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Behavioral/Cognitive

Voxelwise Encoding Models Show That Cerebellar Language
Representations Are Highly Conceptual
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There is a growing body of research demonstrating that the cerebellum is involved in language understanding. Early theories
assumed that the cerebellum is involved in low-level language processing. However, those theories are at odds with recent
work demonstrating cerebellar activation during cognitive tasks. Using natural language stimuli and an encoding model
framework, we performed an fMRI experiment on 3 men and 2 women, where subjects passively listened to 5 h of natural
language stimuli, which allowed us to analyze language processing in the cerebellum with higher precision than previous
work. We used these data to fit voxelwise encoding models with five different feature spaces that span the hierarchy of lan-
guage processing from acoustic input to high-level conceptual processing. Examining the prediction performance of these
models on separate BOLD data shows that cerebellar responses to language are almost entirely explained by high-level con-
ceptual language features rather than low-level acoustic or phonemic features. Additionally, we found that the cerebellum has
a higher proportion of voxels that represent social semantic categories, which include “social” and “people” words, and lower
representations of all other semantic categories, including “mental,” “concrete,” and “place” words, than cortex. This suggests
that the cerebellum is representing language at a conceptual level with a preference for social information.
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Recent work has demonstrated that, beyond its typical role in motor planning, the cerebellum is implicated in a wide variety
of tasks, including language. However, little is known about the language representations in the cerebellum, or how those rep-
resentations compare to cortex. Using voxelwise encoding models and natural language fMRI data, we demonstrate here that
language representations are significantly different in the cerebellum compared with cortex. Cerebellum language representa-
tions are almost entirely semantic, and the cerebellum contains overrepresentation of social semantic information compared
with cortex. These results suggest that the cerebellum is not involved in language processing per se, but cognitive processing

more generally. /

Schmahmann, 2009). Evidence for the cognitive function of the
cerebellum in healthy subjects has come largely from neuroimag-
ing studies, which have found that certain cognitive tasks elicit
consistently localized BOLD responses across cerebellum (King
et al,, 2019) and that resting-state BOLD fluctuations in cerebel-
lum align to known resting-state networks in cortex (Buckner et
al.,, 2011; Marek et al., 2018). However, little is known about
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The cerebellum is known to be involved in a diverse set of cogni-
tive processes, including attention (Allen et al., 1997), working
memory (Brissenden et al., 2018), object recognition (Liu et al.,
1999), and language processing (Booth et al., 2007; Stoodley and
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what role the cerebellum plays in cognitive processes, or how
representations in the cerebellum might differ from those found
in cortex.

Language understanding is a highly complex cognitive pro-
cess, which makes it a rich area of research to study cognitive
processing. Hierarchically organized networks for language proc-
essing are widely distributed across much of cortex (Binder et al.,
1997; Dronkers et al., 2004; Hickok and Poeppel, 2007; Poeppel
et al., 2012; de Heer et al., 2017). These networks include some
putative “language specific” areas in temporal and inferior fron-
tal cortex (Fedorenko et al, 2011), as well as non-language-
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Figure 1.

Voxelwise encoding model construction. To localize different stages of language processing across the cerebellum, we used five feature spaces to predict voxelwise BOLD responses

in each subject: spectral, articulatory, part-of-speech, word-level semantic, and context-level semantic. Each 10-15 min stimulus story was transcribed and temporally aligned to the audio re-
cording at the word and phoneme level. Features were then extracted for each of the five feature spaces. The features for the spectral model are 256 bands of a mel-frequency spectrogram.
The features for the articulatory model are a 22 length n-hot vector. The features for the part-of-speech model are a 1-hot 17 length vector. The features for the word-level semantic model
are a 985-dimensional vector based on statistical word co-occurrence. The features for the context-level semantic model are a 768 dimensional vector based on GPT (Radford et al., 2018), a
neural network language model that incorporates context (preceding words) into the representation of the current word. Features were extracted for each time point, word, or phoneme, and
concatenated into a feature matrix. The feature matrix was then resampled to the rate of the BOLD signal (0.5 Hz) and delayed to form an finite impulse response model that accounts for
hemodynamics. Then regularized linear regression was used to fit weights that predict each voxel’s BOLD signal from the stimulus matrix. Finally, models were used to predict responses on a
held-out test dataset that was not used for model fitting. Model performance was assessed as the linear correlation between held-out BOLD data and model predictions for each voxel.

specific conceptual areas in temporal, parietal, and prefrontal
cortex (Fedorenko et al., 2013). However, it is unclear whether
these networks are also reflected in the cerebellum. Clinical evi-
dence for a cerebellar role in language processing is found in
work on cerebellar cognitive affective syndrome (CCAS), which
shows that patients with acquired cerebellar damage experience
language degradation, which can include agrammatism, dyspro-
sody, and anomia (Schmahmann and Sherman, 1998). However,
the subtlety and variability of these effects have made it difficult
to form a complete picture. Early work into language deficits
from cerebellar lesions has often conflicted with cases suggesting
a degradation in grammar while preserving semantic content
(Silveri et al., 1994; Justus, 2004; Frank et al., 2008) and other
work suggesting a more uniform degradation in language proc-
essing that includes semantic content (Fiez et al., 1992; Silveri
and Misciagna, 2000; Cook et al., 2004). However, it is unclear
whether the standard aphasia tests used in these studies are sensi-
tive enough to detect deficits from cerebellar damage (Cook et
al., 2004; Murdoch, 2010). Our goal is to determine how lan-
guage perception is localized in the cerebellum, what aspects of
language are represented in the cerebellum, and how this com-
pares to language processing systems in cortex.

Here we modeled cortical and cerebellar representations of
natural speech using three different categories of features that
span the putative language processing hierarchy (Hickok and
Poeppel, 2007; de Heer et al., 2017): modality-specific, language-
specific, and conceptual. Modality-specific features capture in-
formation specific to how people perceive the language stimulus.
In this study, subjects listened to audio recordings of naturally
spoken narrative stories, so we used a feature space that captures
frequency information in sound (Cheung et al., 2016). This fea-
ture space is known to be represented in auditory cortex (de
Heer et al, 2017). Building on modality-specific features,

language-specific features capture information that only exists in
language, such as phoneme articulations and syntax. These fea-
ture spaces are known to be represented in superior temporal
gyrus (STG) (Fedorenko et al,, 2011; de Heer et al., 2017) and in-
ferior frontal cortex (de Heer et al., 2017). Finally, conceptual
features capture information about the meaning conveyed by
language, which is known to be represented across broad regions
of cortex, overlapping with other cognitive tasks (Fedorenko et
al., 2013; de Heer et al., 2017). Previous work used similar meth-
ods to demonstrate that there is a hierarchy across these feature
categories in cortex, where modality-specific information feeds
into language-specific and then conceptual representations (de
Heer et al., 2017). Here we investigated whether this hierarchy is
replicated in the cerebellum or whether the cerebellum is specifi-
cally involved in only some aspects of language processing. For
ease of language, “cortex” here refers exclusively to the cerebral
cortex and “cerebellum” refers to the whole cerebellum, as cere-
bellar white matter was not excluded from analysis.

To determine which aspects of language the cerebellum is
involved in processing or representing, we conducted a fMRI
experiment where subjects passively listened to 27 natural, narra-
tive stories (5.4 h) about a diverse set of topics. We then used
voxelwise encoding models (Fig. 1) to determine how well each
set of speech-related features could predict each voxel in each sub-
ject. The stimuli were first transformed into five different feature
spaces: spectral, articulatory, part-of-speech, word-level semantic,
and context-level (multiword) semantic. We used ridge regression
to fit voxelwise encoding models with each feature space, and then
tested how well these encoding models could predict responses to
a new story that was not used for model fitting. Finally, we used
variance partitioning to measure how much variance in cerebellar
and cortical BOLD responses is uniquely explained by each of
the five feature spaces. We found substantial evidence that the
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cerebellum represents language at a high conceptual and seman-
tic level, and no strong evidence that the cerebellum represents
any language-specific or modality-specific information.

In addition, we used the word-level semantic encoding mod-
els to determine whether the cerebellum represents different
semantic categories than cortex. This analysis showed that all
semantic categories are represented in both the cerebellum and
cortex, but that the cerebellum has an overrepresentation of social
semantic categories and an underrepresentation of mental, con-
crete, and place-related semantic categories compared with cortex.

Materials and Methods

Participants

Data were collected from 3 male subjects and 2 female subjects: UT-S-01
(female, age =24 yr), UT-S-02 (male, age 34 yr), UT-S-06 (female, age 23
yr), UT-S8-07 (male, age =25 yr), UT-S-08 (male, age =24 yr). Three of
the subjects were authors (UT-S-01: S.J.; UT-S-02: A.G.H.; and UT-S-06:
A.L). All subjects were healthy and had normal hearing. The experimen-
tal protocol was approved by the Institutional Review Board at the
University of Texas at Austin. Written informed consent was obtained
from all subjects.

fMRI collection

MRI data were collected on a 3T Siemens Skyra scanner at the UT
Austin Biomedical Imaging Center using a 64-channel Siemens volume
coil. Functional scans were collected using gradient echo EPI with
TR=2.00 s, TE=30.8 ms, flip angle =71°, multiband factor (simultane-
ous multislice) =2, voxel size=2.6 mm X 2.6 mm X 2.6 mm (slice
thickness =2.6 mm), matrix size = (84, 84), and FOV =220 mm. FOV
covered both the cortex and the cerebellum in their entirety for all sub-
jects. Anatomical scans were collected using a T1-weighted multiecho
MP-RAGE sequence on the same 3T scanner with voxel size=1mm x 1
mm X 1 mm following the Freesurfer morphometry protocol.
Anatomical data for Subject UT-S-02 were collected on a 3T Siemens
TIM Trio at the Berkeley Brain Imaging Center with a 32-channel
Seimen’s volume coil using the same sequence.

Known ROIs were localized separately in each subject. Three differ-
ent tasks were used to define ROISs; these include a visual category local-
izer, an auditory cortex localizer, and a motor localizer.

For the visual category localizer, data were collected in six 4.5 min
scans consisting of 16 blocks of 16 s each. During each block 20 images
of either places, faces, bodies, household objects, or spatially scrambled
objects were displayed. Subjects were asked to pay attention for the same
image being presented twice in a row. The corresponding ROIs defined
in cortex with this localizer were the fusiform face area (Kanwisher et al.,
1997), occipital face area (Kanwisher et al., 1997), extrastriate body area
(Downing et al., 2001), parahippocampal place area (Epstein and
Kanwisher, 1998), and the occipital place area.

Motor localizer data were collected during two identical 10 min
scans. The subject was cued to perform six different tasks in a random
order in 20 s blocks. The cues were “hand,” “foot,” “mouth,” “speak,”
“saccade,” and “rest” presented as a word at the center of the screen,
except for the saccade cue, which was presented as a random array of dots.
For the hand cue, subjects were instructed to make small finger-drumming
movements for the entirety of the time the cue was displayed. For the foot
cue, the subjects were instructed to make small foot and toe movements. For
the mouth cue, subjects were instructed to make small vocalizations that were
nonsense syllables, such as balabalabala. For the speak cue, subjects were
instructed to self-generate a narrative without vocalization. For the saccade
cue, subjects were instructed to look around for the duration of the task.

Weight maps for the motor areas were used to define primary motor
and somatosensory areas for the hands, feet, and mouth; supplemental
motor areas for the hands and feet; secondary motor areas for the hands,
feet, and mouth; and the ventral premotor hand area. The weight map for
the saccade responses was used to define the frontal eye field and intraparie-
tal sulcus visual areas. The weight map for the speech production was used
to define Broca’s area and the superior ventral premotor area speech area
(Chang et al,, 2011). In the cerebellum, weight maps for each subject were
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resliced in SUIT space (Diedrichsen, 2006), and then the resliced maps were
averaged across subjects for each task. Motor areas for the hand, mouth,
foot, and saccade tasks were defined in the posterior and anterior lobe.

Auditory cortex localizer data were collected in one 10 min scan. The
subject listened to 10 repeats of 1 min auditory stimulus each containing
20 s of music (Arcade Fire), speech (Ira Glass, This American Life), and
natural sound (a babbling brook). To determine whether a voxel was re-
sponsive to auditory stimulus, the repeatability of the voxel response
across the 10 repeats was calculated using an F statistic. This map was
used to define the auditory cortex.

fMRI preprocessing

All functional data were motion-corrected using the FMRIB Linear
Image Registration Tool (FLIRT) from ESL 5.0. (Woolrich et al., 2009)
FLIRT was used to align all data to a template that was made from the
average of all functional runs in the first story session for each subject.
These automatic alignments were manually checked. Low-frequency
voxel response drift was identified using a second-order Savitzky-Golay
filter with a 120 s window and then subtracted from the signal. To avoid
artifacts from onsets and poor detrending performance, responses were
trimmed by removing 20 s (10 volumes) at the beginning and end of
each scan. This removed the 10 s silent period as well as the first and last
10 s of each story. The mean response for each voxel was subtracted and
the remaining response was scaled to have unit variance.

Cortical surface reconstruction and visualization

For cortical surfaces, meshes were generated from the T1-weighted ana-
tomic scans using freesurfer (Dale et al., 1999). Before surface recon-
struction, anatomic surface segmentations were hand-checked and
corrected. Blender was used to remove the corpus callosum and make
relaxation cuts for flattening. Functional images were aligned to the corti-
cal surface using boundary-based registration implemented in FSL. These
were checked for accuracy, and adjustments were made as necessary.

For the cerebellar cortical surfaces, the SUIT toolbox (Diedrichsen,
2006) was used to isolate the cerebellum from the rest of the brain using
the T1-weighted anatomic image. The anatomical maps for the cerebel-
lum were normalized into SUIT space using the SUIT registration algo-
rithm. After encoding model fitting, cerebellar functional results were
transformed into anatomic space and then resliced using SUIT. The SUIT
flatmap and surface were added to the pycortex database for the purpose
of surface visualization.

Model maps were created by projecting the values for each voxel
onto the cortical surface using the “nearest” scheme in pycortex software
(Gao et al,, 2015). This projection finds the location of each pixel in the
image in 3D space and assigns that pixel the associated value.

Stimulus set

The modeling training stimulus set consisted of 26 10-15min stories
taken from The Moth Radio Hour. In each story, a single speaker tells an
autobiographical story without reading from a prepared speech. Each
story was played during one scan with a buffer of 10 s on either side of
the story start and stop. Data collection was broken up into 6 different
days, the first session involving the anatomical scan and localizers, and
each successive session consisting of 4 or 5 stories, plus one additional
story used for model prediction. This additional story (which was not 1
of the 26 stories used for model training) was played in every session, and
the responses to this story were averaged. Stories were played over
Sensimetrics S14 in-ear piezoelectric headphones. The audio for each story
was filtered to correct for frequency response and phase errors induced by
the headphones using calibration data provided by sensimetrics and custom
python code (https://github.com/alexhuth/sensimetrics_filter). All stimuli
were played at 44.1 kHz using the pygame library in Python.

Each story was manually transcribed by one listener. Certain sounds
(e.g., laughter and breathing) were also marked to improve the accuracy
of the automated alignment. The audio of each story was downsampled
to 11kHz, and the Penn Phonetics Lab Forced Aligner (P2FA) (Yuan,
2008) was used to automatically align the audio to the transcript. Praat
(Boersma and Weenink, 2021) was then used to check and correct each
aligned transcript manually.
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Feature spaces

Five feature spaces were used to cover the hierarchy of language process-
ing. Each feature space was fit separately for each subject. The spectral
feature space was a mel-band spectrogram with frequencies ranging
from ~0Hz to 8 kHz with 256 windows. The articulatory feature space
was an n-hot feature space where each phoneme is assigned a 1 for each
articulation that is required to produce the sound and a 0 for every other
articulation for a total of 22 features per phoneme. For the part-of-
speech feature space, a one-hot vector of 17 features was assigned to
each word noting the part-of-speech for each word in each story. Part-
of-speech tagging was done using the flair package (Akbik et al.,, 2019).
Flair is a language model that uses recurrent neural networks to tag speech
into 17 categories (e.g., noun, verb, number, determiner, etc.). The word-
level semantic space was a 985-dimensional feature space based on word
co-occurrence (Huth et al, 2016). Each word in the stimulus set was
assigned the vector associated with it in the original space. If the word in the
story was not present in the original semantic space, it was assigned a vector
of length 985 of zeros. The contextual semantic space was based on a fine-
tuned GPT language model (Radford et al., 2018). GPT is a state-of-the-art
language model that takes into account previous words while generating
features for the current word. To assign features to each word, we extracted
768-dimensional feature vectors from layer 9 with a context length of 25
words. We chose layer 9 because it is a midlayer of GPT and it has been
demonstrated that middle layers of recurrent language models are best able
to predict brain activity (Jain and Huth, 2018; Toneva and Wehbe, 2019).

Experimental design and statistical analysis

Encoding model fitting. We used each of the 5 feature spaces to fit a lin-
earized finite impulse response model to every cortical voxel in each subject.
The cerebellar models and the cortical models were fit separately. The stim-
ulus matrix for each story was downsampled using a 3-lobe Lanczos filter,
then z-scored and concatenated together. To fit the linear model, the stimu-
lus matrix has to account for variance in the hemodynamic response func-
tion across voxels. To do this, we concatenate four delayed copies of the
stimulus (using delays of 1, 2, 3, and 4 time points). This final stimulus ma-
trix is then regressed with the BOLD data using ridge regression. We then
test the model using a held-out dataset. This is done by taking the dot prod-
uct of the weight matrix from the regression with the stimulus matrix from
the held-out test set, resulting in a voxel x time point matrix. This resulting
matrix is compared with the actual BOLD data for the held-out test set and
the correlation calculated over time for each voxel to give a measure of
model performance. The correlation was then noise-ceiling corrected for
some analyses (noted in the text) (Schoppe et al., 2016). Total model per-
formance metrics were computed using the mean > across voxels. The 7
was calculated as the signed * (r x |r|). Mean was used instead of summa-
tion to better account for the difference in number of voxels over the cere-
bellum compared with the cortex. To keep the scale of the weights
consistent, a single value of the regularization coefficient was used for all
voxels in both the cerebellum and cortex in all subjects. To find the best reg-
ularization coefficient, the regression procedure was bootstrapped 50 times
in each subject; and a regularization performance curve was obtained for
each subject by averaging the bootstrap sample correlations across the 50
samples, then across voxels, and finally across the 6 subjects, and the best
overall value of the regularization parameter was selected. This was done
separately for each feature space.

Individual model comparison. Encoding models with each of the fea-
ture spaces were fit in the cerebellum and cortex in each subject, and the
regression weights were used to predict a held-out test set. Model per-
formance for each voxel was estimated by taking the correlation of the
predicted time series for each voxel with the actual data. Then to test
whether the model performance was significantly >0, the time series for
each voxel was randomly shuffled in blocks of 10 TRs and the correlation
with the predicted time series was recalculated. This was done for 10,000
permutations to gain a null distribution of responses. This null distribu-
tion was used to calculate the p value for each voxel and this was FDR-
corrected to account for multiple comparisons. A threshold of q(FDR)
< 0.05 was used to test for significantly well-predicted voxels. This was
done individually in the cerebellum and cortex in each subject for each
model. The correlations were also noise-ceiling corrected. Comparison
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was done across subjects by taking the average r* of all voxels in each
subject in the cerebellum and cortex.

Noise ceiling correction. Noise ceiling correction was done using a
modified normalized correlation coefficient (CC,,,,,,) (Schoppe et al.,
2016). This was calculated by first calculating the product-moment cor-
relation defined as follows:

X, Y
cc, = LX)
Var(X)Var(Y)

Where X are the neural representations after repeat stimuli presenta-
tion and Y are the model predictions. Then, to isolate model perform-
ance from prediction accuracy, this was normalized by the following:

Ccabs
Ccmax

CCrorm = with

CCax =

The CC,,,, is the maximum correlation coefficient between the
recorded BOLD signal and the best prediction that a perfect model could
theoretically achieve. In addition to this standard CC,,,,,, we took the
maximum with an added maximum flooring of 0.3, which was experi-
mentally determined to result in the most normally distributed correla-
tions. Without the maximum flooring parameter, the estimated
correlation after noise ceiling correction would go >1.

Variance partitioning. Because five-way variance partitioning has
too many partitions to be interpretable, we used two versions of variance
partitioning to test specific hypotheses. The first version looked at the
unique variance explained by each model. This was done to test whether
one feature space is uniquely better at predicting cerebellar or cortical
voxels. The second version was a pairwise variance partitioning where
each model was jointly fit with the contextual semantic space. This was
done to test for the specific hypothesis that the contextual semantic
model is better predicting the same areas as the low-level models in the
cerebellum; that is, are there unique low-level language representations
in the cerebellum or is the contextual semantic model better predicting
the same areas as the low-level models? To do variance partitioning,
joint models with the concatenated feature spaces are fit and then used
to predict the held-out dataset. To be succinct, the variance explained by
the five feature spaces will be written as Sets A-E.

Unique partition. The following nested models were fit:

AUBUCUDUE, AUBUCUD, AUBUCUE, AUBUDUIE,
AUCUDUE, and BUCUDUE
The variance uniquely explained by each feature space without any

overlap from the other feature spaces, or relative complement (RC), was
then calculated for each feature space as follows:

AR = AUBUCUDUE - BUCUDUIE,
B* = AUBUCUDUE — AUCUDUE
C* = AUBUCUDUE — AUBUDUE
D* = AUBUCUDUE — AUBUCUE

E*¢ = AUBUCUDUE — AUBUCUD

A Fisher-corrected permutation test with 10,000 permutations was
done in each subject in both the cerebellum and cortex for each voxel for
the unique partitions using the joint AUBUCUDUE model. Multiple
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comparison correction was done using FDR with a threshold of p < 0.05.
Cerebellar data were resliced after the calculation of the unique partitions
and the significance testing. The mean of the variance explained was calcu-
lated for each subject, in each partition, in the cerebellum and cortex.

To calculate whether each partition was significantly >0, we used a
permutation test with 1000 permutations. To develop a null hypothesis
of zero unique variance explained, we permuted blocks (block length of
10 TRs) of the model prediction for the BOLD activity for each mode.
We then calculated the correlation of the permuted prediction with the
actual held-out BOLD activity. Block permutation preserves autocorrela-
tion statistics of the time series (Kunsch, 1989) and thus provides a sensi-
ble null hypothesis for these significance tests. We then recalculated the
unique variance and nonunique partition, performed the bias correction
as described below, and then took the mean unique variance explained
for each partition. We repeated this process 1000 times to create a null
distribution for each unique partition and the nonunique partition. This
was done separately for cerebellum and cortex.

To determine whether the difference in partition sizes between cerebel-
lum and cortex was significantly different from zero, we first concatenated
the unique variance explained by the model for all significantly well-predicted
voxels in both cerebellum and cortex into a single vector. For each of 10,000
permutations, we shuffled this vector and then resplit it into “cerebellar” and
“cortical” groups, that is, shuffled the label (cortex vs cerebellum) assigned to
each voxel. We then found the difference in the means between these two
groups. Finally, we compared the actual mean difference value to the distribu-
tion of values obtained from permutations to calculate the p value.

Pairwise variance partitioning. The following concatenated models
were fit (where A is the contextual semantic feature space):

AUB,AUC,AUD, AUE, A, B,C,D,E

The variance explained by the intersections were calculated as follows:

AMNB=A+B—-AUB
ANC=A+C—-AUC
AND=A+D-AUD

ANE=A+E—-AUE

Then the unique contribution of each feature space in each pair can
be calculated. This is the unique contribution without overlap from the
other feature space noted as RC/X where X is the other paired feature
space. These are calculated as follows:

ARE — AUB - B
B =AUB—- A
AXC = AUc-cC
ct=AUcC-A
ARP — AUD - D
D = AUD - A
ARE — AUUE—E

ER=AUE—- 4

A Fisher-corrected permutation test with 10,000 permutations
was done in each subject in both the cerebellum and cortex for each
voxel for the unique partitions and intersections using the joint
AUB, AUC, AUD, AUE models. Multiple comparison correction was
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done using FDR with a threshold of g(FDR) < 0.05. Cerebellar data were
resliced after the calculation of the unique partitions and the significance
testing.

Correction of variance partition estimates. Because empirical esti-
mates of variance explaining contain sampling noise and the larger joint
models are more prone to this noise, the set theoretical approach
described above can result in theoretically impossible results. These the-
oretically impossible results can present as the group models explaining
less variance than the individual models. This is because of the increase
in the number of features but the amount of data being constant. To cor-
rect this problem, a post hoc correction was applied to the estimated var-
iance explained by each model (de Heer et al, 2017). This correction
moved the estimates to the nearest values that produced no nonsensical
results. Mathematically, this involved estimating a bias term for the var-
iance explained by each model in each voxel. We assumed that the esti-
mated variance explained by some model (), X* : X = X*+b,.

For the pairwise models, there are three bias parameters (one for
each individual feature space and one for the combined model). For the
unique variance-explained paradigm, there are six bias parameters (one
for the five-way combined model, and one for each individual feature
space in a leave one out paradigm). Further, because we know that the
size of each variance partition must be at least equal to zero, the set
theory equations that give the size of each partition can be used to define
the inequality constraints on the bias terms. Assume that we want to
find the smallest set of bias parameters that produce no nonsensical
results, this allowed us to set up a constrained function minimization
problem as follows:

min{||b||*subjecttoh;(b) > Oforj = 1...x

Where h indicates our inequality constraints and x is the number of
bias parameters.

This procedure was applied separately to the estimated values of the
variance explained for each voxel. This procedure is adapted from the
one used by de Heer et al. (2017).

Analysis of model weights. To assess similarity of semantic categories
between cortex and cerebellum, the semantic space had to be broken
into discrete categories instead of a smoothly continuous space. To do
this the encoding model weights for the top 25% of voxels predicted by
the word-level semantic model in each subject were concatenated to-
gether across subjects. This was done separately in cortex and cerebel-
lum, and then those were also concatenated together. Then the model
weights were normalized across voxels and principal components analy-
sis was used to drop the number of dimensions from 985 to 86, which
we chose because it explained 80% of the variance. These data were then
clustered using spherical k-means into 5 clusters. Cluster labels were
determined subjectively based on the most similar words to the cluster
centroid. To create an additional label set not biased by the authors, we
asked 8 observers to provide five possible category labels based on the 10
words closest to the cluster centroid. We then averaged these responses
using word2vec and have provided these labels in Extended Data Figure
6-3.

To choose the number of clusters, we calculated inertia, which is the
within-cluster sum of squares criterion, of the clustering algorithm for a
range of clusters between 1 and 20 clusters. From this, we calculated the
point where the inertia changes from an exponential drop to a linear
drop in inertia. This can also be defined as the point where the inertia is
farthest from a linear line connecting the inertia at cluster 1 to the inertia
at cluster 20. This point occurred at 5 clusters. (Extended Data Fig. 6-1
shows the inertia across all clusters tested.)

To test for significance in category differences between cerebellum
and cortex, a permutation test was done by shuffling voxels between the
cortex and the cerebellum for each subject. The difference in the ratio of
each category in the cerebellum compared with the ratio of that category
in the cortex was calculated for both the permutation set and the original
data. The two-tailed p value was calculated for each category as the ratio
of the permutation difference greater than the absolute value of the origi-
nal data difference plus the ratio of the permutation difference less than
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the negative absolute value of the original data. This was multiple com-
parison corrected using FDR with a threshold of p < 0.05.

Data availability

The data used in this study is publicly available on OpenNeuro (LeBel et
al,, 2021). A corresponding dataset paper is being prepared to go along
side the data.

Results

Encoding model performance

To determine which aspects of language might be processed in
the cerebellum, we created five feature spaces that span the hier-
archy of language processing from sound to context-level mean-
ing, including a spectral feature space, an articulatory space, a
part-of-speech space, a word-level semantic space, and a context-
level semantic space that combines information across words.
Previous work has demonstrated that these feature spaces can
capture these different components of language and predict
BOLD responses in cortex (Huth et al., 2016; de Heer et al., 2017;
Jain and Huth, 2018). We fit separate encoding models with each
feature space using 5.4 h of BOLD responses recorded while sub-
jects listened to 26 different natural narrative stories taken from
The Moth Radio Hour. Then, each model was used to predict
responses to a different 10 min story, and model performance
was quantified as the correlation between the predicted and
actual BOLD responses (r°). Figure 2A shows the prediction per-
formance values for each feature space in one subject projected
onto the SUIT cerebellar surface as well as prediction perform-
ance of each model in the cortex (similar maps for other subjects
are in Extended Data Fig. 2-1).

The spectral model uses a 256-dimensional, modality-specific
feature space representing a mel-frequency spectrogram. This
feature space is highly predictive of the primary auditory cortex
along the transverse temporal gyrus. It does not significantly pre-
dict any voxel in the cerebellum (one-sided permutation test, g
(FDR) < 0.05), but it does appear to have diffuse low prediction
performance across lobules VIIA, VIIB, and VIIIA. Of note, this
is similar to previous results that showed cerebellar response to
auditory stimulus along the medial portion of these lobules
(Snider and Stowell, 1944). However, there appears to be no clus-
tering of spectrally selective voxels in the cerebellum, as is seen in
the auditory cortex. To confirm that our result is not merely
because of this feature space missing the representations that
could capture low-level auditory processing in the cerebellum,
we also fit the spectrotemporal model as described previously
(Norman-Haignere and McDermott, 2018). This more advanced
model does not explain more variance in the cerebellum than the
spectral model (Extended Data Fig. 2-3). This suggests that the
cerebellum has no homologous area to the primary auditory
cortex.

The articulatory model uses a 22-dimensional binary, lan-
guage-specific feature space, with each dimension representing 1
of the 22 articulations used in English (e.g., bilabial, back)
(Levelt, 1993). In cortex, the articulatory space best predicts lat-
eral, posterior temporal cortex along superior temporal gyrus. In
the cerebellum, this feature space has diffuse prediction perform-
ance across lobules VIIIA and VIIIB, and significantly predicts a
limited number of voxels in the medial posterior cerebellum
(one-sided permutation test, g(FDR) << 0.05). These areas are
not traditionally considered motor speech areas (Callan et al.,
2006; Manto et al., 2012); thus, this is unlikely to be because of
covert rehearsal. This suggests that the cerebellum is not merely
representing the articulations required to produce speech, and
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the lack of spatial clustering of well-predicted voxels further sup-
ports a lack of a homologous area to the auditory cortex.

The part-of-speech model uses a 17-dimensional binary, lan-
guage-specific feature space, where each dimension represents 1
of 17 lexical classes (e.g., noun, verb, adjective). This feature
space weakly but significantly predicts voxels covering a wide
area of the cortex (one-sided permutation test, g(FDR) < 0.05),
including much of the frontal, temporal, and parietal lobes, with
peak performance along the superior temporal lobe and near the
intraparietal sulcus. In the cerebellum, this model significantly
predicts voxels in many areas of the posterior lobe, with the high-
est model prediction performance in Crus I and II. This is a mid-
level, language-specific feature space, and its performance sug-
gests that the cerebellum is largely representing information at a
higher level than sound or articulations.

The word-level semantic model uses a 985-dimensional con-
ceptual feature space that is based on word co-occurrence statis-
tics across a large corpus of written English (Huth et al., 2016; de
Heer et al,, 2017; Deniz et al., 2019). This feature space captures
semantic information under the assumption that words that fre-
quently occur in similar contexts carry similar meaning (Firth,
1957). The word-level semantic model predicts cortical voxels
across regions in the frontal, parietal, and temporal lobes beyond
core language-specific regions. In the cerebellum, this model sig-
nificantly predicts voxels in Crus I and II and lobules VIIIA and
VIIIB. This conceptual model predicts much more response var-
iance in the cerebellum and cortex than do lower-level models.

The best model in both the cerebellum and cortex is the con-
text-level semantic model. This model builds on the word-level
conceptual model by combining information across words. It
uses the hidden state of a neural language model as a feature
space. Neural language models are artificial neural networks that
learn to predict the next word in a sequence from past words. As
a consequence, they learn a word’s meaning in context, improv-
ing on the word-level model, which is context-invariant (Lin et
al., 2019; Radford et al., 2019; Tenney et al., 2019). Here, we used
GPT (Jain and Huth, 2018; Radford et al., 2018), which is a pop-
ular neural language model. The feature space is 768-dimen-
sional, and the features are extracted from a middle layer of the
language model that has previously been shown to be highly
effective at predicting brain responses (Toneva and Wehbe,
2019). For each word, the past 25 words are used as context in
the model. The context-level semantic model significantly pre-
dicts the largest number of voxels and most total variance across
cortex, with peak prediction performance in frontal, parietal, and
temporal cortex. In the cerebellum, this model yields very high
prediction performance across most of the posterior cerebellum,
including Crus I and II and lobules VIIIA and VIIIB.

To compare model performance between the cerebellum and
cortex directly, we computed the average performance of each
model in the cerebellum and cortex for each subject. Figure 2B
shows that there is a linear relationship between model perform-
ance in the cerebellum and cortex, suggesting that language
might be represented similarly in these two structures. To
account for the possibility that BOLD signal-to-noise varies sys-
tematically between cortex and cerebellum, we also adjusted the
estimated correlation for each voxel using a standard technique
(Schoppe et al, 2016). Figure 2C shows these results when
accounting for the difference in signal-to-noise variance between
cortex and cerebellum. Here, the pattern of results is largely the
same, but prediction performance in the cerebellum is more sim-
ilar to that of cortex. In both cases, however, cerebellar voxels
that are well predicted by each feature space are highly
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Figure 2.  Prediction performance of encoding models based on five language feature spaces in cortex and cerebellum. Encoding models fit with 5.4 h of BOLD data were tested against a
held-out story (10 min). 4, Correlation () between predicted and actual BOLD response is plotted on flattened cortical and cerebellar surfaces for 1 subject (UT-5-02; other subjects are shown
in Extended Data Fig. 2-1). Significance testing for each model in each voxel was done using a one-sided FDR-corrected permutation test with a threshold of p << 0.05. The higher-level models
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overlapping. This could be caused by the feature spaces carrying
overlapping information with each other, making it difficult to
interpret the results from each feature space independently. To
disentangle these representations and explore the differences
between cortex and cerebellum in more detail, we next per-
formed a variance partitioning analysis.

Variance partitioning

The previous model comparison found that many voxels in the
cerebellum can be significantly predicted by multiple feature
spaces. These voxels might genuinely represent information
from multiple feature spaces. Indeed, the increased neuronal
density of cerebellum compared with cortex (Herculano-Houzel,
2010) raises the chance that individual cerebellar voxels contain
information from multiple feature spaces. However, this effect
could also be a consequence of correlations, or shared information,
between the feature spaces. To disentangle possible overlaps in in-
formation across the five feature spaces within each voxel, we used
variance partitioning, a statistical technique for determining how
much variance can be uniquely explained by each set of features
(Lescroart et al., 2015; de Heer et al., 2017). This enables us to dis-
tinguish between overlapping but distinct representations and
seemingly overlapping representations that actually reflect correla-
tions between features. For example, variance partitioning would
allow us to disentangle if, for example, 50% of the voxel responds to
conceptual information and another 50% to auditory information,
or if 100% of the voxel response is to some feature that is correlated
with both auditory and conceptual information.

Apparent correlations between feature spaces can be caused
by many factors, such as regions of silence and speech, which are
correlated across all the feature spaces. While large datasets can-
not reduce these correlations, they can enable the regression
model to better account for the stimulus correlations. Our first
variance partitioning analysis shows how much variance each
feature space uniquely explains above all other feature spaces for
each voxel, and the second shows how much overlap there is
between each feature space and the context-level semantic fea-
ture space (for a correlation matrix of the feature spaces, see
Extended Data Fig. 3-5).

Unique variance explained

The results in Figure 2A showed negligible, localized prediction
performance of low-level models in the cerebellum, suggesting
that little low-level language processing was occurring there.

«—

have better prediction performance in both cerebellum and cortex. To confirm this, we also
tested a low-level spectrotemporal modulation model, which was not substantially more pre-
dictive than the spectral model (see Extended Data Fig. 2-3). In cortex, the areas best pre-
dicted by each of the three feature categories are spatially distinct. However, in the
cerebellum, the areas best predicted by each feature space are highly overlapping. B, To
compare across subjects, we plotted average signed r* across all voxels in the cerebellum
and cortex for each subject and each feature space. The context-level semantic feature space
has the highest predictive performance in both the cerebellum and cortex for all subjects.
Performance scales roughly linearly in both cerebellum and cortex across the hierarchy of lan-
quage representations, albeit with higher r in cortex than cerebellum. €, Because cortical
and cerebellar BOLD responses might have different levels of noise, which could obscure dif-
ferences in representation, we also computed noise ceiling-corrected correlations (Schoppe et
al., 2016). This correction caused the average * to be less biased in favor of cortex (for cor-
rected correlation flatmaps, see Extended Data Fig. 2-2) and suggests that each feature space
might be represented to a similar extent in cerebellum and cortex. However, overlapping
prediction performance between different feature spaces in the cerebellum suggests that the
cerebellum may not be separately representing each stage of language processing.
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However, that result did not account for the possibility that
higher-level feature spaces could also capture some low-level in-
formation. To test for this, we used variance partitioning to find
the unique variance explained of each feature space to test
whether the lower-level models have any unique contribution to
representations in the cerebellum. This was done by first fitting a
five-way union encoding model with a concatenation of all the
feature spaces. Variance explained by any of the five feature
spaces should be explained by this five-way union model. Then
we fit five additional encoding models, each combining four of
the five feature spaces. Each of these models should explain all
the variance captured by the five-way union model, except for
variance, which is uniquely explained by the feature space that
was left out. To estimate the unique variance explained by each
feature space, we then subtracted the variance explained in the
four-way model, excluding that feature space from the five-way
union model (for additional details, see Materials and Methods).
We also used these models to estimate the size of the nonunique
partition, which contains any variance that can be explained by
more than one of the five feature spaces. The size of this partition
was calculated by subtracting each of the unique variance parti-
tions from the five-way union model. If a model is meaningfully
represented in the cerebellum or cortex, you would expect that
unique variance explained to be >0. For this analysis, we only
considered voxels that were significantly predicted by the five-
way union model (one-sided permutation test, g(FDR) < 0.05).

Figure 3A shows the unique variance explained by each feature
space as well the nonunique partition for each voxel in the cerebel-
lum and cortex projected onto the flattened surface for one subject
(other subjects can be seen in Extended Data Fig. 3-1). The variance
partition estimates were corrected for noise resulting in overfitting
of the joint-model (for more details, see Materials and Methods).
To see the results without correction, see Extended Data Figure 3-2.
The nonunique partition is the largest partition overall, suggesting
that much of the variance explained by these feature spaces cannot
be specifically allocated to one feature space. It is important to note
that this category includes all possible combinations of the feature
spaces and does not mean that the variance is explained equally well
by each of the five feature spaces. Among the unique partitions,
only the context-level semantic feature space explains variance sig-
nificantly >0 (two-sided permutation test, g(FDR) < 0.05). Figure
3B shows the unique variance explained for each feature space aver-
aged across voxels for all subjects (only including voxels that were
significantly predicted by the union model). We compared mean
partial correlations (\/ﬁ}; between cerebellum and cortex for each
partition using a permutation test. The result shows that all the
unique partitions explain significantly less variance in the cerebel-
lum than in cortex. When correcting for differences in signal-to-
noise (Extended Data Figs. 3-3 and 3-4), the context-level semantic
and word-level semantic feature spaces uniquely explain signifi-
cantly more variance in the cerebellum than cortex, and the spectral
feature space uniquely explains significantly less. Both of these
results suggest that the cerebellum is primarily representing lan-
guage at a conceptual level and that these results are not simply
because of neuronal pooling within voxels or shared representa-
tions. However, the fact that the largest proportion of variance is in
the nonunique partition means that this analysis alone cannot rule
out the possibility for low-level language representations in the
cerebellum.

Pairwise partitioning
In the first variance partitioning analysis, we found that the con-
text-level semantic feature space explains the most unique
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Figure 3.  Unique variance explained by each feature space. To determine how much variance is uniquely explained by each feature space, six new encoding models were fit: a union model
containing a concatenation of all feature spaces, and five encoding models each containing a concatenation of four of the five feature spaces (for the correlation matrix for all feature spaces,
see Extended Data Fig. 3-5). The unique contribution of each feature space was then determined by subtracting the variance explained by the four-way concatenation model without that fea-
ture space from the union model. This shows how much variance can be explained by each feature space above and beyond the other four. Additionally, the amount of nonunique variance
(i.e,, any that can be explained by more than one feature space) was determined by subtracting the five unique variances from the union. A, The voxelwise partial correlation (1/(partialr?))
for each feature space for Subject UT-S-02, projected onto the cortical and cerebellar surfaces (for similar maps for other subjects, see Extended Data Fig. 3-1). Only voxels that were significantly
predicted (one-sided permutation test, g(FDR) << 0.05) by the five-way union model are displayed. For version without bias correction, see Extended Data Figure 3-2. For noise-corrected ver-
sions, see Extended Data Figures 3-3 and 3-4. B, Mean correlations for significant voxels in the cerebellum and cortex across all subjects. Errors bars are standard error of the mean. The nonun-
ique partition contains the most variance in both cortex (darker) and cerebellum (lighter). All models explain significantly less variance in cerebellum than cortex (two-sided permutation test, g
(FDR) << 0.05). Only the context-level semantic model explains significantly >0 unique variance in the cerebellum. Additionally, the modality-specific feature spaces do not uniquely explain
any significant variance (two-sided permutation test, g(FDR) << 0.05), while the context-level semantic space uniquely explains the most variance. This further supports the hypothesis that the
cerebellum is largely representing language at a high, conceptual level.

variance explained and that the spectral model explains signifi-
cantly less variance in the cerebellum than in cortex. This sug-
gests that the cerebellum may not be representing information at
modality- and language-specific levels. However, the largest par-
tition in both the cerebellum and cortex was the nonunique par-
tition, which contains variance that could be explained by more
than one feature space. Thus, that analysis alone cannot rule out
the possibility that low-level features are represented in cerebel-
lum. To test the hypothesis that the cerebellum is exclusively rep-
resenting language at a conceptual level, we performed a second
variance partitioning analysis where each feature space was

separately compared with the context-level semantic feature
space. We fit four union models by concatenating the context-
level semantic features with each one of the four other feature
spaces. The variance explained by each union model was then
compared with models fit with each feature space individually to
determine both the unique contribution of each feature space
and the size of their intersection. For each pair of feature spaces,
analyses were restricted to voxels that were significantly pre-
dicted by the union model. If the cerebellum was only represent-
ing information at the conceptual level, we would expect to find
low unique variance explained by the modality- and language-
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specific feature spaces and a high shared intersection with the
word-level semantic feature space.

The results of this pairwise variance partitioning analysis rep-
licate previous results (de Heer et al., 2017), showing that in cor-
tex there is a unique contribution of both the spectral and
articulatory feature spaces in different cortical areas. However,
this does not appear to be true in the cerebellum. Figure 4 shows
the results of pairwise variance partitioning between the context-
level semantic feature space and each of the other four feature
spaces. Figure 4A shows the mean partial correlation for each
pair of feature spaces in both the cerebellum and cortex across
voxels and subjects. The variance explained by the intersection of
each pair of models is significantly less in the cerebellum than in
cortex (two-sided permutation test, g(FDR) < 0.05). This shows
that the information present in the lower-level feature spaces
contributes less to the explainable variance in the cerebellum and
supports the hypothesis that the cerebellum is primarily repre-
senting high-level, conceptual information. Additionally, the
unique contribution from the modality- and language-specific
feature spaces are negligible; the spectral feature space explains
significantly less variance in the cerebellum, while the articula-
tory feature spaces explain more variance in the cerebellum,
although this partition is small in both the cerebellum and cor-
tex. Since the intersection of these models is not zero, we cannot
rule out the possibility that language- and modality-specific in-
formation is represented in cerebellum. Still, the lack of unique
variance explained by these feature spaces shows that these fea-
ture spaces do not offer any more insight into cerebellar BOLD
responses. When accounting for differences in signal-to-noise
(Extended Data Figs. 4-3, 4-4, and 4-5), all of the unique contri-
butions from the secondary models become significantly less in
the cerebellum than in cortex. Additionally, the differences in the
intersections between the cerebellum and cortex are no longer
significant. However, the unique contribution from the context-
level semantic feature space is significantly larger in all cases in
the cerebellum and cortex. While the noise-ceiling corrected
results are different because of the differences in BOLD signal in
the cerebellum compared with cortex, the significantly larger var-
iance explained by the context-level semantic feature space in the
cerebellum still supports the hypothesis that the cerebellum is
uniquely representing highly conceptual semantic information.
Figure 4B shows these results for one subject projected onto the
corresponding cortical and cerebellar surfaces (for cortical maps
for all other subjects, see Extended Data Figs. 4-1 and 4-2). Only
voxels that were significantly predicted by the union model (one-
sided permutation test, g(FDR) < 0.05) are displayed.

Very little variance in the cerebellum is explained uniquely by
any features other than the context-level semantic space. In both
the cerebellum and cortex, there is a high amount of variance
explained by the context-level semantic feature space and in the
intersection with the word-level semantic feature space. This is
not surprising, given that the context-level semantic space has
the highest predictive performance of any of the feature spaces
and that the word-level and context-level semantic spaces con-
tain related semantic information. However, there is very little
overlap of variance explained between the context-level semantic
feature space and the three modality- and language-specific fea-
ture spaces. This demonstrates that the high performance of the
conceptual feature spaces is not merely because of this feature
space being correlated with low-level information. The negligible
unique contribution of the modality- and language-specific fea-
tures in the cerebellum further supports the hypothesis that the
cerebellum is primarily representing conceptual representations.
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Finally, any variance explained by the modality- and language-
specific feature spaces is not anatomically localized within cere-
bellum, which suggests that the cerebellum does not contain
localized low-level language processing areas. The reduced repre-
sentation of language-specific feature spaces in the cerebellum
further suggests that the cerebellum does not participate in lan-
guage processing per se, but supports cognition more generally.

Semantic selectivity within the cerebellum

Our results thus far suggest that the cerebellum is not involved
with language-specific processing, as there is little or no unique
variance explained in cerebellum by the part-of-speech, articula-
tory, or spectral feature spaces. Instead, language representations
in the cerebellum appear to be dominated by conceptual seman-
tic features. Yet all semantic representations are not alike: in cor-
tex, earlier work revealed a patchwork tiling of areas that
represent different semantic categories across much of prefron-
tal, parietal, and temporal cortex (Noppeney and Price, 2004;
Binder et al., 2009; Huth et al., 2016). It is possible that the cere-
bellum represents a different range of semantic categories than
cortex, and it seems likely that different categories are repre-
sented in distinct areas within the cerebellum. Following the pro-
cedure detailed by Huth et al. (2016), we used the word-level
semantic feature space to analyze and interpret the model
weights and thus reveal the semantic selectivity of each voxel in
the cerebellum. Because of the lack of tools currently available
for interpreting context-level semantic models, we chose to use
the word-level model, which also explains a large proportion of
response variance in the cerebellum.

To demonstrate how encoding models can be analyzed per
voxel, Figure 5A shows the word-level semantic regression
weights projected into a three-dimensional semantic space
that was previously constructed from a group of subjects using
principal components analysis (Huth et al., 2012). This lower-
dimensional space is purely used for visualization purposes. Here
projections on the first, second, and third principal components
are mapped into the red, green, and blue color channels, respec-
tively, for each voxel and then projected onto the SUIT cerebellar
surface. The color wheel shows approximately which semantic
category each color on the maps represents. Figure 5A shows the
posterior view of one subject’s (UT-S-02) cerebellum as well as
the flattened cerebellar surface in SUIT space. Within the SUIT
space, functional ROIs are mapped out, which include anterior
foot (AF), hand (AH), and mouth(AM); posterior foot (PF),
hand (PH), and mouth (PM); and anterior and posterior eye
movement areas (AE and PE, respectively) that are active during
saccades. A histogram of correlations for all voxels in Subject
UT-S-02 is shown in Figure 5B. This histogram shows a distribu-
tion with a long tail, with the example well-predicted voxel (voxel
1685) marked in blue. Additionally, Figure 5A lists the four
words that the word-level semantic encoding model predicts will
elicit the largest response in this example voxel, which are
“voice,” “silence,” “shout,” and “aloud.” These words were found
by taking the dot product of the voxel weight vector with the
word-level semantic feature matrix (for details, see Materials and
Methods). This voxel seems selective for concepts related to
social communication and sound. Similar analysis could be per-
formed for each voxel but would be large and difficult to inter-
pret. However, by representing semantic weights as a color, we
can better understand large-scale patterns of semantic informa-
tion. For example, Crus I and Crus II seem to be selective for
many different semantic categories, such as social and violence,
which can be found in medial Crus I.
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Figure 4.  Variance partitioning between the context-level semantic feature space and each of the other feature spaces. To quantify the amount of overlap between the context-level seman-
tic feature space and each of the four other feature spaces, three models were fit for each pair of feature spaces, including the concatenation of both feature spaces and each feature space indi-
vidually. A, For each pair of feature spaces, the variance uniquely explained by the context-level feature space, the variance uniquely explained by the second feature space, and the
intersection between the two is compared between the cerebellum and cortex, averaged over all subjects. Error bars are the standard error of the mean. The intersection (variance that could
be explained by either feature space) for every pair is smaller in the cerebellum than in the cortex (two-sided permutation test, g(FDR) << 0.05). Additionally, the unique partition for the spec-
tral feature space is significantly smaller in the cerebellum than in cortex. This shows that the high prediction performance of the context-level semantic feature space in cerebellum is not
merely because of correlations with modality- and language-specific information. Instead, the context-level features uniquely explain a large amount of variance that the other features cannot.
B, For each pair of models, the variance in each partition in each voxel (1/(partialr?)) was projected onto cortical and cerebellar flatmaps. For other subjects, see Extended Data Figures 4-1
and 4-2. For noise-ceiling corrected versions, see Extended Data Figures 4-3, 4-4, and 4-5. Only voxels that were significantly predicted by each union model (one-sided permutation test, ¢
(FDR) << 0.05) are shown. There is substantially lower variance explained by the intersection between the context-level semantic feature space and the language- and modality-specific feature
spaces in the cerebellum than in cortex. Additionally, the unique contributions for these feature spaces in the cerebellum are near zero and are not spatially localized. This lack of spatial local-
ization further suggests that there is no hierarchy of language processing in the cerebellum, and these results provide strong support for the hypothesis that the cerebellum only represents
high-level, conceptual features of language, rather than low-level features.
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Word-level semantic model weight interpretation. Post hoc analysis of encoding models enables us to interpret what type of semantic information is represented in each voxel.

Here we used the word-level semantic feature space to interpret one individual voxel and to broadly map semantic representations across the cerebellum. (While the context-level semantic
space is more predictive, we lack tools for interpreting its representations.) In the word-level space, encoding models predict the response of each voxel to each word. We used the model to

find words with the largest predicted response in one voxel (voxel 1685 in Subject UT-S-02), which were “voice,

"o

silence,” and “shout,” suggesting that this voxel represents concepts related

to social communication. To visualize representations across many voxels, we reduced the encoding model weights to three dimensions by projecting them onto a low-dimensional semantic
space identified in a previous experiment (Huth et al., 2016), and then mapping these projections to RGB color channels. A, The RGB values for each voxel are projected onto the SUIT cerebellar
surface for Subject UT-S-02. Different colors correspond to selectivity for different concepts in the semantic space (illustrated by the legend, right). This map suggests that the cerebellum con-
tains representations of many different concepts. B, Histogram represents the range of correlations for each voxel in this subject: blue represents the example subject; gray represents the null

distribution.

Comparing semantic representations between cerebellum
and cortex

The semantic map in Figure 5A shows that different areas in the
cerebellum represent different categories of words. Yet it is not
clear from this map whether semantic representations in the cer-
ebellum are similar to those found in cortex. To quantify the
semantic categories represented in the cerebellum and cortex, we
compared the fraction of voxels that represent different semantic
categories using a cluster analysis. We concatenated model
weights for the top 20% best predicted voxels in cerebellum and
cortex from each subject, then clustered the voxels into 5 discrete
categories using spherical k-means clustering (5 clusters was the
elbow point of the inertia curve; see Extended Data Fig. 6-1; sim-
ilar results are also obtained with different numbers of clusters).
Figure 6A, B shows cerebellar and cortical flatmaps with the clus-
tered voxels colored according to their assigned cluster in one
subject (similar maps for other subjects can be found in
Extended Data Fig. 6-2). The label for each cluster was deter-
mined qualitatively from the most similar words to each cluster
centroid (Fig. 6C lists the clusters, their top words, and their
assigned label; secondary cluster labels generated by external
observers also available in Extended Data Fig. 6-3).

Voxels belonging to every semantic cluster were found in
both the cerebellum and cortex. Figure 6C shows the percentage
of cerebellar voxels in each cluster compared with the percentage
of cortical voxels in each cluster, averaged across subjects. The
category with the highest percentage of voxels in the cerebellum
is the “people” category, and the category with the lowest per-
centage is the “place” category.

Because voxels in all clusters are found in both the cerebellum
and cortex, it is possible that the cerebellum is receiving input
from all areas of cortex. If this were true, we would expect to find
an equal percentage of well-predicted cerebellar voxels in each
cluster as there are in cortex. However, all clusters had significantly

different percentages of voxels in the cerebellum compared with
cortex (two-sided permutation test, g(FDR) < 0.05). The “social”
and “people” clusters have a higher percentage of voxels in the cer-
ebellum than in cortex, and the “mental,” “concrete,” and “place”
clusters have a lower percentage of voxels in cerebellum than in
cortex. This suggests that there is not a one-to-one mapping from
cortex to the cerebellum and that the cerebellum is more respon-
sive to social semantic information.

Discussion
This study examined how language is represented in the human
cerebellum. Using voxelwise encoding models trained within
each subject using large amounts of fMRI data, we found that
high-level language feature spaces (context-level and word-level
semantics) were better able to predict cerebellar BOLD responses
than low-level language feature spaces, such as part-of-speech
and articulations. Additionally, the low-level feature spaces do
not uniquely predict any voxel in the cerebellum above the con-
text-level semantic model, which is not true in the cortex. Last,
using the model weights from the word-level semantic model, we
found that there is an overrepresentation of social and people
semantic categories in the cerebellum compared with cortex.
These results suggest that (1) the cerebellum is representing
language at a conceptual level, and not at modality- or language-
specific levels; (2) there is not a homologous area to auditory
cortex in the cerebellum; and (3) the cerebellum is more respon-
sive to social semantic components of language than cortex. As
has been seen previously (King et al., 2019), there does not
appear to be any functional relevance to lobule boundaries as we
do not observe any pattern of language processing that corre-
sponds to the lobule boundaries.

One complication in interpreting the results of this study is
because of the use of BOLD fMR, in particular in relation to the
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Figure 6. Differences in semantic representations between cerebellum and cortex. To check for differences in semantic representations between the cerebellum and cortex, word-level encoding
model weights from both cerebellum and cortex in all subjects were concatenated, including only the top 20% best-predicted voxels. This matrix was then dustered using spherical k-means into 5
clusters, which fell at the inflection point in the inertia graph (Extended Data Fig. 6-1). For visualization, the centroid for each cluster was transformed into the same RGB space used in Figure 5, and
each voxel in that cluster was assigned that color. 4, B, The dluster distribution for Subject UT-S-02 across the cerebellum () and cortex (B) (for other subjects, see Extended Data Fig. 6-2). Voxels
falling into each cluster are found in both the cerebellum and cortex in every subject. €, To test for differences in representation between cortex and cerebellum, the percentage of cortical and cere-
bellar voxels in each cluster were compared across all subjects. Each duster was named qualitatively according to the most similar words to the dluster centroid. The four most similar words to each
cluster centroid are listed below the label name. The error bars are standard error of the mean. Significantly more voxels in the cerebellum were highly responsive to social categories (two-sided per-

mutation test, g(FDR) << 0.05) (i.e., the “social” and “people” clusters) than in cortex. Conversely, significantly fewer voxels in the cerebellum were responsive to the “menta

|, “concrete,” or “place”

clusters than in the cortex. This shows that the cerebellum is largely representing the same semantic categories as cortex, but that there is a slight bias toward social categories.

cerebellum. The cerebellum has a significantly different metabolic
demand than cortex (Vaishnavi et al., 2010) because of its cellular
architecture. This changes the demand for oxygenated blood and
thus the BOLD signal. It has previously been demonstrated that
only activity in granule cells and mossy fibers affects the BOLD sig-
nal (Mathiesen et al., 2000; Caesar et al., 2003) in the cerebellum,
but not activity in the Purkinje cells, which are the sole output from
the cerebellum to the cortex. This implies that our models do not
include representations of what the cerebellum is outputting back to
the cortex and thus may not directly address the computation the
cerebellum is performing. However, the input to the cerebellum
(granule cells and mossy fibers) is still an important half of the equa-
tion, and this work furthers our understanding of what kinds of rep-
resentations are being sent to the cerebellum.

One point of contention with our methodology is using a natu-
ral stimulus. While natural stimuli can make interpretation of the
results more difficult, it is a much richer stimulus set for analysis.
Additionally, it is less biased than other experimental methods that
preselect a small number of categories or stimuli. And while we

have few subjects, we have collected a large amount of data per sub-
ject. While large datasets cannot reduce these correlations within
the stimulus, they can enable the regression model to better account
for the stimulus correlations. Additionally, by using a prediction
methodology, we are able to compute the variance explained by
each feature space, which allows us to quantify how well each model
does at prediction which few other methods allow for.

Many theories exist for how the cerebellum represents cogni-
tive information based on the uniformity of its cellular architec-
ture. This architecture is believed to suggest that the cerebellum
is performing a similar function throughout the structure.
Additionally, the cerebellum has long been considered a major
region in motor response and motor learning (Manto et al.,
2012). Yet since the 1980s, the cerebellum has been known to
reliably respond during cognitive tasks (Leiner et al., 1986), such
as language processing (Petersen et al., 1988), and that lesions to
the posterior lobe of the cerebellum result in language deficits
(Schmahmann and Sherman, 1998). The fact that both fine
motor control processing and cognitive processing elicit strong
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responses from the same architecture has long been considered a
contradiction. In an effort to reconcile the cerebellum as both a
cognitive area and a motor area, previous reports have speculated
that the cerebellum is involved in some low-level component of
cognitive tasks, such as low-level auditory processing (Petacchi et
al.,, 2005) or motor planning in speech (Jiirgens, 2002).

Surprisingly, our results show that low-level spectral and
articulatory feature spaces do not uniquely predict any area of
the cerebellum better than high-level feature spaces. However,
spectral and articulatory models best predict areas around auditory
cortex and the STG, as has been reported by others using fMRI
with speech (de Heer et al., 2017) as well as more diverse natural
sounds (Moerel et al., 2012; Santoro et al., 2014). This shows that
these feature spaces can successfully capture auditory information
that is represented in cortex, even using such a slow imaging tech-
nique as BOLD fMRI. Yet this information does not appear to be
present in the cerebellum. The cerebellum is very likely involved
with motor components of speech production (Ackermann et al,,
2007). However, we found no evidence of receptive articulatory rep-
resentations in the cerebellum, suggesting it must be involved in
more than just motor components of speech perception (Liberman
and Mattingly, 1985). Our results imply that the cerebellum lacks
any form of localized low-level auditory processing area for speech
sounds and that the role of the cerebellum in language processing is
at a higher level than previously thought.

An important future step is to clarify the relationship between
language representations in the cerebellum and existing theories of
cerebellar function. The universal cerebellar transform theory is the
predominant theory of cerebellar computation (Diedrichsen et al.,
2019), positing that the cerebellum performs a single computation
across all tasks, both cognitive and motor. A commonly proposed
computation is prediction error (Kawato and Gomi, 1992; Marién
and Manto, 2018). One way to look at whether the cerebellum is
involved in prediction is through surprisal, which is a measure of
the probability of a word occurring in a sentence given the previous
word. Thus, a word with a high surprisal is likely to have a high pre-
diction error. Since the context-level semantic model is using a neu-
ral network-based language model, it inherently captures some
elements of surprisal (Berger et al., 1996). However, the context-
level semantic model best predicts both the cerebellum and cortex,
which suggests that the cerebellum is not uniquely computing sur-
prisal, as both cortical and cerebellar BOLD signals are modulated
by surprisal.

In language processing, many processes are specific to audi-
tory communication, such as the spectral and articulatory fea-
tures spaces. However, the higher-order semantic features seem
to be more broadly used by the default mode network. Given
that the cerebellum does not appear to be involved in the lower-
level language processing, our results support the hypothesis that
the cerebellum is not participating in language processing per se,
and is instead only involved in cognitive processing. However,
given that this current work only looks at a language stimulus,
we cannot rule out the possibility that these results are driven
from the linguistic nature of the stimulus. This theory, that the
cerebellum is cognitive, and not linguistic, could explain many of
the language deficits seen in patients with CCAS and autism.
Both of these disorders are associated with cerebellar damage or
morphologic changes, and both often see deficits in language
processing (Stoodley and Schmahmann, 2009). However, the
deficits are not specifically related to speech production or the
ability to interpret sound into phonemes and words, which are
low-level language-specific processes. Rather, the language deficits
in CCAS and autism more often present as conceptual deficits, with

LeBel etal. o Language Encoding Models of the Cerebellum

a loss of understanding of fine-tuned semantic specificity and social
dynamics (Kelley et al., 2006), such as understanding sarcasm and
nonexplicit language. Much like the cerebellum being involved in
the fine-tuning of motor commands over a continuous three-
dimensional space, it is possible that the cerebellum is similarly
involved in the fine-tuning of a conceptual cognitive space.
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