next step, we employed this expression-based system to
determine AGPAT function in SARS-CoV-2 nsp3-4 induced
DMV formation. Huh7-derived cells expressing EGFP-tagged
AGPAT1 or 2 were transiently transfected with the SARS-CoV-2
HA-nsp3-4-V5 encoding plasmid or the empty vector and
colocalization of AGPATs with HA-nsp3 was determined by
immunofluorescence microscopy. While in empty vector-
transfected cells AGPAT2 and 1 were homogeneously distributed
throughout the ER (Fig. 5a and Supplementary Fig. 9a,
respectively), we observed a strong relocalization of AGPATs in
HA-nsp3-4-V5 expressing cells with AGPATs forming puncta
that colocalized with HA-nsp3 (Fig. 5a, b and Supplementary
Fig. 9a). Of note, the relocalization of AGPATs induced by HA-
nsp3-4-V5 was not the result of the massive ER alterations
occurring in SARS-CoV-2 infected cells, since the subcellular
distribution of other ER-resident proteins, such as protein
disulfide-isomerase (PDI) and calnexin remained unaffected
compared to the large puncta observed with AGPATs (Fig. 5c).

Since SARS-CoV-2 replication organelles are comprised of
DMVs, convoluted membranes and zippered ER31, we next
investigated the membrane structures at the sites of AGPAT
colocalization with HA-nsp3-4-V5. Using CLEM, we found that
relocalized AGPAT puncta perfectly correlated with extensive
networks of SARS-CoV-2 HA-nsp3-4-V5 induced DMVs
(Fig. 6a). Overall, these data suggest that similar to HCV,
AGPATs are relocalized to SARS-CoV-2 nsp3-4 induced DMVs,
the likely sites of viral RNA replication32.

Next, we tested the effect of AGPAT1/2 depletion on SARS-
CoV-2 infection and replication. To this end, we used Huh7-
Lunet/T7 DKO cells that were employed for the imaging analyses
described so far and stably introduced the SARS-CoV-2 receptor
gene ACE2. Viral replication was measured by using an image-
based assay that quantifies the number of cells containing
detectable amounts of the nucleocapsid (N) protein (Supplemen-
tary Fig. 9b). Using this approach, we observed significant
reduction of SARS-CoV-2 positive cells in both single and double
AGPAT KO cells (Fig. 6b, upper panel). Consistently, RT-qPCR
revealed similar reduction of viral replication in single and double
KO cells (Fig. 6b, lower panel). To exclude a role of AGPAT1/2 in
SARS-CoV-2 entry, we used VSVΔG-S pseudotypes and found no
effect of AGPAT1/2 KO on entry (Supplementary Fig. 9c, left
panel). Consistent with these results, treatment of cells with the
general AGPAT inhibitor CI976 (Supplementary Fig. 7a) also did
not affect entry of VSVΔG-S pseudotypes (Supplementary Fig. 9c,
right panel).
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Fig. 5 Selective recruitment of AGPATs to SARS-CoV-2 induced DMVs. a
Change of subcellular localization of AGPATs upon expression of SARS-CoV-2
nsp3-4. Huh7-derived cells transiently expressing AGPAT2-EGFP were
transfected with a SARS-CoV-2 HA-nsp3-4-V5 expression construct or the
empty vector. After 48 h, cells were stained with HA-specific antibody and
examined by confocal microscopy. Maximum intensity projections are shown.
Enrichment score indicates the likelihood of cells showing a punctate or diffuse
staining pattern. Two biologically independent experiments showed similar
results. b Clustering of AGPAT2-EGFP in SARS-CoV-2 HA-nsp3-4-V5
expressing cells. Huh7-Lunet/T7 cells were co-transfected with AGPAT2-
EGFP and SARS-CoV-2 HA-nsp3-4-V5 or the empty vector. Twenty-four
hours later, cells were fixed and ~1000 cells per condition were separated into
two morphotypes (diffuse or punctate) using CellProfiler Analyst-based semi-
supervised classifier. Significance was calculated using an ordinary one-way
ANOVA. *p=0.0211. A representative experiment from three biologically
independent experiments is shown. c AGPAT clustering occurs independent of
ER remodeling induced by nsp3-4. Huh7-Lunet cells expressing AGPAT2-EGFP
and HA-nsp3-4-V5 were stained for the ER markers protein disulfide
isomerase (PDI) and calnexin and analyzed by confocal microscopy. Two
biologically independent experiments showed similar results. Light microscopy
images are maximum intensity projections.
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To determine if reduced SARS-CoV-2 replication in AGPAT1/
2 KO cells might correlate with altered DMV formation, we
transiently expressed SARS-CoV-2 HA-nsp3-4-V5 in control,
single and double KO cells. The absence of AGPAT 1/2 did not
significantly affect the abundance of cleaved viral proteins HA-

nsp3 and nsp4-V5 (Supplementary Fig. 8c). EM analysis of
control cells revealed HA-nsp3-4-V5 induced membrane altera-
tions, consistent with an earlier report for MERS-CoV and SARS-
CoV12 (Fig. 6c, d). This included zippered ER and DMVs with an
average diameter of ~145 nm. In contrast to HCV, the number of
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of the same experiment showed similar relocalisation. b AGPAT1/2 contribute to SARS-CoV-2 replication. Huh7-Lunet control, AGPAT2 single (SKO) and
AGPAT1/2 double (D)KO cells were infected with SARS-CoV-2 (MOI= 0.1). Twenty-four hours later, cells were fixed and immunostained for
nucleocapsid, and the percentage of N-positive cells was determined using CellProfiler. Normalized data from three biologically independent experiments
are plotted. Significance was calculated using ordinary one-way ANOVA. (top right panel). Total RNA was isolated from infected cells, and SARS-CoV-2
RNA levels were determined using RT-qPCR. Data were normalized to cellular GAPDH mRNA (bottom right panel). Significance was calculated using
ordinary one-way ANOVA. Data are represented as mean ± SD from three biologically independent experiments. c Aberrant SARS-CoV-2 DMVs in
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recorded and examined by EM. Scalebar 500 nm. d HA-nsp3-4-V5 induced DMVs and multi-membrane vesicles (MMVs) were quantified. Shown are the
number and diameter of DMVs and MMVs in these cells as observed from n= 8 cell profiles per condition. Statistical significance was calculated using
ordinary one-way ANOVA. ****p= 1.67453E-49. Data are represented as mean ± SD. Light microscopy image in panel a is a maximum intensity projection.
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nsp3-4 induced DMVs did not decrease in AGPAT single and
double KO cells (Fig. 6d, left two panels). However, in both cell
pools we observed marked accumulations of multi-membrane
vesicles (MMVs), indicating the formation of aberrant membrane
structures (Fig. 6c, d).

Accumulation of PA at SARS-CoV-2 DMVs and role of alter-
native PA synthesis pathways. To test whether similar to
AGPAT1/2 relocalization to nsp3-4 induced DMVs, PA is also
enriched at those sites we used the EGFP-tagged PA sensor
derived from Raf1. In Huh7-derived cells expressing SARS-CoV-
2 HA-nsp3-4-V5, the functional version of the sensor (EGFP-
PABD-Raf1-WT) strongly colocalized with HA-nsp3 in distinct

puncta, whereas no such puncta were found with the mutant
PABD-Raf1, confirming specificity of PA sensor recruitment to
HA-nsp3-containing sites (Fig. 7a, b).

Although in comparison to HCV, AGPAT1/2 DKO had lower
impact on SARS-CoV-2 replication (compare Fig. 2a with
Fig. 6b), and caused a morphologically distinct phenotype of
nsp3-4 induced DMVs (Figs. 3a and 6c, respectively), AGPATs,
and most likely PA, still accumulated at sites of SARS-CoV-2
DMV clusters (Fig. 7a, b). This indicates that PA synthesis
pathways other than via AGPAT1/2, might contribute to SARS-
CoV-2 replication and DMV formation. By means of pharma-
cological inhibition of enzymes that convert LPA, PC, and DAG
to PA (Supplementary Fig. 7a), we measured the dose-dependent
effect of these drugs on SARS-CoV-2 replication. All inhibitors
reduced SARS-CoV-2 replication in Calu-3 cells, and in A549
cells stably expressing ACE2, two commonly used cell models for
this virus, at non-cytotoxic concentrations, although in the case of
the general AGPAT inhibitor CI976 selectivity was rather low
(Fig. 8a and Supplementary Fig. 10a, respectively). Of note,
combining the inhibitors at concentrations close to or below their
IC50 values caused much stronger reduction of virus replication
with no or minimal effect on cell viability, indicating that SARS-
CoV-2 can utilize PA produced by alternative PA synthesis
pathways (Supplementary Fig. 10a, b). We then measured the
effect of these drugs on PA accumulation at HA-nsp3 containing
puncta in HA-nsp3-4-V5 expressing cells and found that all
inhibitors reduced PA levels at these sites (Fig. 8b). This
reduction was not the result of altered HA-nsp3-4-V5 expression
level or self-cleavage, which were unaffected in inhibitor-treated
cells (Supplementary Fig. 10c). Next, we determined if reduced
PA levels caused by these inhibitors also affect SARS-CoV-2
nsp3-4 induced DMV formation. In cells treated with AGPAT,
PLD1, and DAGK inhibitors DMV diameters were significantly
reduced (Fig. 8c, d). Moreover, PLD2 inhibition promoted the
formation of MMVs and larger DMVs, similar to what we found
in AGPAT single and double KO cells (Fig. 6c). Taken together,
our data suggest that PA enrichment is important for proper
SARS-CoV-2 DMV formation and viral replication.

Discussion
Here, we show that PA produced by AGPAT1 and 2 is important
for the replication of evolutionary distant positive-strand RNA
viruses, HCV and SARS-CoV-2 that amplify their genome in
association with DMVs. The remarkable dependence on a com-
mon host lipid for proper DMV biogenesis induced by these
phylogenetically disparate viruses indicates a striking common-
ality in the biogenesis of their replication organelles. Conversely,
for viruses replicating their RNA genome in ER-derived mem-
brane invaginations such as the flaviviruses DENV and ZIKV,
this lipid pathway appears to be dispensable4,33. Of note, PA
production through AGPAT1 and 2 is also involved in the for-
mation of autophagosome-like DMVs, arguing for some simi-
larity between cellular and viral DMV formation and lipid
composition. In addition, alternative routes of PA biosynthesis
contribute to HCV and SARS-CoV-2 replication and DMV
generation. These alternative routes might complement each
other, which would explain the differential effects we observed for
PLD1 and PLD2 inhibitors (Fig. 8a, b).

It has been shown that increase in the cellular concentration of
PA and signaling via PA activates mTOR, which in turn inhibits
autophagy34. At first sight, this is counterintuitive, because
induction of autophagy by HCV has been reported35, while in the
present study we show that HCV requires PA for efficient
replication. However, we note that although HCV activates
autophagy, it is not required per se for viral replication, but rather
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Fig. 7 PA accumulation at SARS-CoV-2 DMVs. a PA enrichment at SARS-
CoV-2 nsp3-containing structures. Huh7-Lunet cells expressing the
wildtype or mutant form of the PA sensor were transfected with the
plasmid encoding HA-nsp3-4-V5 and 24 h later, cells were fixed,
immunostained with HA-specific antibody and HA-nsp3 and EGFP-PABD
were visualized by confocal microscopy. Maximum intensity projections are
shown. b Using CellProfiler Analyst, a semi-supervised machine-learning
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from each experiment.
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fixed 24 h post infection, stained with nucleocapsid-specific antibody, and the percentage of infected cells was quantified using CellProfiler. Cell viability
and percentage inhibition are plotted as dose-response curves and IC50 values are given on the top of each panel. Data are represented as mean ± SD from
a representative experiment; two biologically independent experiments gave similar results. b AGPAT, PLD and DAGK inhibitors reduce PA accumulation
at nsp3-positive structures. Huh7-Lunet cells were transfected with SARS-CoV-2 HA-nsp3-4-V5 and EGFP-PABD-Raf1 encoding plasmids, followed by the
addition of a given inhibitor 4 h after transfection. Twenty-four hours later, cells were fixed and HA-nsp3 was detected with an HA-specific antibody. EGFP-
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double-positive structures from HA-nsp3 single positive structures. Enrichment score for HA-nsp3/PABD double-positive structures showing the up or
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p= 0.1231, *p= 0.0241, ***p= 0.0002, ****p= 6.45177E-5. Data are represented as mean ± SD from three biologically independent experiments.
c Decrease of SARS-CoV-2 DMV diameter by AGPAT, PLD, and DAGK inhibitors. Huh7-Lunet/T7 cells were transfected with the plasmid encoding HA-
nsp3-4-V5 and fluorescent NeonGreen, followed by addition of inhibitors 4 h after transfection. Twenty-four hours later, cells were fixed, NeonGreen
positive cells were recorded and examined by EM. Representative images are shown for each condition. d Number and morphology of DMVs were
determined for at least seven cell profiles per condition. DMV diameters are plotted and statistical significance was calculated using ordinary one-way
ANOVA. ****p= 4.03773E−25. Data are represented as mean ± SD.
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distinct components of the autophagy machinery36. Moreover,
the effect of HCV infection on mTOR activation is discussed
controversially37,38. Importantly, our data argue for local pro-
duction of PA at viral replication sites via the recruitment of
AGPAT proteins, and therefore, mTOR might be activated only
locally at these sites, but not at the whole-cell level.

At least three possibilities can be envisioned how PA promotes
DMV formation in viral replication and in the context of
autophagy. First, the presence of lipids with cone or inverted cone
shape in membranes contributes to membrane bending by gen-
erating negative or positive membrane curvature, respectively16.
While LPA has a large polar head group to fatty acid tail ratio,
giving rise to an inverse-cone shape and resulting in positive
membrane curvature, the additional fatty acid tail present in PA
inverses the head-to-tail ratio. Hence PA displays an overall cone
shape, which contributes to negative membrane curvature. Thus,
the LPA–PA conversion by AGPATs might contribute to DMV
formation by facilitating membrane curvature. Second, PA is
directly or indirectly implicated in membrane fission39. This
might be achieved by recruitment of effector proteins by PA,
either through downstream signaling events, or directly by ser-
ving as docking site for PA-binding proteins that have amphi-
pathic or hydrophobic surfaces. In this regard, our NS4B-
proteome showed the enrichment of three known PA-interacting
proteins, namely, Vitronectin, splicing factor-1, and ubiquitin
carboxy-terminal hydrolase L1, in the viral DMV fraction (Sup-
plementary Data 1)40. More than 50 different proteins have been
reported to interact with PA, including protein kinases, phos-
phatases, nucleotide-binding proteins and regulators, however, a
comprehensive list remains elusive, and their possible role in the
formation of DMVs during autophagy or viral RNA replication, if
any, remains to be determined18. Third, an additional role of PA
for the functionality of viral replication organelles and perhaps
also autophagosomes might be in serving as an exchange lipid in
a counter-transporter chain as suggested earlier7,41. In the case of
HCV, we and others identified accumulation of PI4P at DMVs
(reviewed in4,5) and similar findings have been made for mem-
branous structures involved in the early steps of autophagy42. For
HCV, it is thought that PI4P recruits lipid transporters such as
OSBP that deliver cholesterol into DMV membranes in exchange
for PI4P. A similar mechanism might apply for other lipids or the
PI4P precursor PI, with PA serving as a possible exchange factor
against these other lipids or PI, respectively.

The similar dependency of DMV-type replication organelles on
PA, as reported here for HCV and SARS-CoV-2, might offer an
attractive starting point for broad-spectrum antivirals targeting a
diverse range of positive-strand RNA viruses replicating in such
structures. In line with this assumption, an inhibitor of cytosolic
phospholipase A2α has been reported to suppress replication and
DMV formation of the 229E human coronavirus and to exert
antiviral activity also against the alphavirus Semliki forest virus43.
In addition, several human diseases have been linked to defects in
PA metabolism and selective autophagy, including neurological
disorders and chronic obstructive pulmonary disease18,19.
Although the precise role of PA in these diseases remains to be
determined, the critical role of PA for HCV and SARS-CoV-2
infection reported here might offer new approaches for ther-
apeutic intervention.

Methods
Plasmids. To construct the lentiviral vectors pWPI-EGFP-CT, pWPI-EGFP-NT
and pWPI-mCherry-NT, EGFP or mCherry coding sequences were amplified by
PCR and inserted by in-fusion reaction into the linearized pWPI vector using the
BamHI restriction site. Lentiviral plasmids pWPI-AGPAT1-EGFP and pWPI-
AGPAT2-EGFP were constructed by insertion of the human AGPAT1 gene (gene
ID: 10554) or human AGPAT2 gene (gene ID: 10555) into the BamHI site of the
pWPI-EGFP-CT vector. To construct the expression vector pGEX-PABD and

pGEX-PABD_4E, the PA-binding domain (PABD) of the yeast Spo20 gene (gene
ID: 855031) was used. The nucleotide sequence of the PABD is as follows:
gacaattgttcaggaagcagaagacgtgataggctacatgtgaagcttaaatccttgaggaataaaatccacaaa-
caacttcacccaaactgtcggttcgatgacgccactaagactagt. The 4E mutant PABD contained
K66E, K68E, R71E, and K73E substitutions as described previously24. PABD_WT
or PABD 4E mutant sequences were amplified by PCR and inserted into the pGEX-
6P-1 vector using BamHI and XhoI restriction sites. The PABD of Raf1 (gene ID:
5894), which corresponds to amino acid residue 390-426 of the Raf1 protein, was
amplified by PCR using the Addgene plasmid 116785 as the source for the DNA.
The amplicon was inserted into the pWPI-EGFP-NT vector using HiFi assembly of
DNA fragments. The 4E Raf1 PABD mutant contains the following amino acid
substitutions as reported earlier: R391E, R398E, K399E, and R401E26. The human
Parkin gene (gene ID: 5071) was amplified by PCR and inserted into the pWPI-
mCherry-NT vector to obtain pWPI-mCherry-Parkin. The PABD T7 expression
constructs were generated using the same approach and the sequences were
inserted into pTM1-2eGFP vector to obtain pTM-PABD-Raf1-WT and pTM-
PABD-Raf1-4E constructs. All plasmids used in this study are listed in Supple-
mentary Table 1.

Reagents and resources. All reagents and resources as well as antibodies used in
this study are listed in Supplementary Tables 2 and 3, respectively. Phorbol 12-
myristate 13-acetate (PMA), Bafilomycin A1 (BafA1), Valinomycin (Val) and Leu-
Leu methyl ester hydrobromide (LLOMe) were dissolved in DMSO to prepare
stock solutions.

Cell culture and transfection. All cell lines used in this study are listed in Sup-
plementary Table 4. Cells were maintained in Dulbecco’s modified Eagle medium
(DMEM) (Thermo Fisher Scientific), supplemented with 2 mM L-glutamine,
nonessential amino acids, 100 U/ml penicillin, 100 μg/ml streptomycin, and 10%
fetal calf serum (DMEM cplt). To select for transduced cells, they were cultured in
medium containing antibiotics as specified in Supplementary Table 4. To trigger
and visualize starvation-induced autophagy, cells were incubated with serum and
amino acid deprived DMEM with or without 200 nM BafA1 for 3 h at 37 °C. To
monitor mitophagy events, cells were treated with medium containing 10 µM
valinomycin at 37 °C. To induce PA redistribution, cells were incubated with
100 nM PMA for 5 min. For DNA transfection we used TransIT-LT1 Transfection
Reagent according to the manufacturer’s protocol (Mirus Bio LLC). For RNA
electroporation, 4 × 106 cells were suspended in 400 µl cytomix containing 5 µg
in vitro transcript, 5 mM glutathione and 2 mM ATP. Electroporation was per-
formed using a Gene Pulser system (Bio-Rad) at 975 µF and 270 V in a 0.4-cm
cuvette (Bio-Rad).

Lentivirus production and transduction of cells. Lentivirus production and cell
transductions were performed exactly as described earlier44. In brief, HEK-293T
cells were co-transfected with the packaging plasmid pCMV-dR8.91, the envelope-
encoding plasmid pMD2.G and a pWPI vector plasmid containing the gene-of-
interest by use of polyethylenimine (Polysciences Inc.). Supernatants were har-
vested 48 and 72 h post-transfection, filtered and virus titers were determined by
colony formation assay.

HCV production and viral infection. Production of HCV stocks and infection of
cells were performed as described recently45. In brief, Huh7.5 cells were transfected
with in vitro transcripts of the HCV variant Jc1 or a renilla-luciferase encoding
variant thereof (JcR2A) by electroporation. After 24 h, supernatants were replaced
with fresh medium and 48 and 72 h post-electroporation, supernatants were col-
lected and filtered through 0.45-μm-pore-size filters. Supernatants were stored at
−70 °C prior to the determination of virus titers by limiting dilution assay on
Huh7.5 cells. Infected cells were detected by immunohistochemistry using the
NS5A-specific antibody 9E10, and the 50% tissue culture infective dose (TCID50)
was determined.

Dengue virus and zika virus production. The reporter virus genomes of DENV-2
(strain 16681 s; DV-R2A) and ZIKV (strain H/PF/2013; synZIKV-R2A), which
encode renilla luciferase, have been previously described46,47. DENV stocks were
prepared by electroporation of BHK-21 cells with DV-R2A in vitro transcripts and
amplified in VeroE6 cells. SynZIKV-R2A stocks were prepared by electroporation
of VeroE6 cells or insect C6/36 cells. Extracellular virus titers were determined by
plaque-forming unit (PFU) assay in VeroE6 cells using an overlay medium con-
taining 1.5% carboxymethylcellulose.

SARS-CoV-2 production. The SARS-CoV-2 isolate Bavpat1/2020 was kindly
provided by Christian Drosten (Charité Berlin, Germany) through the European
Virology Archive (Ref-SKU: 026V-03883) at passage 2. Virus stocks were produced
in VeroE6 cells by passaging the virus two times. Titers of infectious virus were
determined by plaque assay as reported earlier48.

Generation of knockout cell lines. The 20-base pairs long guide strands used to
target AGPATs are listed in Supplementary Table 5. CRISPR plasmids were
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constructed by insertion of annealed oligonucleotides into the lentiCRISPRv2
plasmid (Addgene) encoding a puromycin resistance gene in the case of AGPAT1
or into the lentiCRISPR plasmid (Addgene) encoding a blasticidin resistance gene
in the case of AGPAT2. To generate knockout cell lines, cells were transduced with
a given lentivirus and two days later cells were cultured in medium containing 3 µg/
ml puromycin or blasticidin for at least 3 days. Knock-out was validated by
Western blot.

Purification of NS4B-associated membranes for proteome analysis. The pro-
tocol used to purify membrane fractions was derived from the one we have
reported earlier13 and modified in order to increase yields. This became possible by
using the MACS purification system (Miltenyi Biotec) that was however, incom-
patible with fractions prepared by sucrose gradient centrifugation because of high
viscosity. Huh7-Lunet cells (~2.5 × 108) containing the subgenomic replicon
sg4BHA31R, and cells containing the analogous replicon with non-tagged NS4B
and control Huh7-Lunet cells stably overexpressing HA-tagged Calnexin (CNX-
HA) were used. Cells were washed twice with PBS, scraped into PBS and pelleted
by centrifugation at 1400 × g for 2 min at room temperature. Cells were resus-
pended in 4 ml hypotonic buffer (20 mM Tris [pH 8.0], 1.5 mMMgCl2, 10 mM Na-
acetate) and incubated on ice for 30 min. Cells were divided into two tubes and
disrupted by pressuring 25 times through 2-ml syringes fitted with 22-gauge
needles. Nuclei and cell debris were removed by centrifugation at 800 × g for
10 min at 4 °C. Post-nuclear supernatants were equilibrated to 150 mM NaCl and
subjected to HA-affinity purification. One hundred ul slurry of HA-antibody
coated magnetic µMACS beads (Miltenyi Biotec) were incubated with post-nuclear
supernatants on a rotator for 2 h at 4 °C. Beads were bound to MidiMACS columns
and washed 5 times with 5 ml IP buffer (20 mM Tris [pH 8.0], 150 mM NaCl,
1.5 mM MgCl2, 10 mM Na-acetate). Bound proteins were eluted from the beads by
using SDS buffer (50 mM HEPES [pH 7.9], 150 mM NaCl, 5 mM EDTA, 2% SDS).
Eluates were subjected to filter aided sample preparation by using a 3 kDa mole-
cular weight cutoff filter (VIVACON 500; Sartorius Stedim Biotech GmbH, 37070
Goettingen, Germany) according to the procedure described earlier49. Fifty
microliters of sample were directly mixed in the filter unit with 200 μl of freshly
prepared 8M urea in 100 mM Tris-HCl [pH 8.5] (UA buffer) and centrifuged at
14,000 × g for 15 min at 20 °C to remove SDS. Any residual SDS was washed out by
two washing steps with 200 μl UA buffer. Proteins were alkylated by incubation
with 100 μl 50 mM iodoacetamide in the dark for 30 min at room temperature.
After washing three times with 100 μl of UA buffer and three times with 100 µl of
50 mM triethylammonium bicarbonate (TEAB) buffer [pH 8.0] (SIGMA-Aldrich
Chemie GmbH, Germany), proteins were digested with 1.25 µg trypsin overnight at
37 °C. Peptides were recovered from the filter by centrifugation, applying 40 μl of
50 mM TEAB buffer, followed by 50 μl 0.5 M NaCl (SIGMA-Aldrich Chemie
GmbH). Eluted peptides were acidified with TFA, desalted using C18 solid-phase
extraction spin columns (The Nest Group, Southborough, MA), organic solvent
removed in a vacuum concentrator at 45 °C and reconstituted in 5% formic acid for
analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/
MS).

LC-MS/MS was performed on a hybrid linear trap quadrupole (LTQ) Orbitrap
Velos mass spectrometer (ThermoFisher Scientific, Waltham, MA, USA) coupled
to an Agilent 1200 HPLC nanoflow system (Agilent Biotechnologies, Palo Alto,
CA, USA) via nanoelectrospray ion source using a liquid junction (Proxeon,
Odense, Denmark). Normalized amounts of tryptic peptides (~1 µg) were loaded
onto a trap column (Zorbax 300SB-C18 5 μm; 5 × 0.3 mm; Agilent Biotechnologies)
at a flow rate of 45 μl/min using 0.1% TFA as loading buffer. After loading, the trap
column was switched in-line with a 75 µm inner diameter, 25 cm long analytical
column (packed in-house with ReproSil-Pur 120 C18-AQ, 3 μm; Dr. Maisch,
Ammerbuch-Entringen, Germany). Mobile-phase A consisted of 0.4% formic acid
in water and mobile-phase B of 0.4% formic acid in a mix of 90% acetonitrile and
9.61% water. The flow rate was set to 230 nl/min and a 90 min gradient applied
(36–30% solvent B within 81 min, 30–65% solvent B within 8 min, 65–100%
solvent B within 1 min, 100% solvent B for 6 min before equilibrating at 36%
solvent B for 18 min). For the MS/MS experiment, the LTQ Orbitrap Velos mass
spectrometer was operated in data-dependent acquisition (DDA) mode with the 15
most intense precursor ions selected for collision-induced dissociation (CID) in the
linear ion trap (LTQ). MS1-scans were acquired in the Orbitrap mass analyzer
using a scan range of 350–1800m/z at a resolution of 60,000 (at 400 m/z).
Automatic gain control (AGC) was set to a target of 1 × 106 and a maximum
injection time of 500 ms. MS2-scans were acquired in parallel in the linear ion trap
with AGC target settings of 5 × 104 and a maximum injection time of 50 ms.
Precursor isolation width was set to 2 Da and the CID normalized collision energy
to 30%. The threshold for selecting precursor ions for MS2 was set to ~2000 counts.
Dynamic exclusion for selected ions was 30 s. A single lock mass at m/z 445.120024
was employed50.

Proteome MS data analysis. Acquired raw data files were processed using the
Proteome Discoverer 2.2.0.388 platform, utilizing the database search engine
Sequest HT. Percolator V3.0 was used to remove false positives with a false dis-
covery rate (FDR) of 1% on peptide and protein level under strict conditions.
Precursor masses were recalibrated prior to Sequest HT searches using full tryptic
digestion against the human SwissProt database v2017.06 (20,456 sequences and

appended known contaminants) with up to one miscleavage site. Oxidation
(+15.9949 Da) of methionine and acetylation (+42.010565 Da) of protein
N-terminus were set as variable modifications, whilst carbamidomethylation
(+57.0214 Da) of cysteine residues was set as fixed modifications. Data was sear-
ched with mass tolerances of ±10 ppm and 0.6 Da on the precursor and fragment
ions, respectively. Results were filtered to include peptide spectrum matches
(PSMs) with Sequest HT cross-correlation factor (Xcorr) scores of ≥1. For calcu-
lation of protein intensities, the Minora Feature Detector node and Precursor Ions
Quantifier node, both integrated in Thermo Proteome Discoverer were used.
Automated chromatographic alignment and feature linking mapping (“matching
between run”; https://www.maxquant.org) were enabled. Precursor abundance was
calculated using intensity of peptide features including only unique peptide groups.

SAINTexpress version 3.6.351 was used to identify interactors in NS4B and
CNX pulldowns. The protein intensities obtained from Proteome Discoverer
analysis were averaged over technical replicates and used as inputs for the analysis
with the SAINTexpress tool. Proteins having SAINT AvgP > 0.95 were considered
as interactors. All proteins identified by SAINT as interactors (1543 proteins) of at
least one of the baits (NS4B or CNX) were normalized to equal total abundance in
each sample analyzed for differential abundance between the NS4B and CNX
pulldowns using the limma R software package52. Functional networks for 309
NS4B and 195 CNX significantly enriched proteins (twofold enriched and having
Limma q values of ≤0.05) were generated using ClueGO v2.5.5 app embedded in
Cytoscape 3.7.253. The human GO (Biological Processes, version from 27 February
2019) was used with the following settings: type of analysis: single; GO terms level:
3–4; GO term restriction: 3 genes and 4%; evidence code: all experimental. A
significance threshold level of 0.05 was applied (Supplementary Data 1).

Purification of NS4B-associated membranes and lipid analysis. For lipid
analysis, NS4B-associated membranes were purified as described above with the
following modifications. HA-antibody coated magnetic beads (Thermo Scientific)
were used as recommended by the manufacturer and bound material was eluted
with 50 μl 0.1 M glycine [pH 2.5] for 10 min at room temperature followed by
neutralization with 30 μl of 1 M Tris [pH 7.5]. Eluates of split samples were pooled
and subjected to negative staining for quality control prior to lipidomic analysis.

For lipidome analysis, membranes released from HA-beads were subjected to an
acidic Bligh and Dyer extraction using chloroform/methanol/37% HCl (40:80:1,
vol:vol:vol) as previously described54. Extractions were performed in the presence
of a lipid standard mix containing 25 pmol phosphatidylcholine (13:0/13:0, 14:0/
14:0, 20:0/20:0; 21:0/21:0; Avanti Polar Lipids, Alabaster, AL, USA), 25 pmol
sphingomyelin (d18:1 with N-acylated 13:0, 17:0, 25:0, semi-synthesized as
described in54, 50 pmol D6-cholesterol (Cambridge Isotope Laboratory), 15 pmol
phosphatidylinositol (16:0/ 16:0 and 17:0/20:4; Avanti Polar Lipids), 12.5 pmol
phosphatidylethanolamine, 12.5 pmol phosphatidylserine and 5 pmol
phosphatidylglycerol (all 14:1/14:1, 20:1/20:1, 22:1/22:1, semi-synthesized as
described in54, 12.5 pmol diacylglycerol (17:0/17:0, Larodan), 12.5 pmol cholesteryl
ester (9:0, 19:0, 24:1, Sigma-Aldrich, St. Louis, MO, USA), 12 pmol triacylglycerol
(LM-6000/D5-17:0/17:1/17:1; Avanti Polar Lipids), 2.5 pmol ceramide and
glucosylceramide (both d18:1 with N-acylated 15:0, 17:0, 25:0, semi-synthesized as
described in54, 2.5 pmol lactosylceramide (d18:1 with N-acylated C12 fatty acid;
Avanti Polar Lipids), (21:0/22:6; Avanti Polar Lipids), 5 pmol phosphatidic acid
(17:0/20:4, Avanti Polar Lipids) and 2.5 pmol lyso-phosphatidylcholine (17:1;
Avanti Polar Lipids). Lipid extracts were resuspended in 60 µl methanol and
samples were analyzed on an AB SCIEX QTRAP 6500+ mass spectrometer (Sciex,
Framingham, MA, USA) with chip-based (HD-D ESI Chip; Advion Biosciences,
Ithaca, NY, USA) nano-electrospray infusion and ionization via a Triversa
Nanomate (Advion Biosciences) as previously described54. Resuspended lipid
extracts were diluted 1:10 in 96-well plates (Eppendorf twin tec 96, colorless,
Z651400-25A; Sigma-Aldrich, St. Louis, MO, USA) prior to measurement. Lipid
classes were analyzed in positive ion mode applying either specific precursor ion
(PC, lyso- PC, SM, cholesterol, Cer, HexCer, and Hex2Cer) or neutral loss (PE, PS,
PI, PG, and PA) scanning as described in ref. 54.

Data evaluation was performed using LipidView (RRID: SCR_017003; Sciex,
Framingham, MA, USA) and an in-house-developed software package
(ShinyLipids).

siRNA screening. siRNA screening was performed by solid-phase reverse trans-
fection of Huh7.5 cells seeded into 96-well plates as described previously55. In brief,
siRNA and transfection reagent were seeded into each well of a 96-well plate. After
air drying of the plates, 5 × 103 Huh7.5 cells stably expressing firefly luciferase
(Fluc) were seeded per well in a volume of 200 µl. After 3 days, cells were infected
with the renilla luciferase (Rluc) HCV reporter virus JcR2A55. To determine the
impact of knockdown on HCV entry and replication, cells were lysed 72 h after
infection and renilla luciferase activity was measured. To account for potential
cytotoxic effects of siRNAs, FLuc was measured in the same lysate by using dual
luciferase assay. Statistical analysis of the siRNA screening data was performed in R
version 3.4, using the Bioconductor package RNAither56. In brief, data were
quality-checked, Rluc values were then log-transformed and Lowess normalized
against FLuc measurements to account for cytotoxic effects. Measurements were
then normalized using z-score normalization with regard to the negative controls,
and replicates summarized using the mean.
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Luciferase reporter assay. Cells were lysed in 200 µl luciferase lysis buffer (1%
Triton X-100, 25 mM glycyl glycin [pH 7.8], 15 mM MgSO4, 4 mM EGTA, 10%
glycerol) per well in a 12-well plate. Plates were stored at −20 °C until measure-
ment of luciferase activity. For firefly luciferase assay, 200 µl luciferase assay buffer
(15 mM K3PO4 [pH 7.8], 25 mM glycylglycine, 15 mM MgSO4, 4 mM EGTA) with
freshly added 1 mM DTT, 2 mM ATP and 1mM D-luciferin (PJK) was mixed with
20 µl luciferase lysis buffer and measured for 20 s. For renilla luciferase assay, 100 µl
luciferase assay buffer supplemented with 1.43 µM coelenterazine (PJK) was mixed
with 20 µl lysate and measured for 10 sec by using either a Lumat LB9507 tube
luminometer or a Mithras LB940 plate luminometer (both from Berthold
Technologies).

Immunofluorescence microscopy. Immunofluorescence microcopy was performed
as described previously57. Cells cultured on glass coverslips were fixed with 4%
paraformaldehyde in PBS for 30min. The cells were permeabilized with PBS con-
taining 0.1% Triton X-100, blocked with 5% FBS or BSA, and then incubated with
diluted primary antibody for 60min at room temperature. After washing with PBS
three times, cells were incubated with Alexa-dye labeled secondary antibodies in PBS
containing 5% FBS for 60min. The coverslips were mounted in Fluoromount-G
(SouthernBiotech) and images were obtained with a Leica SP8 confocal microscope.

Image-based detection of SARS-CoV-2 infection and co-expressing cells.
Image-based quantification of SARS-CoV-2 infected cells was based on the immuno-
fluorescence detection of nucleocapsid protein-positive cells. Cells were seeded into 96-
well black wall imaging plates for 24 h, followed by infection with SARS-CoV-2 at an
MOI of 0.5 in the case of Huh7-Lunet/T7-ACE2 cells or a MOI of 5 for Calu-3 cells.
Thirty minutes post infection, inhibitors of PLD1/2 were added and cells were kept at
37 °C for 24 h. The cells were fixed with 4% paraformaldehyde, blocked with 1%
skimmed milk, and incubated with anti-nucleocapsid antibody for 1 h at 4 °C, followed
by counterstaining with donkey anti-mouse secondary antibody coupled to Alexa568.
Nuclear DNA was stained with DAPI and cells were examined using a Nikon
Ti2 spinning disk microscope equipped with a Plan Apo lambda 20x/0.75 air objective
and a back-illuminated EM-CCD camera (Andor iXon DU-888). Segmentation of
nuclei was done with the CellProfiler version 3.1.9 software package. Cytoplasm was
identified by expanding the nuclei by 5 pixels. Separation of cells into infected and non-
infected population was performed with a semi-supervised machine-learning-based
approach using CellProfiler Analyst, as described earlier58. The schematic of the
pipeline is outlined in Supplementary Fig. 9b. The enrichment score of cells co-
expressing HA-nsp3 and GFP-PABD-Raf1 (in Fig. 8b), or expressing punctate pattern
of AGPAT2 (Fig. 5b) and GFP-PABD-Raf1 (Fig. 7b), is calculated as described before59.
In short, the enrichment score indicates the probability of the presence of a specific class
(for example, co-expression or punctate expression pattern) in different samples in
relation of the total cells in the samples. The scripts, training set and images used to
train the classifier are available at https://doi.org/10.17632/b6hdc96ks5.1

RT-qPCR assay for SARS-CoV-2 replication. Total RNA was extracted from cells
using NucleoSpin RNA extraction kit (Machery-Nagel) following the manu-
facturer’s protocol. Reverse transcription (RT) reaction for cDNA synthesis was
performed using the high-capacity cDNA RT kit (ThermoScientific). Each cDNA
was diluted 1:5 in H2O and qPCR was performed using iTaq Universal SYBR green
mastermix (Bio-Rad). Primers for qPCR were designed using Primer 3 for SARS-
CoV-2-ORF1 (Forward 5′- GAGAGCCTTGTCCCTGGTTT-3′, Reverse 5′-AGTC
TCCAAAGCCACGTACG-3′) and HPRT (Forward 5′-CCTGGCGTCGTGATT
AGTG-3′, Reverse 5′-ACACCCTTTCCAAATCCTCAG-3′). Relative abundance
for SARS-CoV-2 Orf1 mRNA was corrected for PCR efficiency and normalized to
HPRT transcript level.

SARS-CoV-2 DMV generation and quantification. Based on earlier findings that
coronavirus DMV formation can be induced by the sole expression of viral non-
structural protein (nsp)3-412, we similarly constructed an expression vector con-
taining the SARS-CoV-2 (nsp)3-4 genes tagged with HA (for nsp3) and V5 (for
nsp4). Expression of this construct in Huh-derived cells showed significant number
of DMVs in only the transfected cells, independent of infection. Using this system,
we measured the number and diameter of DMVs and MMVs in Lunet cells under
different perturnation modalities (Figs. 3f, 4e and f), as described before for HCV-
induced DMV formation22.

Immunoprecipitation and immunoblotting. For immunoprecipitation, cells were
processed as described for proteome analysis, but captured protein complexes were
eluted by using 2× sample buffer (100 mM Tris-HCl [pH 6.8], 4% SDS, 12% β-
mercaptoethanol, 20% glycerol, 0.001% bromophenol blue). To prepare lysates for
immunoblotting, cells were incubated in 2× lysis buffer (200 mM Tris [pH 8.8],
5 mM EDTA, 0.1% bromophenol blue, 10% sucrose, 3% SDS, 2% β-mercap-
toethanol) and incubated for 5 min at 95 °C. Proteins were separated by SDS-
polyacrylamide gel electrophoresis and electro-transferred onto PVDF membranes.
After blocking of the membranes with 5% nonfat milk, they were incubated
overnight at 4 °C with primary antibodies. After washing with 0.5% Tween 20 in
PBS, membranes were incubated with secondary horseradish peroxidase-
conjugated antibodies for 1 h at room temperature. Membranes were developed by

using Western Lightning Plus-ECL reagent (PerkinElmer), and signals were
detected by Intas ChemoCam Imager 3.2 (Intas).

Electron microscopy. Transmission EM was performed as described previously13.
In brief, cells were fixed with 2.5% glutaraldehyde (GA) in 50 mM sodium caco-
dylate buffer (CaCo), supplemented with 2% sucrose, 50 mM KCl, 2.6 mM MgCl2
and 2.6 mM CaCl2, for 30 min at room temperature. After five washes with 50 mM
CaCo, samples were incubated with 2% OsO4 in 25 mM CaCo for 40 min on ice,
washed three times with EM-grade water and incubated in 0.5% uranyl acetate in
water overnight at 4 °C. Samples were rinsed three times with EM-grade water,
dehydrated in a graded ethanol series (from 40 to 100%) at room temperature,
embedded in Epon 812 (Electron Microscopy Sciences) and polymerized for 2 days
at 60 °C. After polymerization, ultrathin sections of 70 nm were obtained by sec-
tioning with an ultramicrotome Leica EM UC6 (Leica Microsystems) and mounted
on a slot grid. Sections were counterstained using 3% uranyl acetate in 70%
methanol for 5 min and lead citrate (Reynold’s) for 2 min and examined by using a
JEOL JEM-1400 (JEOL) operating at 80 kV and equipped with a 4 K TemCam
F416 (Tietz Video and Image Processing Systems GmbH).

Correlative light and electron microscopy (CLEM). Two methods were employed
using protocols described previously22. For CLEM analysis with low-resolution
fluorescence imaging, 0.5 × 105 Huh7-Lunet/T7 cells were seeded onto glass-bottom
culture dishes containing gridded coverslips (MatTek Corporation) and incubated
overnight. Cells were transfected with plasmid pTM NS3-5B encoding the HCV
replicase (NS3, NS4A, NS4B, NS5A and NS5B) with NS5A containing a GFP
insertion that does not affect viral protein function60. For Fig. 3d, plasmid encoding
AGPAT2-GFP was transfected into Huh7-Lunet/T7 cells. After 24 h, differential
interference contrast (DIC) and GFP signals were acquired by using a widefield
fluorescence microscope (Nikon Eclipse) with a 10x objective lens. Cells were fixed
with 2.5% GA, 2% sucrose in 50mM CaCo, supplemented with 50mM KCl, 2.6mM
MgCl2 and 2.6 mM CaCl2 for 30min at room temperature. After five washes with
CaCo, cells were processed for EM analysis as described above.

For CLEM with high precision image correlation, cells were fixed with 4%
paraformaldehyde and 0.2% GA in PBS for 30min at room temperature, washed
three times with 150mM glycine in PBS, once with PBS, stained with LipidToxTM
Deep Red Neutral Lipid Stain (Invitrogen) and analyzed by using a spinning disc
confocal microscope. Fluorescence images were acquired with optical sections of
0.2 µm using a 100x objective. For low-precision CLEM (Figs. 3f and 4e), Huh7-
Lunet/T7/Ctrl KO, Huh7-Lunet/T7/AGPAT2 KO or Huh7-Lunet/T7/DKO cells were
seeded onto dishes containing gridded coverslips (MatTek Corporation). Twenty-four
hours after transfection with pTM-SARS-CoV-2-HA-3-4-V5-2A-NG (NeonGreen)
using TransIT-LT1 Transfection Reagent (Mirus Bio), samples were observed by
confocal microscopy with a ×10 objective lens to locate NeonGreen-positive cells.
After imaging, cells were fixed again with 2.5% GA, 2% sucrose in 50mM CaCo,
supplemented with 50mM KCl, 2.6 mMMgCl2 and 2.6mM CaCl2 for at least 30min
on ice. Further processing for EM analysis was the same as described above.

Detection of PA in transiently permeabilized cells. A recombinant protein
composed of the PA-binding domain (BD) from yeast Spo20 fused to the
N-terminus of glutathione-S-transferase (GST-PABD) was expressed in E. coli,
strain BL21 (DE3), by using the expression vector pGEX-6P-1. Cells were grown in
LB medium until OD600= 0.5, followed by a 3 h-incubation period in medium
containing 1 mM isopropyl β-d-1-thiogalactopyranoside (IPTG) at 37 °C. Cells
were harvested by centrifugation and GST fusion proteins were purified from cell
lysates by using a Spin Purification kit as recommended by the manufacturer
(Thermo Fisher Scientific). Eluates were dialyzed in PBS using Slide-A-Lyzer
Dialysis Cassettes (7 K molecular weight cut-off; Thermo Fisher Scientific) and
purified proteins were stored in 50% glycerol in PBS at −20 °C at a concentration
of 1 mg/ml. Detection of PA with the GST-PABD in semi-intact cells was per-
formed as described previously with slight modifications61. In brief, cells seeded on
coverslips were washed twice with PBS and incubated on ice with 200 ng/ml
streptolysin O (SAE0089; Sigma Aldrich) in PBS for 5 min. After washing three
times with PBS, cells were incubated with transport buffer (25 mM HEPES-KOH,
[pH 7.4], 115 mM potassium acetate, 2.5 mM MgCl2) at 37 °C for 5 min. After
washing twice with transport buffer at room temperature, cells were incubated with
a reaction mixture (1 mM ATP, 50 µg/ml creatine kinase, 2.62 mg/ml creatine
phosphate, 1 mg/ml glucose, 1 mM GTP, and 5 μg/100 μl GST-PABD wild-type or
4E mutant) at 37 °C for 15 min. Cells were washed with transport buffer, fixed with
4% paraformaldehyde for 30 min, and permeabilized with 0.2% Triton X-100 for
20 min. After blocking with 5% skim milk, GST-PABD proteins were detected
using a GST-specific mouse monoclonal antibody as primary antibody and an
Alexa 488-conjugated anti-mouse antibody as a secondary antibody.

Generation of VSVΔG-G and VSVΔG-S pseudovirus. The generation of pseu-
dovirus was adapted from Zettl and co-workers62. In brief, to generate replication-
deficient G-protein decorated VSV particles (VSVΔG-G) encoding Firefly Luci-
ferase and GFP, 5 × 106 BHK-G43 cells (kindly provided by Gert Zimmer) were
seeded into a 10 cm-diameter dish and incubated overnight. The next day the
culture medium was replaced by Glasgow’s Minimal Essential Medium (GMEM)
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(Thermo Fisher Scientific) with 5% FCS and 1 nM mifepristone (Sigma Aldrich) to
induce VSV G protein expression. After 6 h the cells were infected with VSVΔG-G.
After an overnight incubation the pseudovirus containing supernatant was filtered
through a 0.45 µM filter, aliquoted and stored at −70 °C.

To produce propagation deficient VSVΔG pseudotyped with the SARS-CoV-2
Spike protein (VSVΔG-S), 9 × 106 HEK-293T cells were seeded into a poly-L-lysine
coated 10 cm-diameter dish. The next day the cells were transfected with an expression
plasmid encoding a codon-optimized SARS-CoV-2 Spike protein lacking part of the
C-terminal domain. Lipofectamine 2000 (Invitrogen) was used as transfection reagent.
The cells were incubated overnight to allow the expression of the SARS-CoV-2 Spike
protein. On the consecutive day cells were infected with VSVΔG-G for 2 h. Anti-VSV-
G antibody-containing supernatant of I1 hybridoma cells (ATCC: CRL-2700™) was
mixed at a ratio of 1:10 with culture media and added onto the cells. The cells were
incubated for 30min with the antibody, washed with DMEM cplt (see ‘Cell culture and
transfection’ for details) and fresh culture medium was added onto the cells. After
around 12 h incubation, culture supernatants containing VSVΔG-S pseudotyped
viruses were harvested, filtered through a 0.45 µm filter and stored at −70 °C.

Cell viability and cell growth assays. Cell viability was measured by using the
CellTiter-Glo luminescent cell viability assay (Promega) according to the protocol
of the manufacturer. Cell growth was determined by cell counting using a TC20
automated cell counter (BioRad).

Statistics and reproducibility. Unless otherwise stated, values represent the mean
of a given number of replicates. Error bars are SD or SEM as indicated in the figure
legends. Student’s t-tests were performed for unpaired or paired groups by using
the GraphPad Prism 5.03 software package (GraphPad software). A P value < 0.05
was considered statistically significant. All experiments were repeated two or three
times independently, as indicated in the figure legends. No statistical method was
used to predetermine sample size. The experiments were not randomized and the
investigators were not blinded to allocation during the experiments.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data are available in the main text or the Supplementary Information. Source data are
provided with this paper. The mass-spectrometry-based proteomics data generated in
this study have been deposited to the ProteomeXchange Consortium via the PRIDE63

partner repository with the dataset identifier PXD029692 with related raw data provided
as supplementary dataset 1. The raw data for lipidome analysis is provided as
supplementary dataset 3. Source data are provided with this paper.

Code availability
The scripts, training set and sample images to train the classifier for Figs. 5b, 7b, and 8b
are deposited at Mendeley Data (https://doi.org/10.17632/b6hdc96ks5.1).
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