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Objective. Precision medicine with molecular profiles has revolutionized the management of lung cancer contributing to improved
prognosis. Herein, we aimed to uncover the gene expression profiling of transcription factors (TFs) in lung cancer as well as to
develop a TF-based genomic model. Methods. We retrospectively curated lung cancer patients from public databases. Through
comparing mRNA expression profiling between lung cancer and normal specimens, specific TFs were determined. Thereafter,
a TF genomic model was developed with univariate Cox regression and stepwise multivariable Cox analyses, which was
verified through the GSE72094 dataset. Gene set enrichment analyses (GSEA) were presented. Downstream targets of TFs were
predicted with ChEA, JASPAR, and MotifMap projects, and their biological significance was investigated through the
clusterProfiler algorithm. Results. In the TCGA cohort, we proposed a TF-based genomic model, comprised of SATB2, HLF,
and NPAS2. Lung cancer individuals were remarkably stratified into high- and low-risk groups. Survival analyses uncovered
that high-risk populations presented unfavorable survival outcomes. ROCs confirmed the excellent predictive potency in
patients’ prognosis. Additionally, this model was an independent prognostic indicator in accordance with multivariate analyses.
The clinical implication of the model was well verified in an independent dataset. High risk score was in relation to
carcinogenic pathways. Downstream targets were characterized by immune and carcinogenic activation. Conclusion. The
proposed TF genomic model acts as a promising marker for estimation of lung cancer patients’ outcomes. Prospective research
is required for testing the clinical utility of the model in individualized management of lung cancer.

1. Introduction

Lung cancer occupies the major cause of cancer incidence
and mortality across the globe, with estimated 2.1 million
newly diagnosed cases as well as 18.4% of all cancer-related
deaths in 2018 [1]. It is primarily classified into small cell
lung cancer (SCLC) as well as non-small cell lung cancer
(NSCLC). Among them, NSCLC occupies around 85% of
lung cancer cases, with an undesirable five-year survival rate
below 16%. It is comprised of lung adenocarcinoma (LUAD)
and lung squamous cell carcinoma (LUSC), as well as large
cell carcinoma histological subtypes [2]. Chemotherapy
represents the major therapeutic option against lung cancer,
and platinum-based dual treatment is the standard treat-

ment against advanced patients [3]. Nevertheless, chemo-
therapeutic resistance remains challenging, impeding much
therapeutic success. Though tyrosine kinase-based targeted
therapy interferes with the oncogenic pathway in NSCLC,
acquired resistance evolves contributing to rapid disease
recurrence and progression [4]. Immunotherapy like PD-1
and PD-L1 inhibitors has displayed superiority to traditional
chemotherapy, which has become the standard for treating
NSCLC [5-7]. Nevertheless, in past clinical trials, the objec-
tive response rate of immunotherapy remains low [8].
Transcription factors (TFs), DNA-binding proteins, recog-
nize the promoter sequences of genes as well as subsequently
guide gene expression [9]. Recent studies demonstrate that pat-
terns of TF programs as well as immune pathway activation
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Fi1Gurek 1: Identification of lung cancer-specific TFs utilizing mRNA expression profiling from TCGA cohort. (a) Volcano plots display lung
cancer-specific TFs through comparison of differential TFs between lung cancer and normal specimens in accordance with [log2 FC | >1 and
adjusted p <0.05 thresholds. Red dots are indicative of upregulated TFs, while green dots are indicative of downregulated TFs. x-axis
represents log2 FC while y-axis represents -logl0 (adjusted p). (b) Hierarchical clustering analyses show the deregulated expression
patterns of lung cancer-specific TFs in lung cancer (T) and normal (N) specimens. x-axis represents each sample while y-axis represents
the RNA expression of TFs.
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F1GURE 2: Development of a TF genomic model for lung cancer prognosis in TCGA cohort. (a) Forest diagram displays the prognostic lung
cancer-specific TFs through univariate Cox regression analyses. Vertical dashed line indicates HR = 1. Green represents HR < 1 while red
represents HR > 1. (b) Risk score of lung cancer patients is quantified in line with the regression coefficient derived from multivariate
Cox regression models and expression value of SATB2, HLF, and NPAS2. Vertical dashed line expresses the grouping cutoff. Red dots
represent high-risk specimens, while blue dots represent low-risk specimens. (c) Scatter diagram displays the survival duration and status
of lung cancer patients that are ranked by risk score. Vertical dashed line expresses the grouping cutoff. Red triangle is indicative of
high-risk specimen, while blue triangle is indicative of low-risk specimen. (d) Hierarchical clustering analyses present the expression
patterns of SATB2, HLF, and NPAS2 in two groups. Red indicates high expression, and blue indicates low expression. (e) Survival
analyses are conducted between high- and low-risk groups, and survival difference is estimated with log-rank test. (f) ROC curves are
conducted on the basis of risk score for lung cancer outcomes.
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TaBLE 1: Univariate Cox regression models identify prognostic lung cancer-specific TFs.

TFs HR Lower 95% CI Upper 95% CI P value

ARNTL2 1.302281 1.169475 1.450168 1.49E-06
VAX1 1.210274 1.131859 1.294122 2.35E-08
CENPA 1.19974 1.084774 1.326889 0.000395
SATB2 1.278489 1.112124 1.469741 0.000552
GFI1B 0.776427 0.683637 0.881812 9.75E-05
FOXM1 1.272198 1.139285 1.420617 1.90E-05
E2F7 1.263852 1.135898 1.406221 1.71E-05
HLF 0.86293 0.801083 0.929552 0.000102
TFAP2A 1.188719 1.092255 1.293702 6.24E-05
ZNF750 0.881095 0.821778 0.944694 0.000371
HMGA1 1.356436 1.184181 1.553747 1.08E-05
NPAS2 1.302838 1.143688 1.484135 6.90E-05
CTCFL 1.129607 1.056855 1.207367 0.000333

characterize four main SCLC subtypes with diverse treatment
vulnerabilities [10]. Additionally, system-epigenomics inference
of TF activities indicates inactivated aryl-hydrocarbon-receptor
as an important event during lung carcinogenesis [11]. Experi-
mental evidences suggest the lung carcinogenic roles of TFs. For
instance, Oct4, a critical stemness TF, controls expression of
IncRNAs NEAT1 and MALAT1 for promoting lung carcino-
genesis [12]. TF NFIB is in relation to tumor aggressiveness in
LUAD [13]. TF OCT1 triggers the Warburg effect through
upregulating hexokinase 2 in NSCLC [14]. TF YY1 mediates
lung cancer progression through activation of IncRNA-PVTI
[15]. Hence, characterization of the genomic profiling of TFs
may assist in offering an in-depth understanding of the precise
treatment of lung cancer. Herein, we developed a TF genomic
model for lung cancer outcomes and uncovered the relevant
signaling pathways.

2. Materials and Methods

2.1. Public mRNA Expression Cohorts. The Cancer Genome
Atlas- (TCGA-) LUAD and TCGA-LUSC datasets contain-
ing mRNA expression profiling, survival and clinicopatho-
logic data (n=522) were curated from the Genomic Data
Commons tool (https://portal.gdc.cancer.gov/) [16], as a
training set. Fragments per kilobase million (FPKM) were
converted to transcripts per million (TPM). Gene expression
arrays of 442 LUAD patients were harvested from GSE72094
[17] via the Gene Expression Omnibus (GEO) repository
(https://www.ncbi.nlm.nih.gov/gds/), which acted as a test-
ing set. This dataset was based on the GPL15048 platform.
Probe IDs were transformed into gene symbols in accor-
dance with platform annotation file. The standardized
expression value was logarithmically converted as well as
scaled. Thereafter, the mean expression of genes with vari-
ous probes was utilized as their expression value. The corre-
sponding patient’s clinical data in TCGA and GSE72094
cohorts are displayed in Supplementary table 1. The gene
sets of TFs were harvested from published literature
(Supplementary table 2) [9].

2.2. Analyses of Lung Cancer-Specific TFs. DESeq2 package
[18] was adopted for differential analyses of sequencing data.
TFs with |log2 fold change (FC) | >1 and adjusted p < 0.05
were set as thresholds of lung cancer-specific TFs. Volcano
plots and heat map were conducted for visualizing the distri-
bution of lung cancer-specific TFs between lung cancer and
normal specimens.

2.3. Construction of a TF Genomic Model. Univariate Cox
regression models were conducted for evaluation of the
interactions of lung cancer-specific TFs with patients’ prog-
nosis in the TCGA cohort. Thereafter, stepwise multivariate
Cox regression analyses were utilized for shrinking the vari-
ables as well as screening the most predictive biomarkers.
The candidate TF-specific TFs were utilized for creating a
risk scoring formula that was determined through a linear
integration of mRNA expression as well as matched regres-
sion coefficients derived from the stepwise multivariate
Cox analyses. Through ranking of the risk scoring system,
patients were stratified into high- and low-risk subpopula-
tions. Kaplan-Meier methods were presented for estimating
the survival outcomes between high- and low-risk subpopu-
lations, and log-rank tests were adopted for the calculation
of the discrepancy in prognosis between subpopulations.
The receiver operator characteristic (ROC) curve was
depicted through the pROC package [19]. The prognostic
potency of the TF genomic model was externally verified
in the GSE72094 cohort.

24. Uni- and Multivariate Cox Regression Analyses.
Through univariate Cox regression analyses, the interac-
tions of clinicopathological indicators (age, gender, and
pathological staging) and TF genomic model with lung
cancer prognosis were evaluated across lung cancer indi-
viduals. Thereafter, multivariate Cox regression models
were established for uncovering the independent prognos-
tic indicators.

2.5. Gene Set Enrichment Analyses (GESA). Through the Java
program (http://software.broadinstitute.org/gsea/index.jsp),
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F1GURE 3: External verification of the TF genomic model for lung cancer prognosis in GSE72094 cohort. (a) Risk score distribution of lung
cancer patients is displayed in line with the regression coefficient derived from multivariate Cox regression models and expression value of
SATB2, HLF, and NPAS2. Vertical dashed line shows the grouping cutoff. Red dots are indicative of high-risk specimens, while blue dots are
indicative of low-risk specimens. (b) Scatter plots present the survival duration and status of lung cancer patients that are ranked by risk
score. Vertical dashed line represents the grouping cutoff. Red triangle expresses high-risk individual, while blue triangle expresses low-
risk individual. (c) Hierarchical clustering analyses show the expression patterns of SATB2, HLF, and NPAS2 in two groups. Red
represents upregulated expression, while blue represents downregulated expression. (d) Survival analyses are carried out between groups,
and survival difference is estimated through log-rank test. (¢) ROC curves display the predictive potency of risk score for lung cancer
outcomes.

GSEA [20] was carried out on the basis of the The interactions of specific gene sets with risk score for all
“c2.cp.kegg.v7.2.symbols” gene set curated from the Molecu-  genes were investigated, and positively and negatively corre-
lar Signatures Database (MSigDB) project [21]. Cytoscape  lated ones to the enrichment score were calculated. In total,
software [22] was adopted for visualizing our GSEA results. 1000 permutations were conducted, and pathways with false
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p value Hazard ratio
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FIGURE 4: Analyses and verification of the TF genomic model as an independent prognostic indicator of lung cancer. (a) Forest diagram
depicts the interactions of age, gender, and staging as well as risk score with lung cancer outcomes through univariate Cox regression
models in TCGA cohort. (b) Forest diagram presents the independency of stage and risk score in prediction of lung cancer prognosis in
TCGA cohort. (c) Forest diagram shows the associations of age, gender, staging, and risk score with lung cancer prognosis in GSE72094
cohort. (d) Forest diagram displays the independency of gender and staging as well as risk score in predicting patients’ outcomes in

GSE72094 cohort.

discovery rate (FDR) < 0.05 were regarded as having prom-
inent enrichment.

2.6. Prediction of Downstream Targets of TFs. Three web-
based interactive applications, containing ChIP Enrichment
Analysis (ChEA; http://amp.pharm.mssm.edu/lib/chea.jsp)
[23], JASPAR (http://jaspar.genereg.net), and MotifMap
(http://motifmap.igb.uci.edu/) databases, were adopted for
estimating the downstream targets of TFs. The ChEA project
offers data on eukaryotic TFs, consensus binding sequences,
and experimentally validated binding sites as well as modu-
lated genes [24]. The JASPAR project represents an open-
access project of curated, nonredundant TF-binding profil-
ing stored as a position frequency matrix for TFs among
diverse species in six taxonomic populations [25]. MotifMap
provides integrative genome-wide maps of regulated motif
sites for model species [26].

2.7. Functional Enrichment Analyses. Gene Ontology (GO)
as well as Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses were carried out for
determining the biological functions of downstream targets
of TFs through the clusterProfiler package [27]. GO depicted
three complementary biological concepts containing biolog-
ical process (BP) and molecular function (MF) as well as
cellular component (CC). Meanwhile, KEGG may assist
uncover high-level functions and utilities of biological
systems.

2.8. Statistical Analyses. All statistical analyses were managed
through R software (version 3.6.3). Student’s t-test or
Wilcoxon test was adopted for statistical comparisons, with
P <0.05 as statistical significance.

3. Results

3.1. Identification of Lung Cancer-Specific TFs. This study
retrospectively curated mRNA expression profiling, survival,
and clinicopathologic data of lung cancer from the TCGA
project. With the [log2 FC | >1 and adjusted p < 0.05 thresh-
olds, 320 upregulated TFs as well as 103 downregulated TFs
were determined in lung cancer in comparison with normal
tissues (Figures 1(a) and 1(b); Supplementary table 3). The
above deregulated TFs were regarded as lung cancer-
specific TFs.

3.2. Determination of Prognostic Lung Cancer-Specific TFs.
On the basis of mRNA expression profiling and survival
information of lung cancer patients from the TCGA cohort,
we conducted the interactions of lung cancer-specific TFs
with clinical prognosis through univariate Cox regression
models. In accordance with p<0.05, 13 lung cancer-
specific TFs displayed remarkable associations with lung
cancer outcomes (Figure 2(a); Table 1). Among them,
GFI1B, HLF, and ZNF750 acted as protective factors of lung
cancer prognosis. Meanwhile, CTCFL, TFAP2A, CENPA,
VAX1, E2F7, FOXMI1, SATB2, ARNTL2, NPAS2, and
HMGAL1 acted as risk factors of lung cancer prognosis.

3.3. Development of a TF Genomic Model for Lung Cancer
Prognosis. Further multivariate Cox regression analyses dis-
played that SATB2, HLF, and NPAS2 were independently
predictive of lung cancer prognosis. In accordance with the
regression coefficient derived from multivariate Cox regres-
sion models and expression value of SATB2, HLF, and
NPAS2, a TF genomic model was conducted for lung cancer
prognosis. The risk score of each lung cancer patient in the
TCGA cohort was calculated in line with the following for-
mula: risk score = 0.215678015946362 * SATB2 expression +
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Figure 5: Continued.
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FIGURE 5: Analyses of the TF genomic model associated with activation of signaling pathways. (a—f) GSEA results present activated
KEGG signaling pathways in high-risk specimens, containing (a) ECM receptor interaction, (b) small cell lung cancer, (c) axon
guidance, (d) chronic myeloid leukemia, (e) adherens junction, and (f) regulation of actin cytoskeleton.
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(—0.133926273065041) * HLF expression + 0.22354783465585
* NPAS2 expression. Thereafter, lung cancer patients in
the TCGA cohort were separated into two groups follow-
ing the median risk score. Patients with >median risk
score were classified into the high-risk group, while those
with <median risk score were classified into the low-risk
group (Figure 2(b)). Additionally, Figure 2(c) displayed
the discrepancy in survival status between two groups.
With the increase in risk score, the number of dead
patients was gradually elevated. In comparison to the
low-risk group, HLF presented reduced expression while
SATB2 and NPAS2 possessed upregulated expression in
the high-risk group (Figure 2(d)). Survival analyses uncov-
ered that the high-risk group displayed remarkable sur-
vival outcomes in comparison to the low-risk group
(Figure 2(e)). Further ROC analyses were conducted for
verifying the predictive potency of the TF genomic model
in lung cancer outcomes. The area under the curve (AUC)
was 0.676, indicative of the convincing predictive potency
(Figure 2(f)).

3.4. External Verification of the TF Genomic Model. The
clinical application potential of the TF genomic model was
externally verified in the GSE72094 cohort. In accordance
with the same formula, the risk score of each lung cancer
patient was quantified. Thereafter, we clustered patients
into high- and low-risk groups (Figure 3(a)). As expected,
more dead patients were noted in the high-risk group
(Figure 3(b)). There was enhanced expression of HLF as
well as weakened expression of SATB2 and NPAS2 in
the low-risk group (Figure 3(c)). Additionally, the high
risk score presented more undesirable survival outcomes
(Figure 3(d)). ROC curves confirmed the favorable predic-

tive potency of the TF genomic model in lung cancer
outcomes (AUC =0.619; Figure 3(e)).

3.5. Analyses and Verification of the TF Genomic Model as an
Independent Prognostic Indicator of Lung Cancer. In the
TCGA cohort, uni- and multivariate Cox regression models
were presented for investigation of the interaction of con-
ventional clinicopathological indicators and risk score with
lung cancer outcomes. As a result, staging as well as risk
score was independently predictive of patients’ prognosis
(Figures 4(a) and 4(b)). The predictive independency was
externally verified in the GSE72094 cohort. Our data
confirmed that gender and staging as well as risk score
were independent risk factors of lung cancer outcomes
(Figures 4(c) and 4(d)).

3.6. Analyses of the TF Genomic Model Associated with
Activation of Signaling Pathways. GSEA was conducted for
investigating the activated signaling pathways correlated to
the TF genomic model. In accordance with FDR <0.05,
ECM receptor interaction, small cell lung cancer, axon guid-
ance, chronic myeloid leukemia, and adherens junction as
well as regulation of actin cytoskeleton were remarkably
activated in high-risk specimens (Figures 5(a)-5(f)). Addi-
tionally, clusters of relevant genes linked to the high risk
score were determined, containing genes relating to thyroid
cancer, type diabetes mellitus, valine leucine isoleucine,
and ECM receptor interaction as well as alpha linolenic acid
(Figure 6).

3.7. Determination of Downstream Targets of TFs: SATB2,
HLF, and NPAS2. Through integration analyses of the
ChEA, JASPAR, and MotifMap databases, we determined
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F1GURE 7: Functional enrichment analyses of downstream targets of TFs: SATB2, HLF, and NPAS2. (a) GO enrichment results enriched by
downstream targets of three TFs. (b) KEGG pathway enrichment results enriched by downstream targets of three TFs.
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TaBLE 2: GO enrichment results enriched by downstream targets of three TFs.
Description Gene ratio BgRatio p value FDR q value  Count
Rhythmic process 20/277 294/18862 1.48E-08 3.08E-05 2.45E-05 20
Circadian rhythm 171277 212/18862 1.67E-08 3.08E-05 2.45E-05 17
Circadian regulation of gene expression 10/277 67/18862 4.71E-08 5.21E-05 4.14E-05 10
Anterior/posterior pattern specification 16/277 203/18862 5.64E-08 5.21E-05 4.14E-05 16
Regionalization 20/277 326/18862 8.22E-08 6.07E-05 4.83E-05 20
Positive regulation of protein localization to cell periphery 91277 67/18862 5.67E-07 0.000349 0.000277 9
Regulation of circadian rhythm 11/277 118/18862 1.34E-06  0.000665 0.000529 11
Pattern specification process 21/277 426/18862 1.44E-06 0.000665 0.000529 21
Entrainment of circadian clock by photoperiod 6/277 29/18862 3.40E-06 0.001394 0.001108 6
Muscle organ development 17/277 317/18862 4.90E-06 0.001716 0.001365 17
Early endosome membrane 11/283 162/19520 2.53E-05 0.008847 0.008168 11
Early endosome 15/283 378/19520 0.00044 0.076941 0.07104 15
Nuclear speck 14/283 411/19520 0.002834 0.255165 0.235596 14
Presynaptic active zone 5/283 70/19520 0.003472  0.255165 0.235596 5
Recycling endosome 8/283 190/19520 0.006657 0.255165 0.235596 8
Mitotic spindle 7/283 157/19520 0.008067 0.255165 0.235596 7
Recycling endosome membrane 5/283 87/19520 0.008695 0.255165 0.235596 5
Catalytic step 2 spliceosome 5/283 87/19520 0.008695 0.255165 0.235596 5
Cell-substrate junction 13/283 423/19520 0.009108 0.255165 0.235596 13
Ribonucleoprotein granule 9/283 244/19520 0.009482  0.255165 0.235596 9
gg:;é?j&ﬁ:;:ﬁﬁiﬁi activator activity, 19/285 443/18337  693E-05 0008115 0007448 19
DNA-binding transcription activator activity 19/285 447/18337 7.80E-05 0.008115 0.007448 19
E-box binding 6/285 47/18337 8.41E-05 0.008115 0.007448 6
Cytokine receptor binding 14/285 270/18337 8.94E-05 0.008115 0.007448 14
Transcription corepressor binding 5/285 30/18337 9.07E-05 0.008115 0.007448 5
EE:;;?;;%:;:?;ZEE repressor activity, 15/285 307/18337 9.81E-05 0.008115 0.007448 15
DNA-binding transcription repressor activity 15/285 309/18337 0.000105 0.008115 0.007448 15
Protein-cysteine S-palmitoyltransferase activity 4/285 28/18337 0.000872  0.052206 0.047919 4
Protein-cysteine S-acyltransferase activity 4/285 28/18337 0.000872  0.052206 0.047919 4
Tumor necrosis factor receptor binding 4/285 31/18337 0.001292 0.069613  0.063896 4

307 downstream targets of HLF, 4 downstream targets
(CRY2, PERI, PER2, and CRY1) of NPAS2, and 2 down-
stream targets (UPF3B and TP63) of SATB2 (Supplemen-
tary table 4). GO enrichment analyses uncovered that the
rhythmic process was remarkably enriched by downstream
targets (Figure 7(a); Table 2). Additionally, we noted that
the above downstream targets presented remarkable
interactions with circadian rhythm and immune activation
pathways (like allograft rejection, T cell receptor signaling
pathway, PD-L1 expression and PD-1 checkpoint pathway
in cancer, inflammatory mediator regulation of TRP
channels, and inflammatory bowel disease) as well as
carcinogenic pathways (like transcriptional misregulation
in cancer, FoxO signaling pathway, non-small cell lung
cancer, MAPK signaling pathway, AMPK signaling
pathway, Rapl signaling pathway, and apoptosis;
Figure 7(b) and Table 3).

4. Discussion

High-throughput sequencing technologies may assist in
determining more biomarkers that present close interactions
with patients’ outcomes at the genetic levels. Herein, we pro-
posed a 3-TF genomic model linked to lung cancer progres-
sion through conducting reliable bioinformatic analyses.
Additionally, the 3-TF genomic model acted as an indepen-
dent molecular marker for prediction of lung cancer
patients’ survival outcomes. Our findings might be of great
significance to elucidate the underlying biological mecha-
nisms of lung carcinogenesis as well as to develop innovative
prognostic indicators and molecular therapeutic targets.
Previously, a 7-TF gene model has been established for
prediction of colon adenocarcinoma outcomes [28]. A 9-
TF signature can be predictive of breast cancer recurrence
for optimizing clinical management [29]. Additionally, Yang
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TaBLE 3: KEGG pathway enrichment results enriched by downstream targets of three TFs.
Description Gene ratio BgRatio p value FDR q value Count
Circadian rhythm 10/126 31/8101 1.94E-11 4.71E-09 3.93E-09 10
Allograft rejection 5/126 38/8101 0.00028 0.033838  0.028259 5
Oxytocin signaling pathway 9/126 154/8101 0.000636 0.038062 0.031787 9
Phosphatidylinositol signaling system 71126 97/8101 0.000751  0.038062  0.031787 7
Transcriptional misregulation in cancer 10/126 192/8101 0.000786  0.038062  0.031787 10
FoxO signaling pathway 8/126 131/8101 0.000959 0.038685 0.032308 8
Neurotrophin signaling pathway 71126 119/8101  0.002472  0.065225  0.054472 7
Longevity regulating pathway 6/126 89/8101 0.002547  0.065225  0.054472 6
Longevity regulating pathway—multiple species 5/126 62/8101 0.002679  0.065225  0.054472 5
Hypertrophic cardiomyopathy 6/126 90/8101 0.002695  0.065225  0.054472 6
Non-small cell lung cancer 5/126 72/8101 0.005121  0.095997  0.080171 5
Inositol phosphate metabolism 5/126 73/8101 0.005431  0.095997  0.080171 5
T cell receptor signaling pathway 6/126 104/8101 0.00551 0.095997  0.080171 6
Fluid shear stress and atherosclerosis 71126 139/8101  0.005836  0.095997  0.080171 7
MAPK signaling pathway 11/126 294/8101 0.00595 0.095997 0.080171 11
Insulin resistance 6/126 108/8101 0.006608 0.099953 0.083476 6
AMPK signaling pathway 6/126 120/8101 0.010857 0.154556 0.129077 6
Asthma 3/126 31/8101 0.012022 0.157127 0.131224 3
PD-L1 expression and PD-1 checkpoint pathway in cancer 5/126 89/8101 0.012336  0.157127  0.131224 5
GnRH signaling pathway 5/126 93/8101 0.01471 0.164644 0.137502 5
Rapl signaling pathway 8/126 210/8101 0.016473 0.164644  0.137502 8
Circadian entrainment 5/126 97/8101 0.017373 0.164644 0.137502 5
Inflammatory mediator regulation of TRP channels 5/126 98/8101 0.018086  0.164644  0.137502 5
Inflammatory bowel disease 4/126 65/8101 0.018212  0.164644  0.137502 4
Lipid and atherosclerosis 8/126 215/8101  0.018715  0.164644  0.137502 8
Apoptosis 6/126 136/8101 0.019138 0.164644 0.137502 6
African trypanosomiasis 3/126 37/8101 0.019429  0.164644  0.137502 3
Insulin signaling pathway 6/126 137/8101 0.019767  0.164644  0.137502 6
Yersinia infection 6/126 137/8101 0.019767 0.164644 0.137502 6
Estrogen signaling pathway 6/126 138/8101 0.02041 0.164644  0.137502 6

et al. proposed a TF-based prognostic signature that reliably
predicts endometrial cancer individuals’ survival outcomes
[30]. Here, through univariate analyses followed by stepwise
multivariate Cox regression analyses, we developed a TF
genomic model for lung cancer outcomes. In accordance
with the formula, a TF genomic model was conducted, con-
taining SATB2, HLF, and NPAS2. ROC curves confirmed
the reliability of this model in prediction of patients” progno-
sis. Following integration of clinicopathological indicators,
the model was independently predictive of clinical progno-
sis. To our knowledge, the 3-TF genomic model’s potential
as a predictor has not been proposed in previous evidences,
though research might offer a novel guide of lung cancer
outcomes. In routine clinical practice, pathological staging
acts as an important survival determinant concerning oncol-
ogists as well as lung cancer individuals. Nevertheless,
diverse patients’ survival outcomes with the same staging
are indicative of the deficient pathological staging system
for prognosis on the basis of the anatomic scope and staging
system of the disease, in which pathological changes reflect

the biological heterogeneity within lung cancer. The issues
influence the predictive potency of the conventional system
for lung cancer individuals. Our GSEA uncovered that the
7-TF genomic model presented remarkable interactions with
ECM receptor interaction, SCLC, axon guidance, chronic
myeloid leukemia, and adherens junction as well as regula-
tion of actin cytoskeleton, indicative of the interactions of
the 7-TF genomic model with lung carcinogenesis.
Previous evidences suggest the biological significance of
SATB2, HLF, and NPAS2 within the TF-based genomic
model in lung carcinogenesis. For instance, SATB2 reduces
NSCLC invasiveness through modulation of EMT-relevant
proteins as well as histone methylation of G9a [31]. Further,
hypoxic tumor-derived exosomal miR-31-5p triggers LUAD
metastases through negative modulation of SATB2-reversed
EMT as well as activation of the MEK/ERK pathway [32].
Downregulated HLF facilitates multiple-organ distant
metastases of NSCLC via the PPAR/NF-«b pathway NSCLC
[33]. Reduced HLF expression is predictive of undesirable
clinical outcomes of LUAD ([34]. NPAS2 polymorphism



Disease Markers

independently predicts NSCLC patients’ prognosis [35].
Further analyses determined the downstream targets of
TFs: SATB2, HLF, and NPAS2. Our further biological
function analyses demonstrated the interactions of these
downstream targets with circadian rhythm and immune
activation pathways (like allograft rejection, T cell receptor
signaling pathway, PD-L1 expression and PD-1 checkpoint
pathway in cancer, inflammatory mediator regulation of
TRP channels, and inflammatory bowel disease) and carci-
nogenic pathways (like transcriptional misregulation in can-
cer, FoxO signaling pathway, NSCLC, MAPK signaling
pathway, AMPK signaling pathway, Rap1 signaling pathway,
and apoptosis), indicating that SATB2, HLF, and NPAS2
modulated the above pathways to participate in lung
carcinogenesis.

Nevertheless, a few limitations of this study need to be
pointed out. Our findings were primarily on the basis of
integrated bioinformatic analyses. However, sufficient exper-
imental verification of our results remains lacking. In future
studies, we will conduct in-depth in vitro and in vivo exper-
iments to verify our conclusion. Because all patients were
retrospectively harvested, the underlying bias linked to
unbalanced clinicopathological characteristics cannot be
ignored. Additionally, the reliability of the 3-TF genomic
model for predicting survival outcomes of lung cancer indi-
viduals remains a key issue in the clinic. In particular, the
guideline for the clinical application of our 3-TF genomic
model requires an in-depth definition in our future studies.

5. Conclusion

Collectively, our findings proposed and verified a 3-TF geno-
mic model (SATB2, HLF, and NPAS2) for prediction of lung
cancer outcomes. This genomic model acted as an indepen-
dent indicator as well as a complement prognostic factor for
clinicopathological features of lung cancer.
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