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Barn Owl’s Auditory Space Map Activity Matching
Conditions for a Population Vector Readout to Drive
Adaptive Sound-Localizing Behavior
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Space-specific neurons in the owl’s midbrain form a neural map of auditory space, which supports sound-orienting behavior.
Previous work proposed that a population vector (PV) readout of this map, implementing statistical inference, predicts the
owl’s sound localization behavior. This model also predicts the frontal localization bias normally observed and how sound-
localizing behavior changes when the signal-to-noise ratio varies, based on the spread of activity across the map. However,
the actual distribution of population activity and whether this pattern is consistent with premises of the PV readout model
on a trial-by-trial basis remains unknown. To answer these questions, we investigated whether the population response pro-
file across the midbrain map in the optic tectum of the barn owl matches these predictions using in vivo multielectrode array
recordings. We found that response profiles of recorded subpopulations are sufficient for estimating the stimulus interaural
time difference using responses from single trials. Furthermore, this decoder matches the expected differences in trial-by-trial
variability and frontal bias between stimulus conditions of low and high signal-to-noise ratio. These results support the hy-
pothesis that a PV readout of the midbrain map can mediate statistical inference in sound-localizing behavior of barn owls.
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Significance Statement

While the tuning of single neurons in the owl’s midbrain map of auditory space has been considered predictive of the highly
specialized sound-localizing behavior of this species, response properties across the population remain largely unknown. For
the first time, this study analyzed the spread of population responses across the map using multielectrode recordings and how
it changes with signal-to-noise ratio. The observed responses support the hypothesis concerning the ability of a population
vector readout to predict biases in orienting behaviors and mediate uncertainty-dependent behavioral commands. The results
are of significance for understanding potential mechanisms for the implementation of optimal behavioral commands across
species.

Introduction
The barn owl primarily relies on the interaural time difference
(ITD) and interaural level difference (ILD) to locate sounds in
azimuth and elevation, respectively (Moiseff, 1989). ITD is the

delay for a sound to reach one ear before the other; ILD is the
disparity in sound level between the two ears. Neurons in the
owl’s optic tectum (OT), homologous to the mammalian supe-
rior colliculus, respond to stimuli with distinct combinations of
ITD and ILD and are arranged topographically based on their
tuning (Knudsen, 1984; Olsen et al., 1989). Together, these neu-
rons form a map of auditory space that supports sound-orienting
behavior (du Lac and Knudsen, 1990; Masino and Knudsen,
1992, 1993; Fig. 1A). However, questions regarding how the neu-
ral population in the map is read out on a trial-by-trial basis
remain unanswered. Previous work proposed that a population
vector (PV) readout predicts the owl’s sound-localizing behavior
for varying reliability of sensory cues (Fischer and Peña, 2011;
Cazettes et al., 2016, 2018). However, a critical open question is
whether the response profile of the OT neural population
matches the premises of a PV readout, which is required to pre-
dict behavioral outcomes.
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A place code, implementing a “winner takes all” readout of
the owl’s OT map, fails to explain frontal biases observed in
behavior (Knudsen et al., 1979; Hausmann et al., 2009). In con-
trast, a PV model can predict these biases (Fischer and Peña,
2011; Cazettes et al., 2016). In this model, the preferred direction
of each neuron is described by a vector (Georgopoulos et al.,
1986) and a PV is computed by summing preferred direction
vectors weighted by the spike counts of the neurons across the
entire population (Fig. 1B). Under the assumption that activity
spreads across the map, frontal localization biases can be
explained through the known overrepresentation of frontal space
in the midbrain (Knudsen, 1982; Fischer and Peña, 2011; Fig.
1C). Additionally, the PV model predicts that the spread of pop-
ulation activity across the map broadens with increasing noise,
leading to the recruitment of more neurons representing frontal
directions. This prediction is consistent with the observed

increase in frontal localization bias for binaurally decorrelated
stimuli (Saberi et al., 1998). The change in patterns of population
responses when noise increases have not been measured, limiting
the ability to test predictions for how sensory reliability is repre-
sented on a trial-by-trial basis.

In the model proposed by Fischer and Peña (2011), a PV
readout approximates Bayesian statistical inference under the
premise that the overrepresentation of the front is proportional
to a prior for stimulus direction and the population activity pat-
tern is proportional to a likelihood for stimulus direction eval-
uated at the stimulus ITD. A consistent readout scheme was
proposed for visual percepts of orientation in humans (Girshick
et al., 2011). While previous work has shown that the nonuni-
formity of the map, acting as a prior, predicts behavioral bias
(Fischer and Peña, 2011) and that single-cell tunings could shape
the population response profile (Cazettes et al., 2016), whether
activity across the population matches prior and likelihood func-
tions remains unanswered. In this study, we conducted, for the
first time, simultaneous recordings of multiple OT neurons
across the map with different spatial tunings. We tested whether
a decoder based on the PV model can estimate the stimulus ITD
from single-trial responses. We found that this decoder could
predict the source location from the readout of population
responses and that the spread of activity across simultaneously
recorded neurons was sufficient for the decoder to display the
frontal bias normally observed for sounds in peripheral locations
(Knudsen et al., 1979; Hausmann et al., 2009; Cazettes et al.,
2018) and its increase in the presence of noise (Saberi et al.,
1998). Together, these results provide direct physiological evi-
dence that the activity in the owl’s midbrain auditory space map
could support a PV readout implementing statistical inference in
the owl’s sound localization pathway.

Materials and Methods
Experimental design and statistical analysis
The data for this study were collected through multielectrode array
recordings in four anesthetized animals (male and female) while present-
ing acoustic stimuli via calibrated earphones. The use of independently
moveable electrodes was found to be the most suitable method to reach
the optic tectum (depth, 14–18 mm) while causing the least harm during
in vivo recordings of multiple neurons simultaneously. To obtain the
most informative results for trial-by-trial analysis, spike sorting was per-
formed to isolate the responses of individual neurons. Alternative meth-
ods, such as larger connected arrays or wide-field imaging, were deemed
unfeasible at this time. The details of animal handling and surgery,
acoustic stimulation, electrophysiological recordings, and the multiple
steps of data analysis are explained in the following sections. The statisti-
cal significance of the results was tested with nonparametric tests,
comparing datasets for two groups/conditions against each other
(Mann–Whitney U test) or one dataset against a fixed value (Wilcoxon
signed-rank test), as detailed below.

Animal handling and surgery
Data were collected through in vivo recordings in four adult North
American barn owls (Tyto furcata) of both sexes (two male, two female).
Surgery and anesthesia were performed as described previously (Wang
et al., 2012). Briefly, the birds were anesthetized with intramuscular
injections of ketamine hydrochloride (Ketaset; 20mg/kg) and xylazine
(AnaSed; 4mg/kg), followed by prophylactic antibiotics (ampicillin;
20mg/kg, i.m.) and lactated Ringer’s solution (10 ml, s.c.). An adequate
level of anesthesia was maintained with supplemental injections of keta-
mine and xylazine during the experiment every 1–2 h. A metal head
plate was implanted before the first electrophysiology recording. The
head plate was used to restore the stereotaxic positioning of the head to

Figure 1. Population vector readout of the owl’s midbrain map of auditory space. A, Map
of auditory space in the OT showing an overrepresentation of frontal space. Neural receptive
fields are topographically arranged, where azimuthal tuning varies along the anterior–poste-
rior axis (dashed lines) and tuning to elevation along the dorsoventral axis (solid lines), plot-
ted in degrees (Adapted with permission from Knudsen, 1982, their Fig. 12). B, Population
vector readout of the owl’s midbrain space map. Each neuron in the space map is repre-
sented by a vector pointing toward its preferred direction (colored arrows). The overrepresen-
tation of frontal space (dashed line) drives the resultant vector slightly more frontal than the
actual location, matching the underestimation of sound sources observed across species.
Adapted with permission from Peña et al., 2019 (their Fig. 1). C, Relative proportion of neu-
ronal tuning to physiologically available ITDs. The Gaussian function predicted in Fischer and
Peña (2011) was used to characterize the overrepresentation of frontal space, based on data
in A. Approximately three times more neurons are tuned to frontal locations (ITDs near 0 ms;
filled circle) than peripheral locations (ITDs. 100 ms; open circles).
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locate the OT. Recording wells over the OT in each brain hemisphere
were constructed out of dental acrylic to allow for repeated recordings.

After each recording session, the recording well was sealed with sili-
cone (Quick-Pro, Warner Tech-Care). An analgesic, carprofen (Rimadyl;
3mg/kg, i.m.), was administered at the end of each surgery to prevent
inflammation and pain. Owls were given a minimum of 14d between re-
cording sessions. The brain hemisphere recorded was alternated for each
owl to provide additional recovery time for brain tissue. All procedures
complied with National Institutes of Health guidelines and were approved
by the institutional animal care and use committee of the Albert Einstein
College of Medicine.

Acoustic stimuli
All experiments were performed in a sound-attenuating chamber
(Industrial Acoustic). Stimuli were generated by System II hardware
[Tucker-Davis Technologies (TDT)] controlled by a computer running
custom-made software. Dichotic stimuli were presented through cus-
tom-built earphones consisting of a speaker (model 1914, Knowles) and
microphone (model EK-23 024, Knowles). The microphones were used
to calibrate earphones once inserted into the ear canal to adjust for irreg-
ularities in phase and amplitude from 0.5 to 13kHz, comprising the
owl’s hearing range. To create binaurally decorrelated sounds, a different
independently generated noise was added to the signal for each ear, with
the level of binaural correlation (BC) determined by the relative power
between the signal and the noise.

Acoustic stimuli consisted of broadband (0.5–11 kHz) signals with a
5ms rise–fall time. Tunings for ITD, ILD, and average binaural intensity
were assessed using stimuli of 100ms presented at a 200ms interstimu-
lus interval (ISI). For binaural correlation data, stimuli were 200ms long
and presented at a 500ms ISI. This longer stimulus duration was chosen
to ensure that enough response spikes could be recorded per stimulus,
and the ISI was increased at the same time to avoid the potentially stron-
ger response adaptation induced by these longer stimuli affecting
responses in subsequent trials. Trial order was randomized to mitigate
neuronal adaptation, which could affect the performance of a decoder.

Electrophysiological recordings
The OT was targeted stereotaxically (Knudsen and Knudsen, 1983). At
the beginning of the first recording session, the coordinates of the OT
were mapped by recordings with single tungsten electrodes. The multie-
lectrode array (seven channels; Eckhorn Matrix System, Thomas
Recording) was positioned within these coordinates. This system con-
sisted of seven parallel electrodes arranged linearly (305mm spacing) and
moved independently. Electrode spacing was sufficient to bar recording
the same neuron by multiple electrodes. OT single neurons were distin-
guished by their unambiguous tuning to ITD and ILD, bursty firing, and
response to light stimulation (Knudsen, 1984). The array was aligned
parallel to the midsagittal plane to cover regions of the map representing
different azimuth positions. To ensure that results from each subset of
neurons depend on the ensemble of different best ITDs rather than
being distorted by systemic errors arising from differential ILD tunings,
neurons were chosen such that all neurons in a subset responded
strongly to a common ILD, which was used for all subsequent
stimulation.

Recorded signals were amplified by a built-in preamplifier in the
Eckhorn Matrix, digitized by an OmniPlex Amplifier (Plexon), and
stored. Along with the continuous data and spike times, the Plexon files
contained timestamps for TTL (transistor–transistor logic) pulses sent
from the TDT system, marking the onset of acoustic stimuli.

Data analysis
Spike sorting. Following the recordings, offline spike-sorting software

(Offline Sorter) based on principal component analysis was used to iso-
late neuronal spikes for each electrode. Spike sorting was performed
blinded to auditory properties of the isolated units. Isolated units that
did not show a tuning to binaural cues after spike sorting were not
included in the analysis.

Response rates and normalization. Response rates were extracted
from spike counts observed during the presentation period of acoustic

stimuli. Consistent with the assumption of the previously proposed PV
model (Fischer and Peña, 2011) and reported experimental evidence
(Cazettes et al., 2016), the maximum firing rates of OT neurons showed
a uniform distribution across the map. During recording sessions, which
each lasted several hours, the responsiveness of some neurons fluctuated,
possibly because of cycles of anesthetic clearance and re-administration,
but there was no qualitative change in the tuning to binaural stimuli.
Based on these premises, firing rates of each neuron were scaled by a fac-
tor minimizing the root mean square error (rmse) between mean
responses from an ITD tuning curve collected at the start and scaled
mean responses to the same ITDs collected later in the same recording
session. These scaling factors were computed from responses to stimuli
at 100% BC for each neuron and were applied across stimulus BCs.
Responses were then normalized to the maximal firing rate of each neu-
ron, observed in ITD tuning curves obtained at corresponding BCs.

Spread of activity. For the proposed PV readout to predict the owl’s
behavior, activity must spread across the map, such that neurons display
nonzero responses to nonpreferred stimuli. The predicted spread of ac-
tivity is derived from the relationship between the PV and a Bayesian
model that has been shown to match the owl’s sound location behavior
(Fischer and Peña, 2011). Fischer and Peña (2011) mathematically
proved an equivalence between a Bayesian estimate and a PV estimate of
sound direction under the following conditions: (1) the distribution of
preferred directions in the population is equal to the prior distribution for
stimulus direction; and (2) the population activity pattern, on a given trial,
is proportional to the likelihood function for stimulus directions. It has
been established that the distribution of preferred directions in OT is con-
sistent with a Gaussian prior for stimulus direction (Fischer and Peña,
2011). However, testing the model also requires confirming that the popu-
lation activity pattern, on average and, more importantly, on a given trial,
is proportional to the likelihood function for stimulus direction.

The predicted spread of activity can be described as follows across
neurons in the map by a Gaussian curve centered at the stimulus ITD:

response ITDunit; ITDstimulusð Þ / e
�0:5

ITDunit�ITDstimulus
219:34e�0:1131�BC141:2ms

� �2

;

where ITDunit is the best ITD of the neuron, ITDstimulus is the ITD of the
presented stimulus, and BC is the binaural correlation on a scale from 0
to 100. This formula is the function used by Fischer and Peña (2011) to
describe the likelihood in a Bayesian framework modeling the owl’s
sound localization behavior. We tested the sufficiency of the spread of
activity by fitting the Gaussian function to data from population record-
ings. Normalized responses of all recorded neurons (n=222) across 500
presentations of stimuli with the same ITD were pooled. These responses
were aligned based on their respective stimulus ITDs, yielding a popula-
tion-wide response profile comparable to the assumed spread of activity
used in the PV readout model. To fit this function to the response pro-
file, the SD of the Gaussian curve was allowed to vary to minimize the
rmse between the curve and the response profile. These fitted SD values
for each BC were then used to rerun the original model and in a decoder,
both of which are described below.

PV model simulation. We tested the population vector model of
Fischer and Peña (2011) using the measured values for the spread of ac-
tivity over the OT population from the array recordings. As in the study
by Fischer and Peña (2011), the model consisted of 500 neurons with a
Gaussian distribution of preferred directions with a mean of 0° and an
SD of 23.3°. On each stimulation trial, one of four sound source direc-
tions u (655° or675°) and one of three binaural correlations (20, 40, or
100%) were applied. We modeled the ITD in the sounds at the two ears
as a sinusoidal function of source direction corrupted by Gaussian noise,
as follows:

ITD ¼ Asinðvu Þ1h ;

where A = 260 ms is the maximum ITD, v = 0.0143 radians/° is the
angular frequency that determines the direction where ITD reaches the
maximum, and h is drawn from a zero-mean Gaussian distribution
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with SD sh . Fischer and Peña (2011) modeled the SD sh to vary with
binaural correlation as follows:

sh ðBCÞ ¼ 219:34e�0:1131�BC 1 41:2ms:

Here, we tested the model using SD sh values derived from the
measured spread of activity over the OT population using array record-
ings (100% BC, sh ¼ 34:0ms; 40% BC, sh ¼ 53:2ms; 20% BC,
sh ¼ 65:0ms).

The mean population response on a given stimulus trial was assumed
to be proportional to the likelihood function of the stimulus direction
(Fischer and Peña, 2011). Correspondingly, the response of the nth neu-
ron to the observed ITD, rn ITDð Þ, was drawn from a Poisson distribu-
tion with mean an ITDð Þ; as follows:

an ITDð Þ ¼ 10e�0:5
ITD�mn
sh

� �2

;

where mn ¼ Asinðvu nÞ is the preferred ITD corresponding to the pre-
ferred direction u n.

The PV was computed as a linear combination of the preferred direc-
tion vectors of the neurons, weighted by the neural responses, as follows:

PV ITDð Þ ¼ 1
N

XN

n¼1

rn ITDð Þuðu nÞ;

where uðu nÞ is a unit vector pointing in the preferred direction of the
nth neuron, and rn ITDð Þ is the response of the nth neuron, drawn from
a Poisson with mean an ITDð Þ. The direction estimate was obtained by
computing the angle of the PV.

Decoder. To test whether the spread of activity in responses of sub-
sets of simultaneously recorded neurons matched model expectations,
we built a decoder based on a model for a PV readout implementing
Bayesian inference reported previously (Fischer and Peña, 2011). The
decoder uses the spread of activity to estimate the stimulus ITD from the
responses of a subset of simultaneously recorded neurons. The evalua-
tion of the performance of this decoder was conducted both for average
and single-trial recorded responses.

For a given stimulus, the Gaussian function describing the spread of
activity was centered at the stimulus ITD with an amplitude of 1 and an
SD estimated from normalized responses across neurons in the map for
stimulus ITD (see section Spread of activity). The curve was then shifted
in ITD, fitting the ITDstimulus parameter by minimizing the rmse
between the function and the normalized mean responses of the neural
subset. The ITD at the maximum of the fitted Gaussian function served
as the ITD estimate of the decoder.

This ITD estimate was also used to predict a PV readout estimate
from trial-by-trial responses of subsets of simultaneously recorded neu-
rons across the map. Limited by technical constraints, preferred ITDs of
simultaneously recorded subsets of neurons did not span across the
entire ethological range available to the owl and could not reflect the
overrepresentation of frontal space. However, given the proved equiva-
lence between a Bayesian estimate and the PV estimate (Fischer and
Peña, 2011), we used the fitted Gaussian as a likelihood function in a
Bayesian model that would produce sound location estimates consistent
with a PV from a full population of neurons that match the same
Gaussian function. The position of the fitted Gaussian function’s maxi-
mum served as the maximum likelihood ITD estimate. With the
Gaussian form for the likelihood and prior, the Bayesian estimate from
the posterior distribution is a weighted linear combination of the maxi-
mum likelihood estimate and the mean of the prior. Given that the
mean of the prior describing the frontal bias is zero (Fischer and Peña,
2011), the Bayesian estimate is a scaling of the maximum likelihood esti-
mate determined by the variance of the prior, Var(prior) = (23.3° �
2.8 ms/°)2 (values from Fischer and Peña, 2011), and the variance of the
maximum likelihood estimate, Var(ML) = s2 (SD s determined by fit-
ting a Gaussian function to the population data; see section Spread of

activity). The estimate of the posterior mean, and thus the approximate
PV readout, ITDreadout, was obtained from the ITD estimate
(ITDestimate):

ITDreadout ¼ ITDestimate
VarðpriorÞ

Var priorð Þ1VarðMLÞ :

The performance of this decoder was quantified by the estimation
error, calculated for every subset of neurons by the median across trials
of the differences between ITD estimates and stimulus ITD. A Mann–
Whitney U test was used to compare estimates for ITDs within and out-
side of the ITD range preferred by the neural subset. A Wilcoxon
signed-rank test was used to test whether the estimation errors deviated
from 0 ms (no error). Additionally, across-trial variability of estimated
stimulus ITD was assessed by the interquartile range (IQR) of ITD esti-
mates across trials, which is the difference between the 25th and 75th
percentiles. A Mann–Whitney U test was used to compare the IQRs of
estimates within or outside of the subset’s preferred ITD range. For each
subset of neurons and each stimulus ITD, responses to 500 trials were
recorded and 330–500 trials were analyzed. We excluded trials where the
average response across all neurons was ,15% of their respective maxi-
mal firing rate, based on the assumption that such low overall activity
would not lead to a behaviorally relevant readout and the observation
that the fitting procedure yielded largely ambiguous results under these
conditions.

Data availability
Custom Python code used for data analysis is available at https://github.
com/penalab/Ferger-Shadron-et-al-2021 or available on request.

Results
Subsets (N=36) of multiple simultaneously recorded OT single
neurons (n= 5–7/subset; 222 total neurons) were collected from
four barn owls (two males and two females). Each subset under-
went a stimulation protocol aimed to characterize population
responses to varying ITDs at different levels of signal-to-noise ra-
tio implemented by manipulating the BC of acoustic signals (see
Materials and Methods).

Recordings confirmed the expected topography of ITD tun-
ing across OT (Knudsen, 1982; Fig. 1A). Along the anterior–pos-
terior axis, preferred ITDs ranged from frontal (small ITDs) to
lateral (large ITDs; Fig. 2A). Results were also consistent with the
previously reported relationship between ITD and frequency
tuning, where frontal neurons are tuned to higher frequencies
(Knudsen, 1984; Cazettes et al., 2014; Fig. 2B), and there was no
significant correlation between maximum firing rate and pre-
ferred ITD (Cazettes et al., 2016; Fig. 2C).

The PV model requires a spread of activity across the map
where neurons show nonzero responses to nonpreferred ITDs,
sufficient for the PV readout to predict a frontal bias that varies
as a function of stimulus location and signal-to-noise level. The
pattern of population responses across the map, the ability to
decode stimulus ITD, and changes induced by signal-to-noise ra-
tio are described below.

Spread of activity across the map
Population responses showed widespread activity across the map
(Fig. 3A). A Gaussian function with an SD of 41.2 ms was used in
a previous theoretical study (Fischer and Peña, 2011) to predict
the spread of activity and a population response profile that
would allow a PV decoder to match the owl’s localization behav-
ior. The population responses measured using multielectrode
arrays were well correlated to this predicted pattern (r2 = 0.61;
Fig. 3A, dark gray curve). Fitting the SD of the Gaussian function
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to the response data of 222 recorded neurons showed a spreading
width slightly smaller (SD= 34.0 ms, r2 = 0.671; Fig. 3A, dashed
black curve) than the predicted value but nevertheless following
the shape required for a PV readout to match the owl’s localiza-
tion behavior.

Neurons across the map, with each one having a preferred
ITD, still responded weakly to sounds away from their preferred
ITDs (Fig. 3B). Peaks in the responses of midbrain space-specific
neurons to ITDs away from their preferred ITDs are called side
peak responses. The position and height of these side peaks rela-
tive to the main peak depend on the frequency range that a neu-
ron responds to and on the frequencies contained in a stimulus.
For the broadband stimuli used in this study, in 71% of the ana-
lyzed neurons, responses at the highest side peak were lower
than one-fourth of the response at the best ITD (Fig. 3C, dashed
line); in 38% of the neurons, these side peak responses were
lower than one-tenth of the peak response (Fig. 3C, dash-dotted
line). Additionally, this midbrain map population contains neu-
rons with a range of best frequencies (Knudsen, 1984; Cazettes et
al., 2014), and thus side peak positions across neurons are nono-
verlapping. Therefore, side peak responses can be considered as

being less important for shaping the pop-
ulation readout when broadband stimuli
are presented. Thus, we used a single-
peaked Gaussian to fit the response pro-
file, as proposed in the PV readout
model. Yet, we observed weak population
responses that were mostly independent
of stimulus ITD. In particular, neurons
tuned to frontal ITDs showed sparse
responses to stimuli away from the mid-
line (Fig. 3B). This spread of responses,
in conjunction with the known overre-
presentation of frontal space, was suitable
to drastically bias a PV readout toward
the front, consistent with the prediction
of the model.

Decoding stimulus ITD from
population responses
Subsets of five to seven OT neurons
tuned to different ITDs were recorded
simultaneously (Fig. 4A). The same
Gaussian curve, representing the pre-
dicted response profile suitable for a
PV readout model (Fischer and Peña,
2011) was fitted to the mean normal-
ized responses across 500 trials of sub-
sets of recorded neurons (for details,
see Materials and Methods), and the
position of the maximum of the fitted
curve was used to estimate the stimu-
lus ITD (Fig. 4B). These estimates
deviated little from the stimulus ITD,
with 50% of the absolute estimation
errors ,7.5 ms and 90% ,18.2 ms. The
distribution of estimates was nonsigni-
ficantly shifted toward frontal ITDs,
with a median across all estimates of
�1.05 ms, where negative values indi-
cate an estimation error toward the
front (p = 0.244, Wilcoxon signed-rank
test). Adding to the above analysis of
the spread of activity, this is further

evidence that averaged population responses match the
response profile required for a PV readout (Fig. 4B).

To further analyze this finding, neural responses on a trial-
by-trial basis were assessed using the same model-driven decoder
for estimating the stimulus ITD. A distribution of single-trial
estimates was computed for every subset of neurons and stimu-
lus ITD (Fig. 4C), described by the deviation of the median esti-
mate from the stimulus ITD (estimation error) and the
interquartile range of estimates (estimation IQR). Despite the
limited number of neurons and the natural response variability
of sparsely firing OT neurons, the decoder showed high accu-
racy, with 50% of the absolute estimation errors ,6.5 ms for
stimulus ITDs within the range of preferred ITDs of the recorded
neurons, and ,8.6 ms for stimuli outside that range (Fig. 4D).
Estimation errors for both of these conditions were not signifi-
cantly different (p=0.367, Mann–Whitney U test) and slightly,
but not significantly, shifted toward the front for stimuli within
the represented range (median, �1.9 ms; p= 0.133, Wilcoxon
signed-rank test) and even less for stimuli outside the range (me-
dian, �0.2 ms; p=0.504, Wilcoxon signed-rank test; Fig. 4D).

Figure 2. Population tuning properties. A, Best ITDs of neurons in the dataset. Subsets of neurons recorded simultaneously
are plotted as one row. Left and right pointing triangles show recordings from the left and right hemisphere, respectively. Gray
scales indicate on which electrode in the array neurons were found, with the electrode 1 (white) located most anterior and the
electrode 7 (black) located most posterior. Neurons recorded from the same electrode are plotted individually, with the same
color. Inset a, Histogram of best ITD ranges for each subset of neurons. Inset b, Histogram of the number of neurons for each
subset. B, Stimulus frequency range eliciting responses of all neurons as function of their absolute best ITD. Connected white
and black circles indicate the top and bottom frequency bounds for which the unit responded at 50% of its maximum response,
respectively. Solid line represents linear regression (linear fit properties shown on top right). C, Maximum firing rates of all neu-
rons as a function of their absolute best ITD, computed as the maximal firing rates of each unit in ITD tuning curves (�240 to
240 ms, 20 ms steps), averaged over 10–20 repetitions. Solid line represents linear regression (linear fit properties shown on
top right).
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Estimates varied moderately across trials with 50% of the estima-
tion IQRs,27.0 ms (90%,42.9 ms) and no significant difference
between stimuli within and outside of the represented range
(p=0.293, Mann–Whitney U test; Fig. 4E). Despite the low num-
ber of neurons and the inherent variability of responses, these esti-
mates are within physiologically plausible margins and approach
behavioral reports of sound localization accuracy (Knudsen et al.,
1979; Knudsen and Konishi, 1979) and minimum audible angles
of 3–5°, equivalent to;8.4–14 ms ITD (Bala and Takahashi, 2000;
Bala et al., 2003; Krumm et al., 2019). As this PV model-based de-
coder heavily relied on the spread of activity and performed
equally well for stimuli within and outside the range of ITDs pre-
ferred by subsets of recorded neurons, these results confirm that
the pattern of activity is sufficient for effective performance of this
model, not only for averaged but also trial-by-trial responses.

Because of limitations in the size of our electrode array, a
given subpopulation of recorded neurons would not be able to

reflect the known overrepresentation of frontal space in the mid-
brain map (Knudsen, 1982). To circumvent this and obtain a
physiologically relevant estimate of the population readout, we
took advantage of the demonstrated mathematical equivalence of
PV and Bayesian estimates (Fischer and Peña, 2011). The median
of trial-by-trial ITD estimates and the overrepresentation of
frontal space corresponded, respectively, to the maximum likeli-
hood and prior estimates of the Bayesian readout model. Thus,
applying the prior post hoc to ITD estimates from subsets of
recorded neurons resulted in approximate estimates of the PV
readout from a full population matching the observed response
pattern. These readout estimates displayed a systematic underes-
timation of stimulus ITD, which was more pronounced at more
lateral ITDs (Fig. 4F). These results are consistent with behav-
ioral findings showing owls underestimate stimulus ITD in the
periphery (Knudsen et al., 1979; Hausmann et al., 2009; Cazettes
et al., 2016) and indicating that the PV decoder across the entire
population could display this bias within individual trials.

Effect of sensory noise on population responses
The PV model explains biases toward the front, observed in
behavior, by a combination of the overrepresentation of frontal
space and an increased spread of responses for less reliable or
less binaurally correlated stimuli (Fischer and Peña, 2011;
Cazettes et al., 2016). The further responses to lateral stimuli
spread throughout the map, the more neurons representing fron-
tal locations will be active and contribute to a frontal bias of the
PV readout. Thus, a prediction of the PV readout model is that
the spread of activity should increase with decreasing levels of
BC of an acoustic stimulus. It has been shown that responses of
ITD-sensitive neurons to stimuli at their preferred ITDs are
reduced by decorrelating stimulus signals across the ears (Albeck
and Konishi, 1995; Saberi et al., 1998; Cazettes et al., 2016).
However, it remained an open question whether binaurally
decorrelated sounds increase responses to unfavorable ITDs and,
as a consequence, the activity spreads further across the map.
Consistent with the model predictions, the spread of responses
across the population increased as the signal-to-noise ratio (BC)
decreased (Fig. 5A,B). This increased width of the spreading of
activity was measured by fitting a Gaussian function to the popu-
lation activity, as was done before for stimuli at 100% BC. This
fitting showed responses to stimuli at 40% BC (Fig. 5A) spread-
ing slightly more (SD=53.2 ms, r2 = 0.08) than predicted in the
model (Fischer and Peña, 2011; SD= 43.6 ms, r2 = 0.06 for the
presented data). Yet, this spreading further increased for stimuli
at 20% BC (Fig. 5B; SD=64.0 ms, r2 = 0.004), matching the pre-
dictions of the model (SD= 65.0 ms, r2 = 0.004). Importantly, we
found that the increased spread of activity was because of both a
decreased response to preferred ITDs and a relative increase in
firing to nonpreferred ITDs (Fig. 5A,B). The diversity of
response changes across neurons induced by increased noise
explains the relatively low coefficients of determination for fitting
Gaussian functions at the lower levels of BC, but matches the
expected overall spread of activity induced by BC changes. This
is consistent with premises of a PV readout model implementing
the reported increase in frontal bias for stimuli with low BCs
(Saberi et al., 1998; Fischer and Peña, 2011).

The spreads of activity of recorded neurons at different levels
of BC were then applied to the original PV model described in
the study by Fischer and Peña (2011). Briefly, a modeled popula-
tion of 500 simulated OT neurons was constructed, responding
to stimuli at 655° and 675° in azimuth and different levels of
BC. Gaussian functions with SD values determined as described

Figure 3. Spread of activity across the map. A, Normalized neural responses as a function
of the best ITD of each unit relative to the stimulus ITD. Each dot represents the normalized
response of one neuron across 500 repetitions of a particular stimulus. Note that each neuron
appears multiple times, paired with stimuli of different ITDs. Responses were normalized by
the maximum firing rate of each neuron in an ITD tuning curve, denoted by the dotted hori-
zontal line. Solid dark gray curve, The spread of activity presumed in the population vector
readout model (Fischer and Peña, 2011); dashed black curve, the same function with the
best fitting SD, used in the PV model based decoder. B, Neural responses across the map as
a function of the stimulus ITD (x-axis) and their best ITD (y-axis). Neurons were pooled
according to their preferred ITD (8–26 units/row). Gray scales indicate the normalized
response (color bar), averaged across pooled neurons. C, Relative side peak responses of OT
neurons. Response of the highest side peak relative to the maximal response as histogram
(left y-axis) and cumulative distribution (solid curve; right y-axis). The inset exemplifies the
method. The dashed and dash-dotted lines indicate the proportion of relative side peak
responses,25% and,10%, respectively.
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above were used to calculate the mean population pattern of ac-
tivity from which simulated Poisson responses were drawn (see
Materials and Methods). Responses were used as the amplitude
of preferred direction vectors for each neuron to compute the
PV readout from the direction of the sum of these vectors, lead-
ing to a direction estimate for the four stimulus directions at
each level of BC (Fig. 5C, black lines). These results were com-
pared with estimates produced by the same model when using
the original SD values proposed by Fischer and Peña (2011). The

PV model using the SD values from Fischer and Peña (2011) and
the measured SD values produced similar results. The slightly
smaller spread of activity at 100% BC found in the present study
compared with Fischer and Peña (2011) estimation led to less
underestimation of azimuth angles (19.6° at 675° and 9.9° at
655° on average, compared with 23.7° and 12.9° in the original
model, respectively). The relatively larger spread of activity at
40% BC predicted a stronger frontal bias than the original model
(30.5° and 19.4° compared with 25.6° and 14.0°). However, at

Figure 4. Performance of the PV decoder based on simultaneous population recordings in the OT space map. A, ITD tuning curves of an example subset of neurons recorded simultaneously
(left hemisphere). The best ITD of each neuron is indicated in the top left corner and by a vertical dotted line. Positive ITDs indicate that the stimulus to the right (contralateral) ear is leading.
Error bars show the SEM. B, ITD decoding from response profiles of subsets of neurons. Normalized mean responses (open circles) of the neurons shown in A to stimuli of four different ITDs
(indicated by open triangles; values shown above each plot) as a function of their best ITD. A Gaussian curve, representing the population response profile proposed by the model (Fischer and
Peña, 2011; same as in Fig. 3A), was fitted to these neural responses through scaling (dark gray line) and then adjusting its ITD direction (black dotted line) to minimize the root mean square
error. The peak of the fitted curve yielded the estimated ITD (indicated by small black triangles; values listed above each curve). C, Estimation of stimulus ITDs from recorded subsets of neurons
on a trial-by-trial basis. Histograms of estimated ITDs using the same examples and decoding method described in B but based on single-trial responses. Stimulus ITDs are listed above each
plot, indicated by open triangles. Median estimated ITDs are shown as black triangles, and across-trial variability is shown as horizontal black lines indicating the 25th to 75th percentile ranges
(IQR). D, Errors of trial-by-trial ITD estimates for all subsets of recorded neurons and stimuli. Differences between stimulus ITD and subpopulation median ITD estimates are shown in groups,
indicating whether stimulus ITDs were within or outside of the range of ITDs covered by the best ITDs of neurons. Positive and negative error values indicate estimates that were more lateral
and more frontal than the stimulus ITD, respectively. Boxes range from the 25th to the 75th percentiles, and horizontal lines indicate the median. The bottom and top error bars indicate the
5th and 95th percentiles, respectively. Small black dots show all individual data. E, IQRs of trial-by-trial ITD estimates for all subsets of recorded neurons and stimuli. Data are grouped as in D,
and boxplots and markers have the same formatting. F, Estimates of the population readout based on trial-by-trial ITD estimates. Median ITD estimates of all subsets of recorded neurons
shown in D were combined with the Bayesian prior proposed to represent the overrepresentation of frontal space (Fig. 1C; Fischer and Peña, 2011) to estimate the overall population readout.
Results are plotted as function of the stimulus ITD. Deviation from identity line (diagonal) shows the frontal bias in the readout for stimuli with lateral ITDs. Solid line indicates linear fit across
estimates.
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20% BC the width of the spread and the underestimation were
almost identical (36.6° and 23.5° compared with 36.6° and 23.1°)
to the original model. Despite these small quantitative differen-
ces, the use of experimentally obtained SD values did not affect
the ability of the PV model to explain an increased frontal bias in
response to decorrelated stimuli. These results are consistent with
behavioral reports (Saberi et al., 1998) of the owl’s performance
and bias toward frontal directions at localizing decorrelated
sounds. This supports the validity of our values for the spread of
activity across the owl’s map of auditory space and its increase for
decorrelated stimuli and their feasibility to drive a PV readout.

Applying the same PV model-based decoder as before (Fig.
4B–E) to estimate stimulus ITDs based on mean population
responses resulted in moderate estimation errors for stimuli with

low BC, as could be expected (Fig. 6A). At 40% BC, the median
absolute estimation error across subsets was 23.0 ms, and at 20%
BC this increased to 39.2 ms, both considerably larger than at
100% BC, where it was only 7.4 ms. Interestingly, when analyzed
on a trial-by-trial basis, increasing the noise level induced larger
estimation errors (Fig. 6B). This was accompanied by an
increased trial-to-trial variability of ITD estimates (Fig. 6B).
Decreasing the signal-to-noise ratio decreased this decoding per-
formance in two ways. First, the across-trial median estimates
deviated more from the stimulus ITD, leading to median abso-
lute estimation errors of 15.7 ms at 40% BC for stimuli within
and outside of the range of ITDs represented by the subset of
recorded neurons, and 23.7 ms (within) and 22.0 ms (outside) at
20% BC (Fig. 6C). Considering the direction of the deviation,
there was a small but statistically significant frontal bias for stim-
uli within the represented range at 40% BC (median, �6.7 ms;
p= 0.0143, Wilcoxon signed-rank test) and 20% BC (median,
�10.8 ms; p=0.00495), and less for stimuli outside that range
(40% BC: median, �4.0 ms; p=0.856; 20% BC: median, 10.38
ms; p=0.856; Fig. 6C). Second, the intertrial variability increased
drastically with noise, as expressed by the estimation IQR, which
more than doubled at 40% BC (median across all subsets and
stimuli, 67.1 ms) compared with 100% BC, and further increased
at 20% BC (median, 90.1 ms; Fig. 6D). Similar to estimates at
100% BC, there was no difference between estimation IQRs for
stimuli within and outside the range of best ITDs of neurons at ei-
ther noise level (40% BC, p=0.422; 20% BC, p=0.237; Mann–
Whitney U test). Both the increase in estimation error and the
increase in trial-to-trial variability are consistent with larger behav-
ioral variability reported at these noise levels (Saberi et al., 1998;
Cazettes et al., 2016). This suggests that the spread of activity in
response to decorrelated noise matches conditions of a PV model
readout. Median ITD estimates were, as described before, com-
bined with the overrepresentation of frontal space to yield popula-
tion readout estimates. Consistent with model predictions (Fischer
and Peña, 2011), the population readout underestimated the stim-
ulus ITD for stimuli of lower BC (Fig. 6E). These results indicate
that on a trial-by-trial basis, the population response profiles meet
the criteria for a PV readout and together can explain the owl’s be-
havioral bias (Saberi et al., 1998) and variability (Saberi et al., 1998;
Cazettes et al., 2016) when localizing stimuli of low BC.

In sum, these results show that population responses support
a PV readout of OT neurons on a trial-by-trial basis, and its per-
formance across signal-to-noise levels is consistent with the pre-
dictions and behavioral observations of the model.

Discussion
This work provides physiological evidence for the viability of a PV
readout of the auditory space map in the barn owl’s optic tectum
mediating probabilistic sound-localizing behavior. A decoder based
on the PV model was able to infer stimulus ITD from subsets of
simultaneously recorded neurons on a single-trial basis. In addition,
response profiles of simultaneously recorded neurons matched
premises of the PV model, including the spread of activity across
the map, which, based on the nonuniform representation of space,
allows a PV readout to predict physiological behavioral biases and
to show how population responses change when noise levels vary.

Predictive power of stimulus ITD from population responses
by a PV decoder
Decoding ITD using a model based on the PV from subsets of
neurons allowed for reliable estimation of stimulus ITD (Fig.
4A–E), supporting the hypothesis that this decoding system can

Figure 5. Increased spread of activity for decorrelated stimuli. A, B, Normalized neural
responses to stimuli with 40% (A) and 20% (B) BC (indicated in each panel), as a function of
the best ITD of each unit, relative to the stimulus ITD. Responses were normalized to the
maximal response of each unit in an ITD tuning curve with the same BC (dotted horizontal
lines). Solid dark gray curves indicate the spread of activity presumed in the PV readout
model (Fischer and Peña, 2011). The black dashed curves show the same functions with SDs
that best fitted the data and that were used in the PV model-based decoder in this study.
C, Direction estimates from the PV model (Fischer and Peña, 2011) using levels of SD from
the original model (gray) and fitting a Gaussian function to population responses (black).
Symbols indicate the stimulus directions (655°, 675°). Error bars indicate the SD across
500 model iterations. Inset, Comparison of the spreading widths (fitted SDs) of activity for
100% BC (solid), 40% BC (dashed), and 20% BC (dotted).
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Figure 6. Performance of the PV decoder across signal-to-noise levels. A, ITD decoding from normalized recorded responses (open circles) to stimuli of four different ITDs (indicated by open
triangles and listed above each plot) and 40% (top row) and 20% (bottom row) BC as a function of the best ITDs of neurons. Black triangles indicate estimated ITDs. The same subset of neu-
rons and decoding method shown in Figure 4B is presented. B, Estimation of stimulus ITDs on a trial-by-trial basis for stimuli of 40% (top row) and 20% (bottom row) BCs. Histograms of esti-
mated ITDs from single-trial responses to four stimulus ITDs (same as in A). Dashed line histograms show results for stimuli of 100% BC (same as shown in Fig. 4C). C, Errors of trial-by-trial ITD
estimates for all subsets of recorded neurons and stimuli, for stimuli at 100% BC (dark gray boxes; same data as in Fig. 4D), 40% BC (light gray boxes), and 20% BC (white boxes). Positive and
negative error values indicate estimates that were more lateral and more frontal than the stimulus ITD, respectively. Boxes range from the 25th to the 75th percentile, and the horizontal line
indicates the median. The bottom and top error bars indicate the 5th and 95th percentiles, respectively. Small black dots show all individual data. D, IQRs of the trial-by-trial estimates for all
recorded subsets of neurons and stimuli, for stimuli of 100% BC (dark gray boxes), 40% BC (light gray boxes), and 20% BC (white boxes). Data are grouped as in C, and boxplots and markers
have the same formatting. E, Estimates of the population readout based on trial-by-trial ITD estimates from population responses to stimuli of different BCs. Same as in Figure 4F, median ITD
estimates of all subsets of recorded neurons were combined with the Bayesian prior and plotted as a function of stimulus ITD. Individual data are shown for stimuli of 40% BC (gray circles)
and 20% BC (open white circles), and linear fits are shown for all three BC levels, as indicated in the legend. Larger deviation from the diagonal for stimuli of increased noise levels (bottom
BCs) shows the increased frontal bias in the readout.
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be implemented in the owl’s OT. In addition to stimuli within
the range of preferred ITDs among the subset of recorded neu-
rons, decoding also allowed for estimating stimulus ITDs away
from this range (Fig. 4D,E). This finding is consistent with the
notion that PV decoding relies on readout of the entire population
rather than responses of the most active neurons (Lee et al., 1988).
Previous studies conducting lesions in lateral regions of the owl’s
OT showed a tendency of orienting behavioral responses short of
the target (Knudsen et al., 1993) and reduced head-turning ampli-
tude (Wagner, 1993), which is consistent with an increased frontal
bias of a PV decoding because of a reduction in the number of
neurons tuned to peripheral locations.

Spread of activity across the map sufficient to predict normal
behavioral biases mediated by a PV readout
A critical open question regarding the readout of the owl’s mid-
brain map of auditory space in predicting sound-localizing
behavior is the spread of activity across the map. A classic place
code mediated by the location of peak responses within the map
cannot predict behavioral biases in sound localization, adaptive
for natural and manipulated stimulus statistics (Knudsen et al.,
1979; Hausmann et al., 2009; Fischer and Peña, 2011; Cazettes et
al., 2016). Our results show a spread of activity across subsets of
recorded neurons that is broad enough to support the prediction
of the PV model of the natural frontal behavioral bias (Fig. 3;
Fischer and Peña, 2011). The performance of our decoder to
accurately estimate stimulus ITDs from single-trial responses
further supports this prediction. This interpretation was made
despite the relatively small number of simultaneously recorded
neurons compared with the entire OT population and based on
the assumption that all OT neurons contribute to the readout. As
the decoder relies on this assumption by generalizing recorded
response profiles to the full population, larger sample sizes might
increase the trial-to-trial robustness of the estimation. However,
recorded subpopulations were not selected based on the decoder
performance and can be considered random samples, restricted
by the configuration of the multielectrode array and search pa-
rameters (see Materials and Methods), supporting the premise
that subpopulation responses are generalizable to the entire mid-
brain map. Furthermore, a PV readout model of recorded
responses showed a consistent frontal bias (Fig. 4F).

Despite this strong evidence supporting a PV readout model,
some conditions have not been addressed in this study. For
example, space-specific neurons in the owl’s external nucleus of
the inferior colliculus (ICx) often show side peak responses
(Takahashi and Konishi, 1986; Wagner, 1990; Mazer, 1998; Peña
and Konishi, 2000), which could disrupt vector summation.
However, in our data from the OT, downstream from the ICx
(Knudsen and Knudsen, 1983) and the region known to drive
behavioral output (du Lac and Knudsen, 1990; Masino, 1992;
Cazettes et al., 2018), side peak responses were weak (Fig. 3C);
thus, their influence would be minor. Another related challenge
is the localization of pure tone stimuli that are phase ambiguous
and lead to strong side peak responses in broadly frequency
tuned neurons. Behavioral studies have demonstrated that owls,
when presented with such ambiguous stimuli, localize either of
the potential sound source directions (Knudsen and Konishi,
1979; Saberi et al., 1999; Kettler et al., 2017). The PV readout
model alone would predict localization in between these ambigu-
ous directions. Thus, another mechanism must influence the
localization of tones. The PV readout may also be affected by the
correlation between ITD and frequency tuning (Fig. 2B; Cazettes
et al., 2014), which can lead to differential activity across the

map. Ambiguous response patterns could further arise from mul-
tiple concurrent stimuli at different locations. One mechanism to
implement stimulus selection is the previously reported global in-
hibition network in the owl’s midbrain, inhibiting responses to all
but the most salient stimulus (Mysore et al., 2010, 2011). While
not part of this study, we judge that the combination of global in-
hibition and the PV readout may resolve this ambiguity.

In summary, we have shown that the profiles of population
response in OT to single broadband stimuli, especially the spread
of activity across the map, match the requirements of a PV read-
out, explaining the behavioral bias toward frontal locations.
Future work should address the limitations of the model in rela-
tion to ambiguous stimuli and elucidate other predictive ele-
ments to resolve them.

Effect of signal-to-noise ratio on population responses
supports behavioral predictions of a PV readout as noise
levels change
As expected, neurons had overall lower responses when the sig-
nal was corrupted by decorrelated noise. Importantly, they also
displayed a relative increase in responses to nonpreferred ITDs,
which indicates that with increased noise the neuronal response
spreads across the map, rather than being limited to the neurons
tuned to the particular ITD (Fig. 5A,B). This increase in activity
caused the ITD estimate based on single-trial responses to be sys-
tematically biased toward ITDs preferred by the neurons being
recorded and, overall, to be more variable (Fig. 6B–D). When the
known overrepresentation of frontal space in the owl’s OT was
combined with the ITD estimates, the bias was consistently
directed toward frontal locations, with even larger underestima-
tions of lateral ITDs for stimuli with increased noise than under
no-noise conditions (Fig. 6E). These results are in line with pre-
vious behavioral reports showing increased frontal bias in lower
signal-to-noise ratio stimulus conditions (Saberi et al., 1998;
Cazettes et al., 2016) and predicted by the proposed PV readout
(Fischer and Peña, 2011). Furthermore, decoding stimulus ITD
from neural responses showed a larger trial-to-trial variability for
decorrelated stimuli compared with non-noise conditions (Fig.
6B,C). This reflects the larger variability when noise is increased,
which has been reported in behavioral studies (Saberi et al.,
1998) and theoretical predictions (Cazettes et al., 2016), and
emphasizes the importance of recording multiple neurons simul-
taneously and evaluating responses on a trial-by-trial basis, as
opposed to averaging responses from single-neuron recordings.

Relevance of PV readout across systems
A PV readout has been a seminal population-decoding mechanism
for the emergence of adaptive behavioral outputs (Georgopoulos et
al., 1986; Lee et al., 1988; Groh, 2001; van Hemmen and Schwartz,
2008). This study examines the hypothesis of a PV readout media-
ting statistical inference, which has been proposed by studies in
human visual perception (Girshick et al., 2011) and owl sound
localization (Fischer and Peña, 2011). Following evidence that a PV
readout of midbrain map responses could mediate optimal sound
localization behavior in barn owls (Cazettes et al., 2018), this study
tests the specific response properties of neuronal populations
required for a PV readout. In contrast to the owl’s midbrain, record-
ings in the mammalian IC were not reported as supporting a PV
readout (Day and Delgutte, 2013). However, Day and Delgutte
(2013) explained the poor predictive power of the PV decoder by
the heterogeneous shapes of spatial tuning of mammalian IC neu-
rons. In the superior colliculus of primates, the homolog of the
owl’s OT, a weighted sum readout, similar to a PV readout, has
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been reported to be feasible for use in guiding eye saccades to visual
and auditory cues (Lee and Groh, 2014). Furthermore, evidence of
an auditory space map was reported in the superior colliculus across
mammalian species (Palmer and King, 1982; Middlebrooks and
Knudsen, 1984; King, 1993; King et al., 1996; Gaese and Johnen,
2000), and population recordings of these regions may elucidate the
potential role of PV in sound localization behavior across species.
Overall, our study provides evidence of population response prop-
erties in a topographic representation of space, supporting prem-
ises for a PV readout mediating the implementation of statistical
inference, possibly a common scheme across species and systems.

Conclusions
In sum, for the first time, population responses were recorded
across the map of auditory space in the owl’s OT, supporting the
idea that a global readout of this population, rather than a place
code, mediates behavioral responses. The effect of noise consis-
tently led to an increased frontally biased population readout on
a trial-by-trial basis. These findings support theories that PV
readout of sensory neural populations can support behavioral
optimality by incorporating prior information and sensory cue
reliability in the behavioral command underlying sound-orient-
ing responses on a trial-by-trial basis (Fischer and Peña, 2011;
Cazettes et al., 2018) as well as human visual orientation percep-
tion (Girshick et al., 2011).
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