Abstract
Oxylipins are an important class of bioactive lipids derived from polyunsaturated fatty acids. They can be both pro- and anti-inflammatory and function as important mediators in various pathological conditions. However, comprehensive analysis of oxylipins still remains a challenge because of their low abundance in plasma and the dominance of structurally similar isomeric species. Herein, we describe a simple and rapid method to comprehensively analyze oxylipins in blood plasma, which utilizes solid-phase extraction in 96-well format for efficient sample clean-up. Separation and detection of more than 130 oxylipins is accomplished by liquid chromatography-tandem mass spectrometry with multiple reaction monitoring in negative ion mode. The absolute concentrations of oxylipins in human plasma are determined using the calibration curves constructed from internal standards. Detailed methods and precautions are presented for a successful adoption of this method in analytical laboratory.
Keywords: Oxylipins, LC-MS/MS, lipid mediators, MRM, human plasma, SPE
1. Introduction
Oxylipins belong to a subclass of lipid mediators [1] and play essential roles in regulation of local inflammation. They are originated from various polyunsaturated fatty acid (PUFA) precursors that are released from the membrane phospholipids by phospholipase A2 [2] and further metabolized by different enzymes including cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP), as well as some non-enzymatic pathways [3]. Various physiological conditions [4] and pathologies including inflammation [3], vascular diseases [5–8], metabolic syndrome [9], neurological diseases [10–12] and cancers [13,14] are reportedly related to the imbalance of oxylipins. To understand roles of oxylipins in enhancing and resolving inflammation and disease progression, it is necessary to provide an accurate quantification of their levels in human plasma and other biofluids.
Herein, we present a workflow for absolute quantification of oxylipins in human plasma. This workflow covers: 1) sample preparation, 2) data acquisition and 3) data analysis. Solid phase extraction (SPE) in 96-well format is employed to perform sample clean-up for high-throughput applications. Individual oxylipin species in the samples are separated and detected using a liquid chromatography-multiple reaction monitoring mass spectrometric (LC-MRM-MS) based method with good sensitivity and selectivity. Absolute concentrations of over 130 oxylipins can be quantified using this method.
2. Materials
2.1. Instruments and consumables
HLB SPE 30 mg 96-well plate (Waters, Milford, MA).
Biotage Pressure+ Manifold (Biotage, Uppsala, Sweden).
TurboVap Evaporator (Biotage, Uppsala, Sweden).
Vanquish UHPLC coupled with a Quantiva triple quadrupole mass spectrometer (Thermo Fisher Scientific, Haverhill, MA).
HSS T3 column (100 × 2.1 mm, 1.8 μm) with T3 VanGuard pre-column (5 × 2.1 mm, 1.8 μm, Waters, Milford, MA).
2.2. Standard stock solution and mixture
All the oxylipin and deuterated oxylipin standards (Cayman Chemical, Ann Arbor, MI USA) are prepared with MeOH in the concentration of 1 mg/mL as stock solution except polyunsaturated fatty acids (eicosapentaenoic acid, arachidonic acid, docosahexaenoic acid, adrenic acid), which are prepared as 500 μg/mL (see Note 1). All standards and standard mix are stored in −20°C freezer.
MasterMix: Take desired amounts of individual standard into a 20-mL glass tube, gently dry under a steam of nitrogen, and reconstitute in 500 μL of 50% MeOH (see Note 2).
10 x ISTD: Take ten times desired amounts of ISTD into a 10-mL glass tube. Add MeOH to make 5 mL (see Note 3).
QC standard: Take 6.25 μL of MasterMix and 20 μL of 10 x ISTD into a new tube. Add 173.75 μL of 50% MeOH to the mixture.
Calibrators: Prepare two-fold dilution of the MasterMix using 50% MeOH, repeat the dilution sequentially 10 times. Take 90 μL from the MasterMix and each of the 11 sequential dilutions to 12 individual tubes and add to each tube 10 μL 10 x ISTD. Vortex prior to LC-MRM-MS analysis.
2.3. Solvents for SPE (for 1 plate of 96 samples)
5% MeOH solution: 1 L.
MeOH: 500 mL.
Deionized (DI) H2O: 500 mL.
Phosphate buffered saline (PBS) solution: 250 mL.
2.4. Solvents for LC-MRM-MS
Solvent A: 0.1% formic acid in H2O.
Solvent B: 0.1% formic acid in ACN.
3. Methods
The workflow for quantitative analysis of oxylipins in human plasma (see Note 4) is illustrated in Figure 1. Same aliquot from each individual plasma samples is pooled to make it as a Pooled QC sample (see Note 5) and process it the same way as the individual plasma samples. Spike Internal standards (10 x ISTD) into each plasma sample prior to SPE cleanup, and the collected sample is subjected to LC-MRM-MS analysis in negative-ion mode (see Note 6).
Figure 1.

Workflow for LC-MRM-MS based quantification of oxylipins, covering the three major steps of this protocol.
3.1. SPE cleanup
The SPE cleanup method may vary depending on SPE packing materials and manufacturer’s instructions should be consulted. The following steps are to be applied to Biotage Pressure+ Manifold and 96-well format HLB SPE columns (see Note 7).
Condition 96 well SPE cartridge by adding 1 mL MeOH, followed by 1 mL DI H2O with the Manifold pressure set around 6 psi.
Mix 100 μL plasma (see Note 8) and 5 μL 10 x ISTD (see Note 9).
Load the mixture onto the cartridge at a pressure of 3 psi.
Wash with 1.5 mL of 5%MeOH at a pressure of 6 psi.
Elute with 1.2 mL of MeOH at a pressure of 3 psi and collect the eluents.
Dry the eluents in a 96-well TurboVap evaporator with nitrogen (see Note 10).
Reconstitute in 50 μL of 50% MeOH.
3.2. Setting up MRM transitions
A heatmap-assisted strategy is employed to select the unique fragment ions as specific MRM transitions to monitor the various isomeric oxylipins as previously described (Table 1) [15] (see Note 11).
Table 1.
MRM transitions and retention times for oxylipins
| Name | Formula | Type | IS | RT | Precursor | Product1 | CE1 | Product2 | CE2 |
|---|---|---|---|---|---|---|---|---|---|
| tetranor-PGDM | C16H24O7 | Analyte | (d4) 6k PGF1α | 1.13 | 327 | 309 | 10 | ||
| 20oh PGF 2α | C20H34O6 | Analyte | (d4) 6k PGF1α | 1.37 | 369 | 325 | 19 | 193 | 26 |
| 20oh PGE 2 | C20H32O6 | Analyte | (d4) 6k PGF1α | 1.5 | 367 | 331 | 10 | 349 | 10 |
| d17 6k PGF 1α | C20H32O6 | Analyte | (d4) 6k PGF1α | 2.14 | 367 | 163 | 24 | 243 | 22 |
| 2,3-dinor 8-iso PGF 2a | C18H30O5 | Analyte | (d4) 6k PGF1α | 2.44 | 325 | 237 | 10 | ||
| 2,3-dinor TXB 2 | C18H30O6 | Analyte | (d4) 6k PGF1α | 2.49 | 341 | 167 | 10 | 141 | 14 |
| 6k PGF 1α | C20H34O6 | Analyte | (d4) 6k PGF1α | 2.6 | 369 | 163 | 25 | 245 | 24 |
| (d4) 6k PGF 1α | C20H30D4O6 | IS | - | 2.61 | 373 | 167 | 25 | 249 | 24 |
| 2,3-dinor 11b PGF 2α | C18H30O5 | Analyte | (d4) 6k PGF1α | 2.62 | 325 | 145 | 15 | 163 | 10 |
| 20cooh LTB 4 | C20H30O6 | Analyte | (d4) 6k PGF1α | 2.72 | 365 | 347 | 16 | 169 | 20 |
| Resolvin E 1 | C20H30O5 | Analyte | (d4) 6k PGF1α | 2.77 | 349 | 161 | 16 | 195 | 15 |
| 8-iso PGF 3a | C20H32O5 | Analyte | (d4) 8-iso PGF2αVI | 2.79 | 351 | 307 | 17 | 245 | 18 |
| 6k PGE 1 | C20H32O6 | Analyte | (d4) 6k PGF1α | 2.8 | 367 | 143 | 18 | ||
| TXB 3 | C20H32O6 | Analyte | (d4) TXB2 | 2.81 | 367 | 169 | 14 | 195 | 11 |
| 20oh LTB 4 | C20H32O5 | Analyte | (d4) 8-iso PGF2αVI | 2.84 | 351 | 195 | 16 | ||
| TXB 1 | C20H36O6 | Analyte | (d4) TXB2 | 3.12 | 371 | 171 | 17 | 197 | 14 |
| PGF 3α | C20H32O5 | Analyte | (d4) 8-iso PGF2αVI | 3.14 | 351 | 307 | 16 | ||
| 8-iso PGF 2α III | C20H34O5 | Analyte | (d4) 8-iso PGF2αVI | 3.23 | 353 | 309 | 19 | 291 | 20 |
| (d4) 8-iso PGF 2α VI | C20H30D4O5 | IS | - | 3.23 | 357 | 197 | 24 | 295 | 20 |
| TXB 2 | C20H34O6 | Analyte | (d4) TXB2 | 3.27 | 369 | 169 | 15 | 195 | 12 |
| (d4) TXB 2 | C20H30D4O6 | IS | - | 3.27 | 373 | 173 | 15 | 199 | 12 |
| 6,15-dk-,dh-PGF 1α | C20H34O6 | Analyte | (d4) 8-iso PGF2αVI | 3.32 | 369 | 267 | 20 | 223 | 20 |
| 11β PGF 2α | C20H34O5 | Analyte | (d4) 8-iso PGF2αVI | 3.38 | 353 | 309 | 18 | 193 | 24 |
| 2,3-dinor-6k PGF 1a | C18H30O6 | Analyte | (d4) PGF2α | 3.39 | 341 | 323 | 14 | 161 | 20 |
| PGE 3 | C20H30O5 | Analyte | (d7) 5-oxoETE | 3.41 | 349 | 313 | 10 | ||
| 5-iso PGF 2α VI | C20H34O5 | Analyte | (d4) PGF2α | 3.53 | 353 | 115 | 18 | ||
| PGD 3 | C20H30O5 | Analyte | (d7) 5-oxoETE | 3.7 | 349 | 233 | 10 | ||
| dhk PGE 2 | C20H32O5 | Analyte | (d7) 5-oxoETE | 3.75 | 351 | 333 | 10 | ||
| PGF 2α | C20H34O5 | Analyte | (d4) PGF2α | 3.75 | 353 | 309 | 17 | 193 | 18 |
| (d4) PGF 2α | C20H30D4O5 | IS | - | 3.75 | 357 | 313 | 17 | ||
| PGF 1α | C20H36O5 | Analyte | (d4) PGF2α | 3.78 | 355 | 311 | 19 | 293 | 22 |
| (d4) 15d PGJ 2 | C20H24D4O3 | IS | - | 4.11 | 319 | 275 | 14 | ||
| (d4) PGE 2 | C20H28D4O5 | IS | - | 4.11 | 355 | 275 | 16 | 319 | 10 |
| PGE 2 | C20H32O5 | Analyte | (d4) PGE2 | 4.15 | 351 | 271 | 14 | 315 | 10 |
| LXA 5 | C20H30O5 | Analyte | (d7) 5-oxoETE | 4.16 | 349 | 115 | 14 | 233 | 12 |
| PGK 2 | C20H30O5 | Analyte | (d7) 5-oxoETE | 4.19 | 349 | 249 | 14 | 287 | 16 |
| 14,15-LTC 4 | C30H47N3O9S | Analyte | (d5) LTC4 | 4.28 | 624 | 272 | 21 | 254 | 23 |
| 11d-TXB2 | C20H32O6 | Analyte | (d4) TXB2 | 4.28 | 367 | 305 | 14 | 161 | 17 |
| 14,15-LTD 4 | C25H40N2O6S | Analyte | (d7) 5-oxoETE | 4.31 | 495 | 177 | 18 | 143 | 22 |
| 11βPGE 2 | C20H32O5 | Analyte | (d4) PGE2 | 4.32 | 351 | 315 | 10 | 271 | 16 |
| PGE 1 | C20H34O5 | Analyte | (d4) PGE2 | 4.32 | 353 | 317 | 10 | 273 | 19 |
| LXB 4 | C20H32O5 | Analyte | (d7) 5-oxoETE | 4.39 | 351 | 221 | 14 | 163 | 16 |
| PGD 1 | C20H34O5 | Analyte | (d7) 5-oxoETE | 4.51 | 353 | 235 | 13 | ||
| dh PGF 2α | C20H36O5 | Analyte | (d4) dhk PGF2α | 4.53 | 355 | 311 | 22 | 337 | 20 |
| PGD 2 | C20H32O5 | Analyte | (d7) 5-oxoETE | 4.54 | 351 | 271 | 16 | 315 | 10 |
| 15k PGF 1α | C20H34O5 | Analyte | (d4) dhk PGF2α | 4.55 | 353 | 193 | 25 | ||
| (d4) PGD 2 | C20H28D4O5 | IS | - | 4.58 | 355 | 319 | 10 | 275 | 16 |
| Adrenic acid | C22H36O2 | Analyte | (d7) 5-oxoETE | 4.7 | 331 | 287 | 14 | 233 | 15 |
| 15k PGE 2 | C20H30O5 | Analyte | (d7) 5-oxoETE | 4.7 | 349 | 331 | 10 | 287 | 12 |
| dhk PGF 2α | C18H30O5 | Analyte | (d4) dhk PGF2α | 4.78 | 353 | 195 | 15 | 113 | 22 |
| 15R-LXA 4 | C20H32O5 | Analyte | (d7) 5-oxoETE | 4.93 | 351 | 115 | 10 | 217 | 17 |
| PGFM | C20H34O5 | Analyte | (d4) dhk PGF2α | 4.97 | 353 | 183 | 24 | 223 | 20 |
| (d4) dhk PGF 2α | C20H30D4O5 | IS | - | 4.98 | 357 | 187 | 22 | 199 | 22 |
| Resolvin D 1 | C22H32O5 | Analyte | (d7) 5-oxoETE | 4.98 | 375 | 141 | 13 | 215 | 17 |
| LTD 4 | C25H40N2O6S | Analyte | (d7) 5-oxoETE | 5.01 | 495 | 177 | 18 | 143 | 23 |
| 6S-LXA 4 | C20H32O5 | Analyte | (d7) 5-oxoETE | 5.04 | 351 | 115 | 13 | 217 | 18 |
| 8-iso-15k PGF 2b | C20H32O5 | Analyte | (d4) dhk PGF2α | 5.05 | 351 | 219 | 14 | ||
| dihomo PGF 2α | C22H38O5 | Analyte | (d4) dhk PGF2α | 5.05 | 381 | 337 | 20 | 319 | 21 |
| PGEM | C20H32O5 | Analyte | (d4) dhk PGF2α | 5.06 | 351 | 333 | 10 | 315 | 18 |
| LTC 4 | C30H47N3O9S | Analyte | (d5) LTC4 | 5.06 | 624 | 272 | 21 | 254 | 22 |
| (d5) LTC 4 | C30H42D5N3O9S | IS | - | 5.06 | 629 | 272 | 21 | 254 | 23 |
| 15d PGA 2 | C20H28O3 | Analyte | (d7) 5-oxoETE | 5.07 | 315 | 187 | 20 | ||
| 11t LTD 4 | C25H40N2O6S | Analyte | (d7) 5-oxoETE | 5.15 | 495 | 177 | 18 | 143 | 22 |
| LTE 4 | C23H37NO5S | Analyte | (d5) LTE4 | 5.2 | 438 | 333 | 17 | 351 | 14 |
| (d5) LTE 4 | C23H32D5NO5S | IS | - | 5.2 | 443 | 338 | 17 | 356 | 15 |
| 11t LTC 4 | C30H47N3O9S | Analyte | (d5) LTC4 | 5.2 | 624 | 272 | 21 | 254 | 22 |
| dihomo PGE 2 | C22H36O5 | Analyte | (d7) 5-oxoETE | 5.28 | 379 | 343 | 12 | 361 | 10 |
| 11t LTE 4 | C23H37NO5S | Analyte | (d5) LTE4 | 5.33 | 438 | 333 | 16 | 351 | 14 |
| dhk PGD 2 | C20H32O5 | Analyte | (d7) 5-oxoETE | 5.37 | 351 | 333 | 10 | 315 | 12 |
| (d4) dhk PGD 2 | C20H28D4O5 | IS | - | 5.38 | 355 | 337 | 10 | 319 | 11 |
| PGA 2 | C20H30O4 | Analyte | (d7) 5-oxoETE | 5.5 | 333 | 315 | 10 | 271 | 14 |
| PGJ 2 | C20H30O4 | Analyte | (d7) 5-oxoETE | 5.53 | 333 | 233 | 10 | ||
| PGB 2 | C20H30O4 | Analyte | (d7) 5-oxoETE | 5.68 | 333 | 175 | 15 | 235 | 15 |
| 8,15-diHETE | C20H32O4 | Analyte | (d6) 20-HETE | 5.81 | 335 | 155 | 15 | 127 | 15 |
| bicyclo PGE 2 | C20H30O4 | Analyte | (d7) 5-oxoETE | 5.85 | 333 | 235 | 20 | 204 | 20 |
| 5,15-diHETE | C20H32O4 | Analyte | (d6) 20-HETE | 5.9 | 335 | 173 | 14 | ||
| Protectin D 1 | C22H32O4 | Analyte | (d7) 5-oxoETE | 5.92 | 359 | 153 | 15 | 206 | 15 |
| 7(R) Maresin-1 | C22H32O4 | Analyte | (d7) 5-oxoETE | 5.92 | 359 | 177 | 15 | 341 | 10 |
| (d4) LTB 4 | C20H28D4O4 | IS | - | 5.96 | 339 | 321 | 14 | 153 | 16 |
| LTB 4 | C20H32O4 | Analyte | (d7) 5-oxoETE | 5.98 | 335 | 195 | 14 | 317 | 13 |
| 15d PGD 2 | C20H30O4 | Analyte | (d7) 5-oxoETE | 6.01 | 333 | 271 | 14 | 315 | 10 |
| 12,13-EpOME | C18H32O3 | Analyte | (d7) 5-oxoETE | 6.15 | 295 | 195 | 15 | ||
| 12,13-diHOME | C18H34O4 | Analyte | (d4) 12,13-diHOME | 6.15 | 313 | 183 | 19 | ||
| (d4) 12,13-diHOME | C18H30D4O4 | IS | - | 6.15 | 317 | 185 | 21 | ||
| (d4) 9,10-diHOME | C18H30D4O4 | IS | - | 6.2 | 317 | 203 | 18 | ||
| 9,10-EpOME | C18H32O3 | Analyte | (d7) 5-oxoETE | 6.23 | 295 | 171 | 15 | ||
| 9,10-diHOME | C18H34O4 | Analyte | (d4) 12,13-diHOME | 6.23 | 313 | 171 | 27 | ||
| 12oxo LTB 4 | C20H30O4 | Analyte | (d7) 5-oxoETE | 6.25 | 333 | 179 | 15 | 153 | 15 |
| tetranor 12-HETE | C16H26O3 | Analyte | (d6) 20-HETE | 6.33 | 265 | 109 | 10 | 165 | 12 |
| 5,6-diHETE | C20H32O4 | Analyte | (d6) 20-HETE | 6.33 | 335 | 317 | 19 | 317 | 10 |
| 19,20-DiHDPA | C22H34O4 | Analyte | (d7) 5-oxoETE | 6.36 | 361 | 273 | 15 | 229 | 15 |
| 14,15-diHETrE | C20H34O4 | Analyte | (d7) 5-oxoETE | 6.38 | 337 | 207 | 15 | ||
| 12-HHTrE | C17H28O3 | Analyte | (d7) 5-oxoETE | 6.41 | 279 | 179 | 11 | 217 | 10 |
| 11,12-diHETrE | C20H34O4 | Analyte | (d7) 5-oxoETE | 6.54 | 337 | 167 | 17 | 169 | 16 |
| 20cooh AA | C20H30O4 | Analyte | (d7) 5-oxoETE | 6.56 | 333 | 289 | 16 | 297 | 18 |
| 9-HOTrE | C18H30O3 | Analyte | (d7) 5-oxoETE | 6.68 | 293 | 171 | 14 | ||
| 8,9-diHETrE | C20H34O4 | Analyte | (d7) 5-oxoETE | 6.68 | 337 | 127 | 19 | 185 | 15 |
| 13-HOTrE | C18H30O3 | Analyte | (d7) 5-oxoETE | 6.78 | 293 | 195 | 12 | ||
| 18-HEPE | C20H30O3 | Analyte | (d7) 5-oxoETE | 6.78 | 317 | 215 | 10 | 259 | 13 |
| 13-HOTrE(y) | C18H30O3 | Analyte | (d7) 5-oxoETE | 6.86 | 293 | 113 | 19 | ||
| 5,6-diHETrE | C20H34O4 | Analyte | (d7) 5-oxoETE | 6.87 | 337 | 145 | 16 | 319 | 15 |
| 19-HETE | C20H32O3 | Analyte | (d6) 20-HETE | 6.89 | 319 | 231 | 10 | 177 | 15 |
| (d6) 20-HETE | C20H26D6O3 | IS | - | 6.91 | 325 | 307 | 15 | 281 | 17 |
| 5,6-EET | C20H32O3 | Analyte | (d7) 5-oxoETE | 6.92 | 319 | 191 | 14 | ||
| 20-HETE | C20H32O3 | Analyte | (d6) 20-HETE | 6.92 | 319 | 289 | 15 | ||
| 15d PGJ 2 | C20H28O3 | Analyte | (d7) 5-oxoETE | 6.93 | 315 | 203 | 20 | ||
| 11-HEPE | C20H30O3 | Analyte | (d7) 5-oxoETE | 6.95 | 317 | 167 | 11 | 195 | 15 |
| 15-HEPE | C20H30O3 | Analyte | (d7) 5-oxoETE | 6.95 | 317 | 175 | 15 | 247 | 13 |
| 8-HEPE | C20H30O3 | Analyte | (d7) 5-oxoETE | 7.03 | 317 | 155 | 11 | ||
| 12-HEPE | C20H30O3 | Analyte | (d7) 5-oxoETE | 7.09 | 317 | 179 | 10 | ||
| 18-HETE | C20H32O3 | Analyte | (d8) 15-HETE | 7.12 | 319 | 261 | 18 | ||
| 9-HEPE | C20H30O3 | Analyte | (d7) 5-oxoETE | 7.13 | 317 | 149 | 12 | ||
| 17-HETE | C20H32O3 | Analyte | (d8) 15-HETE | 7.18 | 319 | 247 | 10 | ||
| 16-HETE | C20H32O3 | Analyte | (d8) 15-HETE | 7.19 | 319 | 233 | 12 | 189 | 11 |
| 5-HEPE | C20H30O3 | Analyte | (d7) 5-oxoETE | 7.19 | 317 | 115 | 10 | ||
| (d4) 13-HODE | C18H28D4O3 | IS | - | 7.29 | 299 | 198 | 17 | ||
| (d4) 9-HODE | C18H28D4O3 | IS | - | 7.3 | 299 | 172 | 18 | ||
| 13-HODE | C18H32O3 | Analyte | (d7) 5-oxoETE | 7.33 | 295 | 195 | 17 | ||
| 9-HODE | C18H32O3 | Analyte | (d7) 5-oxoETE | 7.34 | 295 | 171 | 16 | ||
| 20-HDoHE | C22H32O3 | Analyte | (d7) 5-oxoETE | 7.38 | 343 | 241 | 10 | ||
| (d8) 15-HETE | C20H24D8O3 | IS | - | 7.47 | 327 | 226 | 11 | 182 | 14 |
| 15-HETE | C20H32O3 | Analyte | (d8) 15-HETE | 7.56 | 319 | 175 | 13 | 219 | 10 |
| 16-HDoHE | C22H32O3 | Analyte | (d7) 5-oxoETE | 7.59 | 343 | 233 | 10 | 189 | 13 |
| 17 HDoHE | C22H32O3 | Analyte | (d7) 5-oxoETE | 7.59 | 343 | 245 | 10 | ||
| 19(20)-EpDPE | C22H32O3 | Analyte | (d7) 5-oxoETE | 7.59 | 343 | 241 | 10 | ||
| 17(18)-EpETE | C20H30O3 | Analyte | (d7) 5-oxoETE | 7.68 | 317 | 215 | 10 | ||
| 11-HETE | C20H32O3 | Analyte | (d8) 12-HETE | 7.7 | 319 | 167 | 16 | ||
| 13-oxoODE | C18H30O3 | Analyte | (d7) 5-oxoETE | 7.73 | 293 | 113 | 22 | 179 | 10 |
| 10-HDoHE | C22H32O3 | Analyte | (d7) 5-oxoETE | 7.73 | 343 | 153 | 14 | 181 | 10 |
| 14-HDoHE | C22H32O3 | Analyte | (d7) 5-oxoETE | 7.73 | 343 | 205 | 10 | 234 | 10 |
| (d8) 12-HETE | C20H24D8O3 | IS | - | 7.82 | 327 | 184 | 14 | 214 | 14 |
| 8-HETE | C20H32O3 | Analyte | (d8) 12-HETE | 7.83 | 319 | 155 | 10 | ||
| 11-HDoHE | C22H32O3 | Analyte | (d7) 5-oxoETE | 7.85 | 343 | 149 | 10 | 165 | 11 |
| 13-HDoHE | C22H32O3 | Analyte | (d7) 5-oxoETE | 7.87 | 343 | 193 | 10 | 221 | 10 |
| 12-HETE | C20H32O3 | Analyte | (d8) 12-HETE | 7.88 | 319 | 135 | 13 | ||
| 7-HDoHE | C22H32O3 | Analyte | (d7) 5-oxoETE | 7.91 | 343 | 141 | 11 | 201 | 15 |
| 9-oxoODE | C18H30O3 | Analyte | (d7) 5-oxoETE | 7.93 | 293 | 185 | 18 | 197 | 21 |
| 15-oxoETE | C20H30O3 | Analyte | (d7) 5-oxoETE | 7.95 | 317 | 113 | 15 | 139 | 18 |
| 14(15)-EpETE | C20H30O3 | Analyte | (d7) 5-oxoETE | 7.95 | 317 | 207 | 12 | ||
| 8-HDoHE | C22H32O3 | Analyte | (d7) 5-oxoETE | 7.99 | 343 | 189 | 10 | 109 | 13 |
| 9-HETE | C20H32O3 | Analyte | (d8) 5-HETE | 8 | 319 | 151 | 12 | 123 | 12 |
| (d8) 5-HETE | C20H24D8O3 | IS | - | 8.05 | 327 | 116 | 14 | 210 | 16 |
| 15-HETrE | C20H34O3 | Analyte | (d7) 5-oxoETE | 8.06 | 321 | 221 | 16 | ||
| 5-HETE | C20H32O3 | Analyte | (d8) 5-HETE | 8.11 | 319 | 115 | 15 | ||
| 8-HETrE | C20H34O3 | Analyte | (d7) 5-oxoETE | 8.21 | 321 | 157 | 16 | 163 | 18 |
| 12-oxoETE | C20H30O3 | Analyte | (d7) 5-oxoETE | 8.26 | 317 | 153 | 16 | ||
| 4-HDoHE | C22H32O3 | Analyte | (d7) 5-oxoETE | 8.35 | 343 | 101 | 12 | ||
| 17k DPA | C22H32O3 | Analyte | (d7) 5-oxoETE | 8.51 | 343 | 247 | 16 | ||
| (d11) 14,15-EET | C20H21D11O3 | IS | - | 8.65 | 330 | 219 | 10 | 175 | 13 |
| 14,15-EET | C20H32O3 | Analyte | (d7) 5-oxoETE | 8.7 | 319 | 219 | 10 | 175 | 12 |
| (d7) 5-oxoETE | C20H23D7O3 | IS | - | 8.78 | 323 | 279 | 11 | 130 | 15 |
| 16(17)-EpDPE | C22H32O3 | Analyte | (d7) 5-oxoETE | 8.79 | 343 | 233 | 10 | 201 | 10 |
| 5-oxoETE | C20H30O3 | Analyte | (d7) 5-oxoETE | 8.82 | 317 | 203 | 17 | ||
| (d11) 11,12-EET | C20H21D11O3 | IS | - | 8.9 | 330 | 179 | 11 | ||
| 11,12-EET | C20H32O3 | Analyte | (d7) 5-oxoETE | 8.94 | 319 | 208 | 10 | ||
| (d11) 8,9-EET | C20H21D11O3 | IS | - | 8.98 | 330 | 155 | 12 | 190 | 15 |
| 8,9-EET | C20H32O3 | Analyte | (d7) 5-oxoETE | 9.03 | 319 | 155 | 12 | 151 | 10 |
| 5-HETrE | C20H34O3 | Analyte | (d7) 5-oxoETE | 9.12 | 321 | 115 | 13 | ||
| 15-oxoEDE | C20H34O3 | Analyte | (d7) 5-oxoETE | 9.21 | 321 | 223 | 22 | 195 | 20 |
| 10-Nitrooleate | C18H33NO4 | Analyte | (d8) Arachidonic acid | 9.74 | 326 | 181 | 15 | 279 | 14 |
| 9-Nitrooleate | C18H33NO4 | Analyte | (d8) Arachidonic acid | 9.75 | 326 | 195 | 27 | ||
| Eicosapentaenoic acid | C20H30O2 | Analyte | (d8) Arachidonic acid | 9.76 | 301 | 257 | 10 | 203 | 13 |
| Docosahexaenoic acid | C22H32O2 | Analyte | (d8) Arachidonic acid | 10.07 | 327 | 283 | 15 | 229 | 15 |
| Arachidonic acid | C20H32O2 | Analyte | (d8) Arachidonic acid | 10.21 | 303 | 259 | 13 | 205 | 15 |
| (d8) Arachidonic acid | C20H24D8O2 | IS | - | 10.21 | 311 | 267 | 10 |
3.3. LC-MRM-MS analysis
- Mass spectrometry settings (unit arbitrary unless specified)
- Sheath gas: 45
- Aux gas:13
- Sweep gas: 1
- Ion transfer temperature: 350 °C
- Vaporizer temperature: 350 °C
- Electrospray voltage: 2,500 V in negative-ion mode
3.4. Quality control and data analysis
Check the overlaid pressure traces for all the runs in the same batch to evaluate the LC performance (see Note 16).
Check the QC data with TraceFinder 4.0 (Thermo) (see Note 17).
Examine the peak shapes and retention times of the targeted analytes in QCSTDs (see Note 18). A typical LC-MS chromatogram is shown in Figure 2, and the retention times of all oxylipin molecular species examined are listed in Table 1.
Analyze the coefficient of variances (CV%) of QCSTD within the same batch and check the accuracy of QCSTDs (see Note 19).
Perform calibration with TraceFinder as suggested by software manual (see Note 20).
Calculate absolute concentrations for each analyte in each sample with embedded calibration curves.
Evaluate performance of Pooled QC using statistic tools such as PCA with R statistical package or online tool such as MetaboAnalyst 4.0 [16] (see Note 21).
Examine pooled QC clusters for reproducibility and export concentration table (see Note 22).
Figure 2.

Overlaid total ion chromatograms obtained from scheduled LC-MRM-MS analysis of oxylipin standards.
4. Notes
Make sure standards are within expiration date. Some oxylipins are only good for 6-months. Detailed information can be obtained from vender’s website.
Vortex the MasterMix for 30 sec prior to use, and the solution should be used within a month.
10 x ISTD is suggested to be stored in 500 μL aliquots and not to freeze and thaw repeatedly.
This workflow also works for serum samples.
Thaw and aliquot plasma samples in ice to avoid thermo degradation.
It is highly desirable that 3–5 QCSTD and one pooled QC runs are added to every batch sample runs in order to monitor the instrument performance and the sample status.
Positive pressure manifold requires pressurized nitrogen to operate. If unavailable, it can be replaced by a regular vacuum manifold but the flow has to be optimized before use.
If the volume of the plasma/serum sample is less than 100 μL, make up the volume by adding PBS solution to prevent protein precipitation prior to add 10 x ISTD.
The volume can be adjusted according to the amount of samples.
Avoid drying sample above 30°C to prevent labile oxylipins, such as leukotrienes from degradation.
The settings are applicable to a TSQ instrument, but may vary dependent on the type of the mass spectrometer used.
A 1.5 min equilibrium time is required before the next injection to maintain repeatability.
The injection volume can be adjusted to meet the quantitation need of the interested analytes.
A guard columns with the same column packing is recommended for protection of the analytical column.
Poor repeatability in the earlier few runs maybe an indication of insufficient equilibration in the LC system.
Overlay pressure traces obtained from each LC-MS run with vendor’s software. If pressure lines are well matched among all the runs, the LC column is normally in good working condition. Otherwise, check column for clogging or leaking. If clogging, replace the guard column first.
It can also be performed by other tools such as Skyline (https://skyline.ms/project/home/software/Skyline/begin.view).
Although software can provide automated integration, it is still necessary to manually check to ensure that the correct peaks are integrated and identified.
If CV% for most analytes in QCSTD is less than 15%, QC is passed and data analysis for samples can proceed, otherwise rerun the samples.
The coefficient of determination (R2) should be ≥ 0.99, and a 1/x weighting factor be used for better fit.
Concentrations can be obtained directly using the software. Apply dilution factor and concentration factor if used.
The concentration table matrix is required for performing PCA analysis. Pooled QC samples clustered in the center of the PCA score plot is considered to be in good reproducibility and the analyses are valid for quantification.
Acknowledgement
This work was partially supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (R01 DK123499).
References
- 1.Murakami M (2011) Lipid mediators in life science. Exp Anim 60 (1):7–20 [DOI] [PubMed] [Google Scholar]
- 2.Burke JE, Dennis EA (2009) Phospholipase A2 structure/function, mechanism, and signaling. J Lipid Res 50 Suppl:S237–242. doi: 10.1194/jlr.R800033-JLR200 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Dennis EA, Norris PC (2015) Eicosanoid storm in infection and inflammation. Nat Rev Immunol 15 (8):511–523. doi: 10.1038/nri3859 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Nieman DC, Meaney MP, John CS, Knagge KJ, Chen H (2016) 9- and 13-Hydroxy-octadecadienoic acids (9+13 HODE) are inversely related to granulocyte colony stimulating factor and IL-6 in runners after 2h running. Brain Behav Immun 56:246–252. doi: 10.1016/j.bbi.2016.03.020 [DOI] [PubMed] [Google Scholar]
- 5.Caligiuri SPB, Parikh M, Stamenkovic A, Pierce GN, Aukema HM (2017) Dietary modulation of oxylipins in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol 313 (5):H903–H918. doi: 10.1152/ajpheart.00201.2017 [DOI] [PubMed] [Google Scholar]
- 6.Hanif A, Edin ML, Zeldin DC, Morisseau C, Falck JR, Nayeem MA (2017) Vascular endothelial overexpression of human CYP2J2 (Tie2-CYP2J2 Tr) modulates cardiac oxylipin profiles and enhances coronary reactive hyperemia in mice. PLoS One 12 (3):e0174137. doi: 10.1371/journal.pone.0174137 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Yeung J, Tourdot BE, Adili R, Green AR, Freedman CJ, Fernandez-Perez P, Yu J, Holman TR, Holinstat M (2016) 12(S)-HETrE, a 12-Lipoxygenase Oxylipin of Dihomo-gamma-Linolenic Acid, Inhibits Thrombosis via Galphas Signaling in Platelets. Arterioscler Thromb Vasc Biol 36 (10):2068–2077. doi: 10.1161/ATVBAHA.116.308050 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Sun Y, Koh HW, Choi H, Koh WP, Yuan JM, Newman JW, Su J, Fang J, Ong CN, van Dam RM (2016) Plasma fatty acids, oxylipins, and risk of myocardial infarction: the Singapore Chinese Health Study. J Lipid Res 57 (7):1300–1307. doi: 10.1194/jlr.P066423 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Tessaro FH, Ayala TS, Martins JO (2015) Lipid mediators are critical in resolving inflammation: a review of the emerging roles of eicosanoids in diabetes mellitus. Biomed Res Int 2015:568408. doi: 10.1155/2015/568408 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Medeiros R, Kitazawa M, Passos GF, Baglietto-Vargas D, Cheng D, Cribbs DH, LaFerla FM (2013) Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease-like pathology in mice. Am J Pathol 182 (5):1780–1789. doi: 10.1016/j.ajpath.2013.01.051 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Palacios-Pelaez R, Lukiw WJ, Bazan NG (2010) Omega-3 essential fatty acids modulate initiation and progression of neurodegenerative disease. Mol Neurobiol 41 (2–3):367–374. doi: 10.1007/s12035-010-8139-z [DOI] [PubMed] [Google Scholar]
- 12.Montgomery CL, Keereetaweep J, Johnson HM, Grillo SL, Chapman KD, Koulen P (2016) Changes in Retinal N-Acylethanolamines and their Oxylipin Derivatives During the Development of Visual Impairment in a Mouse Model for Glaucoma. Lipids 51 (7):857–866. doi: 10.1007/s11745-016-4161-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30 (3):377–386. doi: 10.1093/carcin/bgp014 [DOI] [PubMed] [Google Scholar]
- 14.Chen EP, Smyth EM (2011) COX-2 and PGE2-dependent immunomodulation in breast cancer. Prostaglandins Other Lipid Mediat 96 (1–4):14–20. doi: 10.1016/j.prostaglandins.2011.08.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Chen GY, Zhang Q (2019) Comprehensive analysis of oxylipins in human plasma using reversed-phase liquid chromatography-triple quadrupole mass spectrometry with heatmap-assisted selection of transitions. Anal Bioanal Chem 411 (2):367–385. doi: 10.1007/s00216-018-1446-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Chong J, Wishart DS, Xia J (2019) Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr Protoc Bioinformatics 68 (1):e86. doi: 10.1002/cpbi.86 [DOI] [PubMed] [Google Scholar]
