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Neurobiology of Disease

Endolysosome Localization of ERa Is Involved in the
Protective Effect of 17a-Estradiol against HIV-1 gp120-
Induced Neuronal Injury

Gaurav Datta,"* Nicole M. Miller,'”* Wenjuan Du,’ Jonathan D. Geiger,' Sulie Chang,”> and ““Xuesong Chen'
'Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037,
and “Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079

Neurotoxic HIV-1 viral proteins contribute to the development of HIV-associated neurocognitive disorder (HAND), the preva-
lence of which remains high (30-50%) with no effective treatment available. Estrogen is a known neuroprotective agent; how-
ever, the diverse mechanisms of estrogen action on the different types of estrogen receptors is not completely understood. In
this study, we determined the extent to which and mechanisms by which 17a-estradiol (17aE2), a natural less-feminizing
estrogen, offers neuroprotection against HIV-1 gp120-induced neuronal injury. Endolysosomes are important for neuronal
function, and endolysosomal dysfunction contributes to HAND and other neurodegenerative disorders. In hippocampal neu-
rons, estrogen receptor o (ERa) is localized to endolysosomes and 17«E2 acidifies endolysosomes. ERa knockdown or overex-
pressing an ERa mutant that is deficient in endolysosome localization prevents 17aE2-induced endolysosome acidification.
Furthermore, 17¢E2-induced increases in dendritic spine density depend on endolysosome localization of ERa. Pretreatment
with 17aE2 protected against HIV-1 gp120-induced endolysosome deacidification and reductions in dendritic spines; such
protective effects depended on endolysosome localization of ERa. In male HIV-1 transgenic rats, we show that 17aE2 treat-
ment prevents the development of enlarged endolysosomes and reduction in dendritic spines. Our findings demonstrate a
novel endolysosome-dependent pathway that governs the ERa-mediated neuroprotective actions of 17aE2, findings that might
lead to the development of novel therapeutic strategies against HAND.
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Extranuclear presence of membrane-bound estrogen receptors (ERs) underlie the enhancing effect of estrogen on cognition
and synaptic function. The estrogen receptor subtype ER« is present on endolysosomes and plays a critical role in the enhanc-
ing effects of 17@E2 on endolysosomes and dendritic spines. These findings provide novel insight into the neuroprotective
actions of estrogen. Furthermore, 17aE2 protected against HIV-1 gp120-induced endolysosome dysfunction and reductions
in dendritic spines, and these protective effects of 17aE2 were mediated via endolysosome localization of ERa. Such findings
provide a rationale for developing 17aE2 as a therapeutic strategy against HIV-associated neurocognitive disorders.
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Introduction

Although combined antiretroviral therapy (cART) suppresses
levels of HIV-1 throughout the body including in plasma and
CSF, it does not eliminate the virus. The 30-50% of people living

J

with HIV experience HIV-associated neurocognitive disorder
(HAND), against which effective treatments are not available
(Maschke et al., 2000; Grant et al., 2014; Sacktor et al., 2016).
Synaptodendritic impairments that occurs in various brain
regions including prefrontal cortex and hippocampus are the
key pathologic features of HAND, and these changes corre-
late closely with neurocognitive impairment (Masliah et al,,
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1997; Everall et al., 1999; Sa et al., 2004; Ellis et al., 2007).
The development of synaptodendritic impairments in
HANDs in the cART era is complex and not fully under-
stood, but may be mediated by the disruption of neuronal
homeostasis because of the chronic presence of neurotoxic
viral proteins, such as gp120 and Tat, along with low-grade
inflammation (Gonzalez-Scarano and Martin-Garcia, 2005;
Saylor et al.,, 2016; Raybuck et al., 2017).
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Endolysosomes are especially important for neurons, because
their extensive processes require constant vesicular membrane
trafficking to establish and maintain axonal and somatodendritic
plasma membrane domains. Being at the crossroads of transport-
ing proteins to the dendritic spines and in the degradation
of dendritic cargos, endolysosomes have been shown to be im-
portant in modulating synaptic plasticity, (Goo et al, 2017;
Padamsey et al., 2017; Nikoletopoulou and Tavernarakis, 2018;
Yap et al., 2018). Endolysosome dysfunction has been implicated
in HAND (Gelman et al., 2005; Spector and Zhou, 2008; Zhou
and Spector, 2008; Cysique et al., 2015). We and others have
shown that neurotoxic HIV-1 proteins including Tat (Hui et al,,
2012; Chen et al., 2013; Fields et al., 2015) and gp120 (Bae et al.,
2014; Datta et al., 2019; Halcrow et al., 2021), as well as certain
ART drugs (Hui et al., 2021) deacidify endolysosomes, induce
the enlargement of endolysosomes, and disrupt endolysosome
function. In addition, HIV-1 (Cinti et al., 2017) and other HIV-
1-related factors (Moorjani et al., 1996; Campbell et al., 2015;
Dagur et al, 2021; Santerre et al., 2021) also disrupt endolyso-
some function. Thus, endolysosome dysfunction could contrib-
ute to synaptodendritic impairments in HAND. Conversely,
enhancing endolysosome function represents a promising thera-
peutic strategy.

Estrogen exerts an enhancing effect on cognition and synaptic
function (Hojo et al, 2008; Srivastava et al,, 2011; Lai et al.,
2017). The extranuclear presence of membrane-bound estrogen
receptors (ERs) in neurons have been implicated in estrogen’s
neuroprotective effects (Milner et al., 2001, 2005). These mem-
brane-bound receptors exhibit distinct subcellular distribution
patterns: ERa proteins are mainly expressed on endolysosomes
(Milner et al,, 2001; Sampayo et al.,, 2018), ERS proteins are
mainly mitochondrial (Yang et al., 2004; Milner et al., 2005; Liao
et al., 2015), and G-protein coupled ER1 (GPER) proteins are
mainly on endoplasmic reticulum (Revankar et al, 2005).
Endolysosome localization of ERa has been implicated in its
degradation (Sampayo et al., 2018). However, ER« is not a trans-
membrane protein, and, as a cytosolic protein, ER« can attach to
the membrane via palmitoylation (Schlegel et al, 1999;
Adlanmerini et al., 2014; Pedram et al., 2014). Thus, endolyso-
some-localized ERa most likely resides on endolysosome mem-
branes that face cytosol rather than lumen, and membrane-
permeable estrogen likely activates these receptors and initiates
endolysosome-dependent actions.

In the present study, we determined the extent to which 17a-
estradiol (17aE2) affects endolysosome function and dendritic
spines via endolysosome-localized ERa. We demonstrated that
endolysosome localization of ERa is responsible not only for
17aE2-induced endolysosome acidification and increases in den-
dritic spines, but also is responsible for the protective effect of
17aE2 against HIV-1 gp120-induced endolysosome dysfunction
and reduction in dendritic spines.

Materials and Methods

Animals. Fisher 344 and HIV-transgenic (Tg) rats were purchased
from Harlan Laboratories. They were housed with three animals per
ventilated plastic cage (Animal Care Systems) and maintained in a tem-
perature- and humidity-controlled environment. They were kept on a 12
h light/dark cycle and fed a standard rodent diet. The experimental pro-
tocol was approved by the Institutional Animal Care and Use
Committee (IACUC) at Seton Hall University (South Orange, NJ). Male
HIV-1 Tg rats and age-matched male F344 rats were used to determine
the effect of 17aE2 on dendritic branching and spines. Male rats were
chosen to minimize the effects of endogenous estradiol. Older rats were
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chosen in part because endogenous estradiol levels decline as animal
ages (Russell et al,, 2019). Twelve-month-old male HIV-1 Tg and F344
control rats were randomly assigned into the following four groups
(each group contains five animals): F344 control, F344 treated with
17aE2, HIV-1 Tg, and HIV-1 Tg treated with 17aE2. Twelve-month-
old HIV-1 Tg rats were used because successful viral suppression of
cART has dramatically increased the life span of people living with HIV-
1 (May et al., 2014), and half of people living with HIV-1 were >50 years
of age in the United States, because people >50 years of age comprise
the fastest-growing age group in the HIV-positive population (Hall et al.,
2008) and because advanced age increases the risk for neurocognitive
impairment (Bhaskaran et al., 2008; Alford and Vera, 2018).
Animals were trained to eat pure chocolate-flavored hazelnut cream
with sesame oil for 5d before daily administration with and without
17aE2 (30 ug of 17aE2/5 pl sesame 0il/1 g of Nutella cream/d). This
dosage of 17aE2 was based on findings that a similar dose of 17aE2
has been shown to increase life span in mice (Harrison et al., 2014,
2021; Strong et al., 2016; Garratt et al., 2017). This dosage of 17«aE2
used in HIV-1 Tg rats was also adjusted based on the differences in
weight and BMI between mice and rats (Reagan-Shaw et al., 2008;
Massud et al.,, 2015). The feeding duration was continued for a total
of 21 d, and on day 22 rats were perfused with 4% paraformaldehyde
(PFA) and the brains were collected for Golgi-Cox staining and
immunohistochemistry.

Cell cultures. The mouse embryonic hippocampal E-18 cell line
CLU199 (Cellutions Biosystems) was grown and maintained in 1x
DMEM with 10% fetal bovine serum, 25 mm glucose, and 1% penicillin/
streptomycin, at 37°C with 5% CO, following manufacturer instructions.
For all experiments in this study, only cells from passages 3-7 were used.
Primary mouse embryonic hippocampal neurons (E18) were obtained
from E18 mouse cortex (C57EHP, BrainBits) following standard pri-
mary neuron culture protocols and manufacturer instructions. Briefly,
the tissue was digested with papain for 10 min and plated at 100,000
cells/well on either 12 mm poly-p-lysine coverslips (GG-12-PDL,
Neuvitro Corporation) in 24-well plates or on 35 mm poly-D-lysine-
coated glass bottom dishes (P35GC-0-10-C, MatTek Life Sciences).
NbActiv media (BrainBits) were used for both plating and maintenance,
and neuronal cultures were incubated at 37°C with 5% CO, with half the
media exchanged every 3-4 d.

Live imaging of dendritic spines. Mouse primary hippocampal neu-
rons [day in vitro (DIV) 12-14] were transduced with GFP (BacMam
GFP; catalog #B10383, Thermo Fisher Scientific) for 48 h following
manufacturer recommendations. Before imaging, neurons were trans-
ferred to warm (37°C) Hibernate E. Low Fluorescence (HELF) medium
(Brainbits) on a confocal microscope (catalog #LSM800, Zeiss) for imag-
ing. Once a field under a 63 x objective was chosen for imaging, mono-
meric recombinant HIV-1 IIIB gpl20 protein (ImmunoDx), heat-
inactivated HIV-1 gp120 (95°C for 1 h), and 17aE2 (Tocris Bioscience)
were added according to experiment design, and neurons were imaged
continuously (1min intervals) for 10min with z-stack intervals of
0.5 um. The dendritic spines at 0 min (¢# - 0) and 10 min (¢ - 10) were
reconstructed with Imaris 9.5 using the filaments module and plotted as
a percentage of spines lost/gained. A total of 7-10 neurons comprising
>5000 spines were imaged per treatment, and experiments were
repeated independently three times with different cultures. The criteria
for spine classification were the same as in earlier published studies
(Christensen et al., 2011).

Immunostaining. Neurons (DIV 14-17) were treated, briefly rinsed
in PBS, and fixed with 4% PFA in 4% sucrose for 20 min at room tem-
perature (RT) and then washed in PBS three times. Neurons were per-
meabilized with 0.1% Triton X-100 for 10 min, incubated in blocking
buffer [3% BSA (Sigma-Aldrich) with 1% goat or donkey serum
(Thermo Fisher Scientific) in PBS] for 1 h, then incubated with primary
antibodies at 4°C overnight. After one wash with PBST (PBS, Tween20-
0.1%) and two PBS washes, secondary antibodies were added for 1 h at
4°C. Cells were then washed and mounted on microscope slides
(Thermo Fisher Scientific) with ProLong Gold Antifade (catalog
#P36930, Thermo Fisher Scientific). The following primary antibodies
were used in immunofluorescence staining: ERa (1:50; catalog #sc-8002,



Datta, Miller et al. @ 17E2 Neuroprotection against HIV-1gp120

Santa Cruz Biotechnology); LAMP1 (D2D11; 1:500; catalog #90918, Cell
Signaling Technology); Rab7 (1:500; catalog #ab137029, Abcam); PSD-
95 (1:500; catalog #ab13552, Abcam); and MAP2 (1:500; catalog
#ab32454, Abcam). Alexa Fluor 594 goat anti-rabbit, Alexa Fluor 488
goat anti-rabbit, Alexa Fluor 594 goat anti-mouse, and Alexa Fluor 488
goat anti-mouse secondary antibodies were from Thermo Fisher
Scientific. All secondary antibodies were used at a 1:500 dilution.
Controls for immunostaining specificity included staining cells with pri-
mary antibodies without fluorescence-conjugated secondary antibodies
(background controls), and staining cells with only secondary antibod-
ies; these controls helped eliminate autofluorescence in each channel
and bleed-through (crossover) between channels.

Endolysosomal pH measurement. Total endolysosomal pH measure-
ment was performed in CLU199 cells using a combination of dextran
labeling, as done previously (Nash et al., 2019). Briefly, CLU199 cells
were plated on 35 mm glass bottom poly-p-lysine dishes, and after 24 h
loaded with10 pg/ml each of pH-sensitive pHrodo Green Dextran (cata-
log #P35368, Thermo Fisher Scientific) and pH-insensitive dextran,
Texas Red (D1863, Thermo Fisher Scientific) for another 24 h. The fol-
lowing morning, dextran containing medium was washed off twice with
PBS, and cells were transferred to Hibernate E. Low Fluorescence
(HELF) medium (Brainbits) at 37°C for imaging. HIV-1 gp120, heat-
inactivated gp120, or 17aE2 was added at the mentioned concentrations
and fluorescence emission at 533 and 615nm measured for Green and
Texas Red dextran, respectively. The ratio of 615:533 was converted to
pH using an intracellular pH calibration kit (catalog #P35379, Thermo
Fisher Scientific) with the addition of 10 uM nigericin and 20 umM monen-
sin in HELF medium adjusted to different pH values with HCI or
NaOH. For specific measurement of Rab7 vesicle pH, CLU199 cells were
loaded with the combination of pH-sensitive and pH-insensitive dex-
tran, as described above, for 6 h, following which the cells were washed
and placed in fresh growth media for 2 h before being transferred to
HELF medium for imaging. This dextran loading method was optimized
as per earlier experiments to maximize the loading of dextran into Rab7
vesicles. For all pH imaging and measurements, a total of five fields
under 40x magnification on a confocal microscope (catalog #LSM800,
Zeiss) comprising at least 5-10 cells/field were imaged, and three inde-
pendent experiments were conducted.

Immunohistochemistry. Perfusion-fixed (4% PFA) rat brains were
removed, postfixed overnight at 4°C, cryoprotected with 30% sucrose,
and cut on a cryostat (catalog #CM1520, Leica) into 10 um sagittal sec-
tions. The slides were then stored in —80°C freezer until further use.
Before staining, the slides were thawed overnight at 4°C, washed in PBS,
and blocked for 1 h in blocking solution (3% BSA, 1% normal goat se-
rum, and 0.05 Triton X-100). Primary antibodies were then added and
kept overnight at 4°C. The following primary antibodies were used:
MAP2 (1:100; catalog #92434, Abcam); LAMPI (1:100; catalog #24170,
Abcam); Rab7 (1:100; catalog #ab126712, Abcam); and ERa (1:50; cata-
log #sc-8002, Santa Cruz Biotechnology). The following day, primary
antibodies were washed out with two PBS-T washes (Tween0.01%) and
two PBS washes, each for 5 min. Secondary antibodies (Alexa Fluor 488
and Alexa Fluor 594) were then added for 1 h at 4°C, following which
slides were washed, and coverslips were mounted with Vectashield
Antifade Mounting Medium with DAPI (catalog #H-1200, Vector
Laboratories). The 0.5-pm-interval z-stack images were acquired on a
confocal microscope (catalog #L.SM800, Zeiss) using the ZEN acquisi-
tion software, and images were analyzed to calculate colocalization and
lysosome volume in Imaris 9.6 (Bitplane). Lysosome volume was calcu-
lated by recreating the LAMP1 staining as spots using the spot module
in Imaris 9.6. Colocalization of ERa with Rab7 and LAMP1 was calcu-
lated using the colocalization module after adjusting the threshold in
Imaris 9.6.

Golgi-Cox staining. The Golgi-Cox method used was adapted from
studies by Risher et al. (2014), Du (2019), and Zhong et al. (2019) with
slight modifications. The Golgi-Cox method was chosen for labeling
dendritic spines because it is much simpler compared with the DiOlistic
method, which requires specialized equipment (McLaurin et al., 2018).
The brain was cut into two hemispheres and placed in Golgi-Cox solu-
tion for 24 h at RT in dark for impregnation. After 24 h, the brains were
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moved to fresh Golgi-Cox stain for another 10d at RT followed by
transfer to a tissue protectant solution for 24 h at 4°C, and then to fresh
tissue protectant solution at 4°C in the dark for another 7 d. The brains
were then transferred to molds, sectioned into 100 pm sections using a
vibratome (Leica), and mounted onto gelatin-coated microscopic slides.
For staining, the slides were washed twice with distilled water (DW) and
incubated in 20% ammonia solution for 10 min in the dark with gentle
shaking, followed by two DW washes of 5min each. The sections were
then rinsed in 1% sodium thiosulfate solution with gentle shaking for
10min and followed by two DW washes of 5min each. Slides were
finally dehydrated by sequential passage through ethanol (50%, 75%,
90%, and 100% twice), cleared in xylene (twice, 5min each), and
mounted with Permount mounting medium (catalog #SP15-100,
Thermo Fisher Scientific). Bright-field images under 100, 63, and 5x
objectives with 0.1 pm z-stacks were acquired using an upright micro-
scope (catalog #BX-63, Olympus), and images were analyzed with
Neurolucida 360 software (MBF Bioscience). In Neurolucida 360, only
complete neurons with soma and dendrites visible were imaged wherein
soma were manually added, dendrites were detected with user-guided
tracing mode, and spines were automatically detected with manual
adjustments for each dendrite. Spine classification parameters were
adjusted to be the same as used for primary cultured neurons in Imaris.
The neuron tracing data were saved, transferred to Neurolucida
Explorer for analysis, and exported to Excel.

Cathepsin D staining. Active levels of cathepsin D (CatD) in both
CLU199 cells and primary neurons were measured using BODIPY-FL
Pepstatin A (catalog #P12271, Thermo Fisher Scientific), which is based
on the binding of pepstatin A to cathepsin D. LysoTracker Red DND-99
(10 nm) was added along with BODIPY-FL Pepstatin A (1 um for 30 min
in growth media) at 37°C and followed by two PBS washes, and were
shifted to HELF media for immediate imaging. A total of 25-30 cells
were imaged using a confocal microscope (model LSM 800, Zeiss) per
treatment group using 0.5 um z-stack intervals, and experiments were
repeated three times independently. Total endolysosomes using
LysoTracker Red and cathepsin D-positive endolysosomes using
BODIPY-FL Pepstatin A were reconstructed as spots in Imaris 9.6
(Bitplane), and object-based colocalization was conducted using a dis-
tance of 0.2 pm.

Plasmid transfections, transductions, and siRNA knockdown. The
plasmids ERa-GFP (MG227304), ERae C451A-GFP, ERa-HA, and ERa
C451A-HA were all obtained from Origene Technologies along with
custom modifications. The plasmids were cloned into pPCMV6-AC-GFP,
pCMV6-AC-RFP, or pCMV6-AC-3HA vectors for GFP, RFP, and HA
tag additions, respectively. For transient plasmid transfections, CLU199
cells were split onto 35 mm poly-p-lysine-coated glass bottom dishes or
12 mm poly-p-lysine coverslips, and on reaching 50% confluency were
transfected with 2 g of plasmid DNA and Lipofectamine 2000 transfec-
tion Reagent (catalog #11668019, Thermo Fisher Scientific) in Opti-
MEM Reduced Serum media (catalog #31985062, Thermo Fisher
Scientific) for 48-72 h following which they were assayed and imaged.
Primary mouse hippocampal neurons were transiently transfected with
1pg of plasmid DNA and Lipofectamine 2000 on DIV 5-7 for 48 h
before imaging on DIV 7-9. For primary neurons, the media were
changed 4 h after transfection with preconditioned media.

On-Target plus mouse Esrl (Entrez Gene ID, 13982) siRNA-
SMART pool to knock down (KD) ERa was obtained from Dharmacon
with the following target sequences: CCUACUACCUGGAGAACGA,
GAAAGGCGGCAUACGGAAA, GUCCAGCAGUAACGAGAAA, and
GGGCUAAAUCUUGGUAACA. For siRNA transfections, siRNA was
dissolved in Accelll transfection medium (catalog #B-005000, Dharmacon)
and DharmaFECT 1 (catalog #T-2001-02, Dharmacon) was used as trans-
fection reagent for both CLU199 cells and primary neurons (DIV 7-9). The
final siRNA concentration was 50 nm for both CLU199 cells and primary
neurons.

Nuclear activation of ER. Nuclear activation of ER was performed by
the TransAM ER assay (Active Motif) following manufacturer instruc-
tions with minor modifications. Briefly, 3-5 million confluent CLU199
cells were treated for 30 min, washed twice with ice-cold PBS, resus-
pended in 1 ml of HB buffer, and incubated for 20 min. A 0.5% solution



10368 - J. Neurosci., December 15,2021 - 41(50):10365—10381

of NP-40 (Sigma-Aldrich) was added to the buffer, and the cells were
vortexed at high speed for 15 s and then centrifuged at 3000 rpm for
10min to separate the cytoplasmic (supernatant) and nuclear (pellet)
fractions. The pellet was dissolved in 50 pl of lysis buffer and kept on an
incubator for 30min at 4°C, following which it was centrifuged at
14,000 rpm for 15 min to get the nuclear extract. Protein estimation was
conducted using Precision Red Advanced Protein Assay (catalog
#ADVO02, Cytoskeleton). The TransAM-ER ELISA using this nuclear
extract was conducted without any modifications. The absorbance was
measured at 450 nm in a Spectra Max Plate Reader (Molecular Devices).

Immunoblotting. CLU199 cells or primary mouse hippocampal neu-
rons were plated on poly-p-lysine-coated six-well plates at 1 x 10° or
0.5 x 10° cells/well, respectively, for each sample. Cells were treated, har-
vested, and lysed in 1x RIPA lysis buffer (Thermo Fisher Scientific) plus
10 mm NaF, 1 mm NazVOy,, and Protease Inhibitor Cocktail (Thermo
Fisher Scientific). After centrifugation (13,000 x g for 10 min at 4°C),
supernatants were collected, and protein concentrations were deter-
mined with a DC (detergent compatible) protein assay (BIO-RAD).
Proteins (20 ug) were separated by SDS-PAGE (4-20% gel) and trans-
ferred to polyvinylidene difluoride membranes (Millipore). The mem-
branes were incubated overnight at 4°C with appropriate primary and
secondary antibodies in LI-COR blocking solution (TBS) with two TBS-
Tween and TBS washes (5min each) after every step. The blots were
developed with enhanced chemiluminescence, and bands were visual-
ized and analyzed by LI-COR Odyssey Fc Imaging System.

Experimental design and statistical analysis. All data values are
shown as the mean * SEM. The details of the n for each experiment is
specified in the respective figure legend. All data were statistically ana-
lyzed and prepared in GraphPad Prism 9.0 software (GraphPad
Software). Statistical significance between groups was determined by
Student’s ¢ test (two-tailed), one-way ANOVA with Tukey’s post hoc
tests, or two-way ANOVA with Tukey’s post hoc tests. Statistical signifi-
cance was set at p = 0.05. Interaction values of each ANOVA, including F
(DFn, DFd) and p values for each figure are shown in Table 1.

Results

17ae2 protects against dendritic spine impairment in HIV-1
transgenic rats

It is known that HIV-1-associated cognitive impairments show
sex-specific progression (Sundermann et al., 2018; Rubin et al.,
2019). Since hippocampal memory is associated with estrogen
levels, the sharp increase in neurocognitive impairments in HIV-
positive postmenopausal women could probably be explained by
the declining neuroprotection offered by estrogen (Maki et al.,
2021). Experimental studies have shown that estrogen is protec-
tive against HIV-1 infection (Wilson et al., 2006; Heron et al.,
2009; Szotek et al., 2013), HIV-1 protein-induced (gp120 and
Tat) neuronal cell death (Bruce-Keller et al., 2001; Corasaniti et
al., 2005; Zemlyak et al., 2005; Bertrand et al., 2014), and HIV-1
associated neuropathology (Howells et al., 2019). However, most
of these studies have focused on 178 E2, the therapeutic use of
which is limited by its association with increased risk of breast
cancer (D’Alonzo et al., 2019), thromboembolism (Cushman et
al., 2018), coronary heart disease, and stroke (Bassuk and
Manson, 2016).

Furthermore, the feminizing effect of 17 8E2 limits its possi-
ble use in the larger general population (Moos et al., 2009; Stout
etal, 2017). Thus, the present study focuses on 17«E2, the natu-
rally occurring isomer of 17 8E2. Compared with 17 8E2, 17aE2
has fewer feminizing effects (Stout et al, 2017) and has been
shown to be the predominant form of estrogen in brain (Toran-
Allerand et al., 2005; Ikeda et al., 2015; Prokai-Tatrai and Prokai,
2019), with its brain levels unaffected by gonadectomy (Toran-
Allerand et al., 2005). Here, we determined the effect of 17aE2
on dendritic spines in HIV-1 Tg rats.
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Table 1. Summary of statistical analysis

Figure Test used Sample size Degrees of freedom, p value, t value
1B Two-way ANOVA 55-70/5 F1.246) = 49.22, p < 0.0001
1C Two-way ANOVA 55-70/5 F1,246) = 195.6, p << 0.0001
1D Two-way ANOVA 55-70/5 Fir,246) = 44.58, p < 0.0001
1E Two-way ANOVA 55-70/5 F1.246) = 500.6, p < 0.0001
28 One-way ANOVA 3/3 F,g = 10.03, p=0.0044
One-way ANOVA 33 Fig = 19.84, p=0.0005
20 Two-way ANOVA 200/3 Fa1.764 = 11.70, p = 0.0007
Two-way ANOVA 200/3 Fa1,764) = 54.61, p < 0.0001
Two-way ANOVA 20073 Fovze4) = 63.75, p < 0.0001
Two-way ANOVA 200/3 Fa762) = 15.28, p=10.0001

2f Two-way ANOVA 5/5
Two-way ANOVA 5/5
Two-way ANOVA 5/5
Two-way ANOVA 5/5

F(1,16) = 1910, p= 0.1866
F(1,16) =0.5001, p= 0.4896
Fang = 5.224, p=0.0363
Fong = 2173, p=0.1599

26 One-way ANOVA 22 Fo3 =5.322, p=0.1031
3A Two-way ANOVA 3/3 Fa8) = 0.6959, p = 0.4284
3B Two-way ANOVA 5/5 Fai6 = 0.01770, p = 0.8958
3C Two-way ANOVA 5/5 Fa,16) = 12.50, p=10.0028
4A t test 3/3 t=127.39, df=8, p < 0.0001
4C t test 3/3 t=4.2, df=7.812, p=0.0032
5A t test 3/3 t=9.115, df=1.748, p=0.0178
5B Two-way ANOVA 3/3 Fa8 = 20.26, p=0.0020

t test 3/3 t=8916, df=2, p=0.0138
5¢ Two-way ANOVA 33 Fig = 59.82, p < 0.0001

 test 3/3 t=8412,df=2,p=0.0123
5E Two-way ANOVA 713 Fa,20) = 8.998, p=0.0071

t test 3 t=4836, df=2
68  test 4/4 t=4753,df=6
6C Two-way ANOVA 5/5 Fa.16) = 4.110, p=0.05%

t test 5/5 t=4.006, df =4, p=0.0293
6D Two-way ANOVA 4/4 Fa12 = 85.28, p < 0.0001

t test 4/4 t=9.392, df=3, p=0.0026
6F Two-way ANOVA 4/4 Fa12 = 68.52, p < 0.0001

 test 4/4 t=11.89, df=3, p=0.0013
7B Two-way ANOVA 3/3 Fa,g) = 39.50, p=0.0002

 test 3/3 t=4.663, df=2, p=10.0169
8A Two-way ANOVA 3/3 Fa,8 = 39.50, p=0.0002

t test 3/3 t=4.663, df=2, p=10.0430
8B Two-way ANOVA 3/3 Fag) = 1439, p=10.0053

 test 3/3 t=6.624, df=2, p=10.0132

This table summarizes methods of statistical analysis, degree of freedom, and significance for each figure.
Tukey’s multiple-comparisons test was performed post hoc for all ANOVAs, and two-tailed analyses were
used for all Student’s ¢ tests.

The noninfectious HIV-1 Tg rats, which contain a gap-pol
deleted provirus (Reid et al., 2001), are being increasingly used
for in HAND research, because HIV-1 Tg rats mimic HAND in
humans with cART. HIV-1 Tg rats express seven of the nine
HIV-1 proteins (with gag-pol deleted) including gp120, Tat, and
nef. Similar to those HIV-1-infected individuals receiving sup-
pressive cART treatment (Santosuosso et al., 2009; Johnson et al.,
2013; Olivetta et al., 2016; Henderson et al., 2019), low levels of
these viral proteins are expressed in the brains of HIV-1 Tg rats
(Reid et al., 2016). Similar to those observed in patients with
HAND, HIV-1 Tg rats exhibits inflammatory and neuropatho-
logical features. HIV-1 Tg rats have been shown to exhibit
HAND-like gene expression profiles, synaptodendritic damage
in various brain regions (hippocampus, striatum, and prefrontal
cortex), as well as behavioral deficits (Reid et al., 2001, 2016;
Festa et al., 2015; McLaurin et al., 2018). Furthermore, the non-
infectious HIV-1 Tg model recapitulates other important
features of cART-treated HIV patients, such as immune dysregu-
lation and controlled viral replication (Peng et al., 2010).
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172 treatment protects against dendritic damage in HIV-1 transgenic rats. A, Golgi—Cox staining of dendritic arborization and dendritic spine density in hippocampi of male

HIV-1 Tq rats compared with F344 control (Ctrl) rats. Dendritic shafts within red boxes are enlarged in the bottom panel showing the distribution and type of spines. B-E, Quantification of den-
dritic length (B), density of stubby dendritic spines (€), density of mushroom dendritic spines (D), and density of long/thin dendritic spines (E). N shows the number of neurons analyzed from

at least 30 images from different hippocampus regions from five animals in each group.

Using Golgi-Cox staining in HIV-1 Tg and F344 Control
rats, fed with or without 17aE2, we characterized the dendri-
tic spine subtypes using the 3D reconstruction software
Neurolucida 360 and classified them according to established
protocols (Ruszczycki et al., 2012), as shown in Figure 1A.
The hippocampal neurons of HIV-1 Tg rats exhibited
decreased dendrite length (Fig. 1B) and altered dendritic
spine density (Fig. 1C-E) with decreased density of stubby
and mushroom spines but increased long/thin spines, which
are results that are consistent with other findings that HIV-1
Tg rats exhibit the more immature subtypes of dendritic
spines (McLaurin et al., 2018). 17aE2 also showed a positive
spinogenesis effect in increasing the density of both stubby
and mushroom spines, in agreement with earlier studies (Fig.
1C-E; Sengupta et al.,, 2019). In the HIV-1 Tg rats, 17aE2
not only attenuated decreases in dendritic length (Fig. 1B),
but also compensated for the density of stubby, mushroom,
and long/thin spines (Fig. 1C-E). These results confirmed
the positive spinogenesis role of 17aE2.

17ae2 protects against HIV-1 gp120-induced impairment in
dendritic spines

HIV-1 Tg rats mimic HAND in humans with cART, and neuro-
logic complications in HIV-1 Tg rats have been attributed to the
chronic presence of low levels of neurotoxic HIV-1 viral proteins
including Tat and gp120, both of which exerts robust neurotoxic
effects. Here, we chose gp120, which is well known to induce
synaptodendritic impairments (Festa et al., 2015; Speidell et al.,
2019), to determine the neuroprotective effects of 17aE2. HIV-1
gp120, an envelope protein that can be shed from infected cells

(Schneider et al., 1986; Moore et al., 1990), and it can be detected
in body fluids (Oh et al, 1992; Klasse and Moore, 2004;
Santosuosso et al., 2009) and brain (Keys et al., 1993; Trujillo et
al.,, 1996; Nath et al., 2000). On HIV-1 virion membrane, gp120
and gp41 interact to form a trimer of gp120/gp41 heterodimer
(Pancera et al., 2010). However, when shed from infected cells,
gp120 exists as a soluble monomer (Moore et al., 1990; Kovacs et
al,, 2012). Thus, monomeric recombinant gp120 was used in our
study. Here, we determined the direct effect of gp120 on dendri-
tic morphology in mouse primary hippocampal neuronal cul-
tures. Consistent with other findings (Festa et al., 2015; Speidell
et al.,, 2019), gp120 treatment for 48 h decreased dendritic length
and reduced dendritic spine density in a concentration-depend-
ent effect (Fig. 2A4,B). Based on this study, a gp120 concentration
of 0.5 nM was used in all additional experiments.

Using this gp120-induced dendritic impairment model, we
determined that the neuroprotective actions of 17aE2 in mouse
primary hippocampal neurons (DIV 12-14) transduced with cy-
tosolic GFP. Findings from our preliminary concentration-
dependent studies as well as published reports (Mukai et al.,
2007; Hasegawa et al., 2015) indicate that 17aE2 at a con-
centration of 10 nm exhibits a robust neuroprotective effect.
Thus, neurons pretreated with 17aE2 at 10 nm for 10 min
were monitored for dynamic spine changes by time-lapse
imaging in the presence of gp120 (0.5 nm) treatment for
10 min. The same dendritic spines were imaged at 0 and
10 min of gp120 treatment, and the dendritic spine turnover
was analyzed (Fig. 2C). Dendritic spine turnover was calcu-
lated as net gain/loss in different types of spines over the
10 min treatment window and shown as percentage.
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Figure 2.

(HIV-1 gp120)

17aE2 protects against HIV-1 gp120-induced dendritic damage. A, B, MAP2 staining (top; scale bar, 20 ptm)

and GFP expression (bottom; scale bar, 10 um) in primary hippocampal neurons (DIV 15) after treatment with HIV-1 gp120
(0.2-1 nm for 48 h). HIV-1 gp120, in a concentration-dependent manner, decreased dendritic length and dendritic spine den-
sity. ¢, D, Time-lapse confocal images show the rapid changes in spine structure of the same dendrite at 0 and 10 min
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As shown in Figure 2D, a reduction in
stubby and mushroom spine density opposed
to increased density of long/thin spines was
observed with gp120, and these effects were
blocked by 17aE2 pretreatment. Treatment
with gp120 also resulted in a significant
decrease in dendritic spine volume, which
was blocked by 17aE2 pretreatment (Fig.
2D). 17aE2 treatment alone significantly
promoted the formation of both stubby
and mushroom spines and increased den-
dritic spine volume (Fig. 2D). In parallel,
we determined the protective effects of
17aE2 pretreatment for 10min against
dendritic impairment induced by HIV-1
gp120 treatment (0.5 nM) for 30 min (Fig.
2E). The same trend of reduced stubby and
mushroom spine density with increased
long/thin spines as in our 10 min treatment
was observed. These results show that
17aE2 is able to rapidly modulate dendritic
spine plasticity of primary hippocampal
neurons and block HIV-1 gp120-induced
dendritic impairment.

Two different mechanisms of estradiol
action on neurons have been demon-
strated: the classical genomic or transcrip-
tional pathway (which takes hours to days)
and the rapid membrane-associated action
(takes minutes to hours). Both of these
pathways promote spine growth and syn-
apse formation in brain regions including
the hippocampus and the cortex (Li et al.,
2004; Mendez et al., 2011; Hasegawa et al,,
2015). Using a TransAM ER ELISA, we
demonstrated that neither 17aE2 (10 nm)
nor HIV-1 gp120 (0.5 nm) treatment for
30 min resulted in nuclear ER activation
(Fig. 2F,G). These findings suggest that
the short-term effect of 17¢E2 on mod-
ulation of dendritic spine plasticity and
the protective effects against gp120-

«—

following HIV-1 gp120 treatment (0.5 nm) in the absence
and presence of 17«2 (10 nw, 10min pretreatment) in
mouse hippocampal neurons (DIV 12-14) transduced with
GFP. Filled arrowheads indicate spine growth and formation,
while open arrowheads indicate spine elimination and/or
reduction between the two time points. Scale bar, 10 pm.
Percentage changes in dendritic spine turnover and spine
volume over 10 min with different treatments are shown in
D. Positive values indicate spine formation, while negative
values indicate spine elimination between 0 and 10 min. E,
Quantification of dendritic spine morphology in fixed neu-
rons following HIV-1 gp120 treatment (0.5 nm for 30 min) in
the absence and presence of 172 (10 nw, 10 min pretreat-
ment). F, Confocal images show changes in the distribution
of ERa-GFP in response to 17«2 (10 nm for 30 min) in
CLU199 cells costained with DAPI for nucleus. G,
Quantitative change of nuclear ER activation in response of
HIV-1 gp120 (0.5 nm for 30 min) or 17aE2 (10 nm for
30min) using estrogen receptor transcription factor ELISA
(TransAM-ER).
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[ 170E2 demonstrated that HIV-1 gp120 deaci-
dified (increased the pH) endolyso-
somes (Fig. 3A) and induced
endolysosome dysfunction, as indi-
cated by decreasing the percentage of
active CatD-positive endolysosomes
(Fig. 3B). Because neurons are long-
lived postmitotic cells that require
active endolysosomes to maintain neu-
ronal homeostasis and because neu-
rons are extraordinarily polarized cells
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Figure 3.

induced dendritic impairment do not occur through the clas-
sical genomic pathway.

17ae2 enhances endolysosome activity and protects against
gp120-induced endolysosome dysfunction in neurons

The neuronal damaging effects of HIV-1 gp120 depend, at least
in part, on its endocytosis and internalization (Bachis et al., 2006;
Berth et al,, 2015; Wenzel et al., 2017). Consistent with our pub-
lished findings (Bae et al, 2014; Datta et al, 2019), we

HIV-1 Tg +17aE2  F344 Ctrl + 17aE2

- F344 Ctrl
= HIV-1 Tg
~ HIV-1Tg + 17aE2
~ F344 Ctrl + 17aE2

0.4

17aE2 protects against HIV-1 gp120-induced endolysosome dysfunction. A, gp120-induced (0.5 nm for 10 min)
changes in endolysosome pH in the absence and presence of 17aE2 (10 nw) in CLU199 cells. B, Images and quantification show
gp120-induced (0.5 nm for 10 min) changes in the percentage of active CatD-positive lysosomes (as indicated by active cathepsin
D staining with its fluorescent inhibitor pepstatin A-BODIPY FL versus total LysoTracker-positive endolysosomes) in the absence
and presence of 17aE2 (10 nm, 10 min pretreatment). €, Confocal images show immunostaining of LAMP1-positive endolyso-
somes (red) and nuclei (DAPI; blue) in rat hippocampi (CA1). Bar graph shows that HIV-1 Tg rats exhibit increased the mean vol-
ume of LAMP1-positive endolysosomes, and this effect was significantly prevented by 17aE2. A frequency distribution plot
shows that HIV-1 Tg rats exhibit higher percentage of enlarged LAMP1-positive endolysosomes, and this effect was prevented
with 17£2 treatment. At least 30 images were analyzed with 10—15 nuclei per image from five rats per group.

constant vesicular membrane trafficking
to establish and maintain axonal and
somatodendritic  plasma  membrane
domains, it is likely that endolysosome
dysfunction, resulting from the internal-
ization of gp120, leads to alterations in
neurite morphology and dendritic spines.
Here, we determined the extent to
which 17aE2 affects endolysosome func-
tion. Using fluorescent dextran-based
ratiometric endolysosome pH measure-
ment, we demonstrated that 17aE2 (10
nM for 10 min) acidified (decreases in pH)
endolysosomes (Fig. 3A) and enhanced
endolysosome protease activity, as evi-
denced by an increase in the percentage of
active CatD-positive endolysosomes (Fig.
3B). Furthermore, we demonstrated that
17aE2 pretreatment (10 nm for 10 min)
significantly prevented gp120-induced
endolysosome deacidification (Fig. 3A)
and decreased the percentage of active
CatD-positive endolysosomes (Fig. 3B).
To further explore the persistent
effect of 17aE2 on endolysosomes, we
determined the extent to which 17«aE2
affects endolysosome morphology in
hippocampi of F344 control and HIV-1
Tg rats. Here, endolysosomes in hippo-
campal brain regions were identified
by LAMP1 staining in cryostat sections
of brain tissues, confocal images were
reconstructed in Imaris software, and
endolysosome volume were then calcu-
lated. We demonstrated that the average
size of LAMP-1-positive endolysosomes
was significantly increased (Fig. 3C, bar
graph) and the percentage of larger endo-
lysosomes are increased (Fig. 3C, fre-
quency distribution curve) in HIV-1 Tg
rats. Importantly, 17aE2 treatment sig-
nificantly attenuated the development of
enlarged endolysosome in HIV-1 Tg rats
(Fig. 3C). Our findings therefore suggest that 17aE2 enhances
endolysosome function and protects against gp120-induced endoly-
sosome dysfunction. Such endolysosome-enhancing effects of
17aE2 could contribute to its modulatory effect on dendritic spines.

gp120

0.6

ERa localizes to endolysosomes
ERa has been shown to be present in vesicle like puncta localiz-
ing on early endosomes, lysosomes, and recycling endosomes
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shows the quantification of colocalization by Pearson’s correlation coefficient. At least 30 images were analyzed with 10-15 nuclei per image from five rats per group.

(Sampayo et al, 2018). In the present study, we conducted
immunolocalization studies of ERa with endolysosomes using
the mouse hippocampal cell line CLU199 that is known to express
both ERa and ERB (Gingerich et al.,, 2010). Using object-based
colocalization, which is more accurate than pixel-based colocaliza-
tion for vesicular structures, we observed that ERa showed high
levels (76.54 * 4.393%) of colocalization with Rab7-positive endo-
lysosome and to a lesser extent (14.35 = 3.843%) with LAMP1-
positive endolysosomes in both CLU199 cells and primary neu-
rons (Fig. 4A,B, respectively). Further extending these in vitro
findings, we determined the localization of ERa on endolyso-
somes using hippocampal brain sections from F344 rats. ERa sim-
ilarly exhibited higher levels of colocalization with Rab7 than with
LAMP1 in CA3 (Fig. 4C; Pearson's correlation coefficient (Rr),
0.48 £ 0.11 vs 0.29 * 0.09). The localization of ERa on endolyso-
somes and our findings that 17«E2 enhances endolysosome

function further pointed toward 17aE2 acting through the ER«
present on Rab7- and LAMP1-positive vesicles.

ERa is involved in enhancing effects of 17aE2 on
endolysosomes

The endolysosome localization of ERa has been implicated in its
degradation (Sampayo et al., 2018). However, ERa being a cyto-
solic rather than a transmembrane protein, it can attach to the
membrane via palmitoylation (Schlegel et al., 1999; Adlanmerini
et al.,, 2014; Pedram et al., 2014). Thus, endolysosome-localized
ERa most likely resides on endolysosome membrane facing the
cytosol rather than facing the lumen for degradation. Given our
findings that 17a@E2 enhances endolysosome function, we asked
whether the endolysosome-enhancing effect of 17aE2 is medi-
ated via ERa.
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We performed siRNA-mediated knock-
down of ERa in CLU199 cells and achieved
60% reduction in ERa levels (Fig. 5A). As
ERa exhibits high levels of colocalization
with Rab7 vesicles, we sought to further es-
tablish its role in regulating Rab7 vesicle pH.
To this end, we measured the luminal pH of
Rab7 vesicles instead of the total endolyso-
somes, by pulsing the CLU199 cells with
pHrodo Dextran and Dextran Texas Red for
6 h followed by a chase of 2 h, at which point
we observed the maximum incorporation of
dextran in Rab7 vesicles (data not shown). To
start with, the resting luminal pH of Rab7
vesicles in ERa KD cells, pH 6.59 £ 0.068,
was higher than in ERa scrambled (scr) cells,
pH 6.33 = 0.067, indicating that ERa affects
endolysosome pH. In ERa KD cells, 17aE2
was less able to induce Rab7 vesicle acidifi-
cation (0.869 = 0.06 U) in ERa KD cells
than in ERa scr cells (1.33 = 0.06), a dif-
ference of 0.5091 U (Fig. 5B). Thus, ERa is
necessary for maintaining the optimum
pH of Rab7 vesicles, where it exhibits high
levels of colocalization.

To further assess endolysosome function,
we determined the effect of ERae KD on lyso-
some hydrolase activity. We calculated active
endolysosomes as the percentage of pepstatin
A-BODIPLY-FL-stained cathepsin D-positive
endolysosomes in total endolysosomes stained
with LysoTracker Red (Fig. 5C). The percent-
age of active cathepsin D endolysosomes was
significantly lower in ERa KD cells than in
ERa scr control cells (Fig. 5C), further signify-
ing that ERa could be responsible for main-
taining endolysosome pH. In response to
17aE2 treatment, ERa KD cells failed to show
the 17aE2-induced increase in the percentage
of active cathepsin D endolysosomes (5.82 =
1.29%) in ERa scr compared with ERar scr
cells (21.3 = 1.6%; Fig. 5C).

Furthermore, we determined the involve-
ment of ERa in the protection of 17aE2
against gp120-induced endolysosome dys-
function. ERa KD further decreased gp120-
induced reduction in the percentage of active

«—

reduced in ERa KD cells. €, Confocal images and bar graph
show 17aE2-induced (10 nm, 10 min pretreatment) changes in
the percentage of active/mature lysosomes in ERc scr and ERcx
KD cells. Scale bar, 10 um. Bottom bar graph shows that the
extent of the 17aE2-induced increase in the percentage of
active cathepsin D-positive endolysosomes was  significantly
reduced in ERex KD cells. D, E, Representative confocal images
and bar graphs show that 172 (10 nm, 10 min pretreatment)
affects the percentage of CatD-positive active lysosomes in ERar
scrand ERa KD cells treated with HIV-1 gp120 (0.5 nm, 10 min).
Scale bar, 10 um. Bottom bar graph shows the extent of
17 aE2-induced restoration in HIV-1 gp120-induced decrease in
the percentage of active cathepsin D-positive endolysosomes in
ERc KD cells was significantly reduced.
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cathepsin D endolysosomes; the percentage of cathepsin D endo-
lysosomes decreased by 14.43 * 2.54% in ERa scr cells compared
with 21.55 *+ 3.87% in ERa KD cells (Fig. 5D,E). In addition,
ERa KD significantly blocked 17«E2-induced (10 nm, pretreated
for 10 min) increases in the percentage of active cathepsin D
endolysosomes in the presence gp120 (0.5 nM for 30 min); the
ERa scr cells showed a 22.075 = 2.964% increase in the percent-
age of active cathepsin D endolysosomes, whereas ERa KD cells
showed an 8.264 * 1.331% increase in the percentage of active
cathepsin D endolysosomes in Figure 5, D and E. These results
suggest that ERe in involved protection of 17«E2 against gp120-
induced endolysosome dysfunction.

ERa is involved in protective effect of 17¢E2 against gp120-
induced impairment of dendritic spines

ERa has also been shown to be present in dendritic spines of glu-
taminergic neurons (Mukai et al,, 2007), and the trafficking of
lysosomes along the dendrites have been shown to correlate with
synaptic AMPA-type glutamate receptors (Goo et al., 2017).
Having earlier shown that ERa colocalizes largely with Rab7
vesicles, and that in primary hippocampal neurons it colocalizes
with PSD-95 (which is enriched in excitatory synapses; 75.159 =
5.34%; Fig. 6A), we sought to establish the relationship between
modulation of ERe function and changes in dendritic spines.
For this, we determined the involvement of ERa in the protec-
tion of 17aE2 against gp120-induced impairment of dendritic
spines. We calculated the dendritic spine density in gp120-chal-
lenged (0.5 nm for 30min) primary hippocampal neurons
expressing cytosolic GFP with or without 17aE2 pretreatment
(10 nM for 10 min) in both ERa scr and ERa KD cells. We were
able to knock down ER« in mice primary hippocampal neurons
(Fig. 6B) and as shown in Figure 6A, ERa knockdown signifi-
cantly attenuated the protective effect of 17aE2 against gp120-
induced reduction in dendritic spines. In ERa knock-down neu-
rons, 17aE2 pretreatment failed to induce any significant
increase in spine density in response to gp120 (0.696 = 0.352)
compared with 1.734 = 0.729 in ERa scr control neurons, a
more than twofold difference (Fig. 6C).

In primary neurons, Rab7 vesicles have been shown to be
present within the dendrites, and, in addition to their importance
in endolysosomal maturation (Cheng et al, 2018; Yap et al.,
2018), Rab7 vesicles are also responsible for the degradation of
dendritic cargo, autophagy, and neuronal growth factor signaling
(Gutierrez et al., 2004; Saxena et al., 2005). Because we had al-
ready shown that ERa is primarily localized to Rab7 vesicles, we
calculated the presence of Rab7 vesicles throughout the dendrites
as a measure of their transport and ability to affect changes in
spine turnover. To this end, ERa was knocked down with siRNA
with a scrambled peptide as the control in primary hippocampal
neurons (DIV 9-12) and then were stained for endogenous Rab7
and MAP2. As shown in Figure 6D, ERa knockdown reduced den-
dritic occupancy of Rab7 vesicles in neurons treated with gp120
(4.972 = 1.279 and 1.432 = 0.1258 in ER«a scr and KD neurons,
respectively). 17aE2 pretreatment significantly increased the Rab7
dendritic occupancy by almost three times (to 15.017 = 1.0628) in
ERa scr control neurons treated with gp120, but to only 3.222 =
0.6428 in ERa KD neurons (Fig. 6D). These findings indicated that
ERa KD affects the dendritic transport of Rab7 vesicles.

To further explore the potential consequence of ER KD and
dendritic transport of Rab7 vesicles, we checked the dendritic
presence of PSD-95, a postsynaptic protein that has been shown
to interact with the G-protein-coupled ER receptor 1 GPR30
(Akama et al., 2013) in the dendritic spines (Akama et al., 2013)
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and to regulate the trafficking of NMDA- or AMPA-type recep-
tors to affect synaptic development and plasticity. We have also
shown that ERa colocalizes with PSD-95 (Fig. 6A). Similar to the
changes observed with Rab7, gp120 greatly reduced the PSD-95
dendritic occupancy in ERe KD neurons (ERa scr, 4.44 = 1.152;
ERa KD, 1.44 = 0.345). 17aE2 pretreatment increased PSD-95
dendritic occupancy to 11.461 *+ 0.5583 in ERa scr neurons, it
only increased it to 2.843 * 0.2926 with ERa KD, a difference of
a factor of 4 (Fig. 6E). Together, our findings suggest that ER« is
critical for the neuroprotective ability of 17aE2 against gp120-
induced impairment in dendritic spines.

Endolysosome localization of ERa is responsible for the
endolysosome-enhancing effect of 17aE2

S-palmitoylation of ERa (C451 in mice) has been shown to be
essential for membrane localization in vivo and in various cell
types (Acconcia et al., 2005; Adlanmerini et al., 2014; Pedram et
al., 2014; Gustafsson et al., 2016). Here, we determined whether
S-palmitoylation of ER« is involved in its endolysosome localiza-
tion. Given that ERa colocalizes with Rab7-positive endolyso-
somes, we transfected CLU199 cells expressing Rab7-RFP with
either ERa wild-type (WT)-GFP or its palmitoylation-deficient
mutant ERa C451A-GFP. We observed that ERa WT-GFP
was localized to discrete puncta that colocalized with Rab7-REP.
However, its palmitoylation-deficient mutant ERaC451A showed a
more diffuse cytoplasmic localization with negligible Rab7 colocaliza-
tion (Fig. 7A).

To further investigate whether ERa palmitoylation and local-
ization to Rab7-positive endolysosomes are necessary for the
enhancing effect of 17aE2 on endolysosomes, we compared the
effect of 17aE2 on cathepsin D activity in the presence or ab-
sence of ERa palmitoylation at C451. Because we have shown
that 17«E2 induces the translocation of ERa from cytosol to
endolysosomes and we reason that overexpressed ERa C451A
mutant will compete the binding of WT ER« to 17aE2, thus the
overexpressed ERa C451A mutant will attenuate 17@E2-induced
the translocation of WT ERa to endolysosomes and the enhancing
effect of 17aE2 on endolysosomes. ERa-C451A mutant cells with-
out any treatment had less than half the percentage of active cathep-
sin D endolysosomes compared with ERee WT (Fig. 7B). 17aE2 (10
nM for 10 min) significantly increased the percentage of cathepsin
D-positive endolysosomes in ERae WT cells (by 14.283 * 3.5%), but
not in ERa C451A cells (by 10.01 * 1.748%), a difference of 37.28%
(Fig. 7B). Our findings thus indicate that endolysosome localization
of ERa is responsible for the enhancing effect of 17aE2 on
endolysosomes.

Endolysosomal ERa is responsible for the protective effect of
172E2 against gp120-induced endolysosome dysfunction and
impairment in dendritic spines

In our earlier experiment, we showed that membrane localiza-
tion of ERa is necessary for E2-induced endolysosomal acidifica-
tion (Figs. 5, 7). Because we had shown that ERe« is involved in
protection by 17aE2 against gp120-induced endolysosome dys-
function and impairment in dendritic spines, we next deter-
mined whether endolysosomal localization of ER« is necessary
for the above effect. The difference between the 17aE2-induced
increase in the percentage of CatD lysosomes between cells over-
expressing ER&WT and ERaC451A was 27.88% (Fig. 8A). It
therefore follows that 17«E2 fails to significantly acidify endoly-
sosomes in ERa C451A mutant cells treated with HIV-1 gp120.
Furthermore, primary hippocampal neurons expressing GFP
and transfected with ERa-C451A mutant showed a significantly
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lower dendritic spine density than ERa- A
WT when treated with gp120 (data not
shown). Overexpressing the ERa C451A
mutant also compromised the ability of
17aE2 to increase dendritic spine density
in gp120-treated neurons, resulting in a
difference of 5.78 (Fig. 8B). Together, our
findings suggest that endolysosome
localization of ERa is essential for
the endolysosome-enhancing effect
and neuroprotective effects of 17aE2.

Discussion

In this study, we explore the role of the
endolysosome localization of ERa in
endolysosome function and dendritic
spines. Major findings of the present

study are that endolysosome localiza- B
tion of ERe is not only responsible for
17aE2-induced endolysosome acidifi-
cation and an increase in dendritic
spines, but also for the protective effect
of 17aE2 against HIV-1 gp120-induced
endolysosome dysfunction and reduc-
tion in dendritic spines.

Endolysosome localization of ERa is
responsible for 17¢E2-induced
endolysosome acidification and
increases in dendritic spines

The extranuclear presence of mem-
brane-bound ERs in neurons has been
implicated in the enhancing effect of
estrogen on cognition and synaptic func-
tion (Mukai et al., 2007; Hojo et al., 2008;
Srivastava et al., 2011; Frick, 2015; Lai et
al., 2017; Sheppard et al, 2019). These
membrane-bound ERs exhibit distinct
subcellular distribution patterns; ERa
is mainly expressed on endolysosomes
(Milner et al, 2001; Sampayo et al,
2018), ERB is mainly mitochondrial
(Yang et al, 2004; Milner et al., 2005;
Liao et al, 2015), and GPER is mainly
expressed on endoplasmic reticulum
(Revankar et al., 2005). Activating these
membrane-bound ERs could lead to the
activation of multiple kinase net-
works, small GTPase, and prosta-
glandin-E2 signaling in regulating
the actin dynamics governing spine
plasticity (Amateau and McCarthy,
2002; Dominguez and Micevych, 2010;
Christensen et al., 2011; Hasegawa et al, 2015). Although not
extensively studied, 17aE2 exerts neuroprotective effects in cells

WT C451A

C451A

Figure 7.

«—

images and bar graphs show that 17aE2 pretreatment (10 nm, 10 min) affects the
occupancy of PSD-95 (red) along dendrites (GFP) in both ERc scr and ERae KD neu-
rons (DIV 12—14) treated with HIV-1 gp120 (0.5 nm, 30 min). Bar graph on the right
shows that ERe KD significantly reduced 17 «E2-induced changes in the occupancy
of PSD-95 in dendrites in gp120-treated neurons.
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Endolysosome localization of ERcx is responsible for the endolysosome-enhancing effects of 17aE2. A, Confocal
images show the codistribution of ERcx with Rab7-positive endolysosomes in CLU199 cells. In cells expressing wild-type ERa-
GFP, the distribution of ERce WT exhibited a distinct puncta pattern, and ERae WT was localized primarily on Rab7-positive endo-
lysosomes; however, in cells transfected with ERcx palmitoylation deficit mutant (ERcx (451A-GFP), ERcx C451A-GFP lacked a
puncta pattern, and showed a diffuse cytoplasmic localization. Scale bar, 10 um. B, Confocal images and bar graphs show
17 aE2-induced (10 nm for 10 min) changes in the percentage of CatD lysosomes in CLUT99 cells expressing wild-type ERcx (ERc
WT-HA) and the ERar (451A-HA mutant that lacks endolysosome localization (ERcx C451A). Scale bar, 10 pum. Bar graph at the
bottom shows that the overexpressing ERce (45TA mutant significantly reduced 17E2-induced changes in the percentage of ca-
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(Green et al,, 1997) and in various animal models of neuronal
injury (Levin-Allerhand et al., 2002; McClean and Nuiiez, 2008;
Manaye et al., 2011) and promotes dendritic spine synapse for-
mation (Luine and Frankfurt, 2012; Sengupta et al., 2019).

In brain regions such as the prefrontal cortex and hippocam-
pus that mediate learning and memory, ERe is present in both
cytoplasmic and membrane-bound fractions including the den-
dritic spines and at synapses (Milner et al., 2001; Hart et al,
2007; Mukai et al., 2007; Wang et al., 2010). ERa has been
detected on endolysosomes in hippocampal neurons (Milner et
al., 2001), and such endolysosome localization of ERa has been
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Figure 8.  Endolysosome localization of ERcx is responsible for the protective effect of 17E2 against HIV-1 gp120-induced endo-
lysosome dysfunction and reduction in dendritic spine density. A, Confocal images and bar graphs show that 17«E2 pretreatment
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implicated in its degradation (Totta et al., 2014; Sampayo et al.,
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that membrane-permeable 17aE2
activates endolysosome-localized ER«
and initiates an endolysosome-de-
pendent action of 17aE2.

We therefore investigated whether
endolysosome localization of ERar could
have a direct effect on endolysosome
function. Indeed, our findings demon-
strate clearly that endolysosome localiza-
tion of ERe is responsible for 17aE2-
induced endolysosome acidification in
neurons. First, ERa is present on endo-
lysosomes in neurons. Second, 17aE2
acidifies endolysosomes and enhances
endolysosome function. Third, ER«a
knockdown prevents the ability of
17aE2 to acidify endolysosomes.
Fourth, Overexpressing an ERa mu-
tant (C451A) that is deficient in the
known palmitoylation site (Adlanmerini
et al, 2014; Pedram et al, 2014) and
lacks endolysosome localization pre-
vents 17aE2-induced enhancement of
endolysosome function. The underly-
ing mechanisms by which 17aE2 acts
on endolysosome-localized ERa to
acidify endolysosomes remains to be
further investigated.

Endolysosomes have been shown to
modulate synaptic plasticity through
the dendritic spines (Goo et al., 2017;
Padamsey et al, 2017; Cheng et al,
2018; Yap et al,, 2018). Given our find-
ings that endolysosome-localized ERa
is responsible for 17aE2-induced endo-
lysosome acidification in neurons, and
that 17aE2 increases dendritic spine
density, we further investigated the
involvement of endolysosomal ERe in
17aE2-induced enhancing effects on
dendritic spines. Our findings demon-
strate clearly that endolysosomal ER« is
responsible for 17aE2-induced enhanc-
ing effects on dendritic spines; either
ERa knockdown or overexpressing the
ERa mutant (C451A) that lacks endoly-
sosome localization prevents the ability
of 17aE2 to increase dendritic spine
density.

Being at the crossroads of trans-
porting membrane and membrane
proteins to synapses and dendritic
spines and in the degradation of den-
dritic cargos, endolysosomes play an

2018). However, ERa is not a transmembrane protein, and as a
cytosolic protein ERa can be attached to the membrane via pal-
mitoylation (Schlegel et al., 1999; Adlanmerini et al, 2014;
Pedram et al., 2014). It has been shown that 30 min of estradiol
treatment increase ERa levels along the endocytic pathway
(Norfleet et al, 1999; Dominguez and Micevych, 2010;
Christensen and Micevych, 2012). This endolysosome-localized
ERa most likely resides on endolysosome membrane facing the
cytosol rather than facing lumen for degradation. It is more likely

important role in the modulating of dendritic spine and synaptic
plasticity (Goo et al., 2017; Padamsey et al., 2017; Nikoletopoulou
and Tavernarakis, 2018; Yap et al, 2018). We speculate that
17 aE2-induced endolysosome acidification could affect the degra-
dative capacity and motility of these endolysosomes traveling
along dendrites (Tsuruta and Dolmetsch, 2015), thus regulating
dendritic spine remodeling. Our findings show that 17«E2
increases dendritic occupancy of ERa carrying Rab7-positive
endolysosomes, an effect that is blocked by ERa knockdown.
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Rab7 also controls the trafficking of multiple axonal and dendritic
cargoes including TrkA, Nsgl, and Nsg2 (Saxena et al., 2005; Yap
et al,, 2018), and, because of the considerable overlap between
Rab7 and LAMP1 endolysosomal markers, 17«E2 induced
changes in both the dendritic occupancy of Rab7-LAMPI vesicles
as well as in their degradative capacity (measured by cathepsin D
activity) could potentially determine the local hydrolase activity of
the lysosomes in modulating spine turnover. In addition to coloc-
alization with Rab7-postive late endosomes along the dendrites,
ERa also colocalizes partially with PSD-95, which has earlier been
shown to interact with another ER, the GPR30 (Akama et al,
2013). Therefore, we also show that 17«E2 increases dendritic oc-
cupancy of PSD-95 puncta, an effect that is blocked by ER«a
knockdown. Thus, endolysosomal ERa could affect PSD-95 traf-
ficking in dendrites (Yoo et al., 2019), modulating synaptic plastic-
ity. Additionally, endolysosomal ER« could also regulate dendritic
spine remodeling by affecting lysosomal exocytosis and the subse-
quent action of matrix metallopeptidase 9 (Michaluk et al., 2011;
Padamsey et al., 2017). Nonetheless, detailed mechanisms whereby
endolysosome localization of ERa modulates dendritic spines
warrants further investigation.

Endolysosomal localization of ER« is responsible for
protective effect of 17¢E2 against HIV-1 gp120-induced
endolysosome dysfunction and reduction in dendritic spines
Endolysosome dysfunction, which represents a central event in a
wide range of age-related neurodegenerative disorders (Nixon,
2013, 2020; Bonam et al., 2019), has been implicated in HIV-1-
infected individuals with HAND (Gelman et al., 2005; Spector
and Zhou, 2008; Zhou and Spector, 2008; Cysique et al., 2015).
We and others have shown that HIV-1 and various HIV-1 viral-
related factors (viral proteins and ART drugs) have been shown
to disrupt endolysosomal structure and function. Here, we also
demonstrate that endolysosomes are enlarged in hippocampal
brain regions from the HIV-1 Tg rat, a model that closely resem-
bles neurocognitive impairments of HIV-1-positive individuals
(Reid et al., 2001; Royal et al., 2012).

We demonstrated that 17aE2 protects against gp120-induced
alteration in dendritic spines in primary neurons and in HIV-1
Tg rats. HIV-1 gpl20 contributes to neuronal injury through
both direct and indirect mechanisms. The direct neuronal dam-
aging effects of HIV-1 gp120 depend, in part, on its endocytosis
and internalization (Bachis et al., 2006; Berth et al., 2015; Wenzel
et al,, 2017). Here, we further demonstrated the association
between gp120-induced endolysosome dysfunction and gp120-
induced reduction in dendritic spines and the association
between endolysosome enlargement and reduction in dendritic
spines in HIV-1 Tg rats, indicating that endolysosome dysfunc-
tion could lead to reduction in dendritic spines. While the pres-
ent study is constrained by the simplicity of using only gp120 in
vitro compared with the HIV-1 Tg rat model that expresses
many other viral proteins, including other neurotoxic proteins
such as Tat and Nef, we had shown that both HIV-1 Tat and
gp120 are endocytosed and deacidify the endolysosomes (Hui et
al,, 2012; Datta et al., 2019; Halcrow et al,, 2021), implying that
there could be a significant degree of overlap between their
mechanistic actions.

Based on our findings that endolysosomal localization of ER«
is important for 17aE2-induced enhancement of endolysosome
function and an increase in dendritic spine density, we further
determined the involvement of endolysosome localization of
ERa in protective effect of 17aE2 on gp120-induced endolyso-
some dysfunction and synaptodendritic impairment. We
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demonstrated that either ERa knockdown or overexpressing the
palmitoylation-deficient ERa mutant (C451A) that lacks endoly-
sosome localization prevents the ability of 17aE2 to protect
against gp120-induced endolysosome dysfunction and synapto-
dendritic impairment. These findings suggest that gp120-induced
endolysosome dysfunction could lead to a reduction in dendritic
spines. Mechanistically, gp120-induced endolysosomal deacidifi-
cation could result in impaired proteolysis and defective traffick-
ing of Rab7-positive endolysosomes and PSD-95-positive vesicles
along dendrites, which could then lead to reduced dendritic spines
and synaptic disruption, and these gp120-induced effects can be
prevented by the activation of endolysosome-localized ERa by
17aE2. Our studies therefore show that 17«E2 is capable of miti-
gating some of the direct synaptodendritic damaging effects of
HIV-1 gp120; however, further detailed mechanistic studies are
needed to determine whether and how these different pathways
interact.

In summary, findings from the present study demonstrate
clearly that endolysosome localization of ERa is responsible not
only for 17aE2-induced endolysosome acidification and an
increase in dendritic spines, but also for the protective effect of
17aE2 against HIV-1 gp120-induced endolysosome dysfunction
and reduction in dendritic spines. Given the physical and func-
tional compartmentalization of different neuronal compartments
coupled with the complexity of dendritic spine plasticity in the
highly polarized neurons, this study is not without its caveats (e.
g., brain levels of 17aE2 were not measured), but nevertheless
provides novel mechanistic insights into the neuroprotective
effect of 17aE2 and may lead to the development of novel thera-
peutic strategies against HAND.
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