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Abstract

Phenotypic profiling assays are untargeted screening assays that measure a large number 

(hundreds to thousands) of cellular features in response to stimulus and often yield diverse and 

unanticipated profiles of phenotypic effects, leading to challenges in distinguishing active from 

inactive treatments. Here, we compare a variety of different strategies for hit identification in 

imaging-based phenotypic profiling assays using a previously published Cell Painting dataset. 

Hit identification strategies based on multi-concentration analysis involve curve-fitting at several 

levels of data aggregation: (individual feature-level, aggregation of similarly-derived features 

into categories and global modeling of all features), and on computed metrics (e.g. Euclidean 

and Mahalanobis distance metrics and eigenfeatures). Hit identification strategies based on single-

concentration analysis included measurement of signal strength (i.e. total effect magnitude) and 

correlation of profiles among biological replicates. Modeling parameters for each approach were 

optimized to retain the ability to detect a reference chemical with subtle phenotypic effects while 

limiting the false positive rate to 10%. The percentage of test chemicals identified as hits was 

highest for feature-level and category-based approaches, followed by global fitting, while signal 

strength and profile correlation approaches detected the fewest number of active hits at the fixed 

false positive rate. Approaches involving fitting of distance metrics had the lowest likelihood for 

identifying high-potency false positive hits that may be associated with assay noise. The majority 

of methods achieved 100% hit rate for the reference chemical, and high concordance for 82% of 

test chemicals, indicating that hit calls are robust across different analysis approaches.
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Introduction

High-throughput profiling (HTP) assays are untargeted screening assays that measure a large 

number (hundreds to thousands) of cellular features in order to capture the biological state 

(i.e. phenotype) of a cell1. Examples of HTP assays are “omics” technologies, including 

transcriptomics2–4, and image-based morphological profiling, such as Cell Painting5, 6. HTP 

assays have been used in various research settings, including academia7, 8 and industry4, to 

characterize the biological activity of chemicals or genetic manipulations using a variety of 

different cell models and assay technologies. These types of assays are also of interest for 

broader use by regulatory organizations in the context of next generation chemical safety 

assessments9, 10. One fundamental application for HTP data relevant to each of these sectors 

is reliable identification of “hits”: i.e. treatments that produce biologically and statistically 

significant changes in cellular phenotype that are associated with biological activity11.

The high content nature of profiling assays introduces additional challenges to hit 

identification10, 12 as compared to targeted high-throughput screening (HTS) assays. 

Targeted HTS assays are designed to measure one (or a few) specific endpoints and 

response thresholds for hit identification are based on either the use of well-characterized 

negative and positive control treatments or defined based on separation of true signal from 

statistically characterized baseline activity (i.e. noise). Responses to test conditions falling 

below these thresholds are then classified as inactive, while responses above these thresholds 

are classified as active13, 14. This strategy is difficult to generalize to HTP assays, for several 

reasons: (1) HTP assays often measure hundreds to thousands of features (i.e. have high 

dimensionality), and it would not be feasible to define a threshold for each individual feature 

in an analogous manner to targeted assays; (2) Measurement of many features allows for 

observation of a multitude of diverse cellular responses (i.e. phenotypes). Therefore, within 

the context of a large HTP screen it is not known a priori which phenotypic responses will 

be observed. Hence, there is not a single ‘positive control’ that can be used to establish 

hit thresholds for the multitude of phenotypes that may be observed. (3) Even without 

perturbation, stochastic variations in feature measurements can contribute to identification of 

false actives in high dimensionality datasets to a greater extent than in HTS assays. This is a 

classic manifestation of the multiple testing problem.

To date, there are no widely accepted standard practices for hit identification from HTP 

data15, 16. As a consequence of the large number of features that are measured, there are a 

wide array of potential strategies for identification of hits and – for concentration-response 

screening – derivation of potencies. The choice of hit definition strategy also depends on the 

purpose of the screen. For example, for lead compound identification in the pharmaceutical 

sector, a hit definition strategy that minimizes false actives may be desirable17, 18. In 

contrast, for toxicology screening the tolerance for identification of false actives using 
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profiling assays will vary depending on the nature of the downstream application: i.e. 

comparatively higher tolerance in screening for prioritization versus comparatively lower 

tolerance for defining a specific hazard in the context of a risk assessment19.

The recently released Next Generation Blueprint for Computational Toxicology at the 

United States Environmental Protection Agency (USEPA) (i.e. USEPA Comptox Blueprint) 

advocates the use of HTP assays for initial characterization of the biological activity of 

environmental chemicals in human-derived cell models9. Use of HTP assays has been 

proposed as part of a tiered toxicity testing approach that relies on computational and 

non-animal based methods for chemical safety evaluation9. Applications for HTP data 

include identification of potency thresholds for perturbation of cellular biology, prediction 

of putative mechanism of action (MOA) and/or molecular initiating events (MIE)20, and 

prioritization of chemicals for further testing and subsequent confirmation in targeted HTS 

or organotypic assay systems9. Chemicals with environmental exposure potential often lack 

a specific molecular target in human-based cell models and may have biological activity 

that is associated with ‘polypharmacology’ (i.e. promiscuous activity at multiple molecular 

targets) or general cell stress21–23. All of these attributes contribute to the challenging 

task of hit identification when applying HTP assays to the universe of structurally diverse 

environmental chemicals. The variety of data analysis strategies that can be applied to 

profiling data and uncertainties regarding concordance of results, including active or inactive 

hit calls, across different analysis strategies represent a potential barrier to the broader use of 

these types of data in regulatory applications24, 25.

We previously operationalized the Cell Painting HTP assay5 for concentration-response 

screening in U-2 OS osteosarcoma cells and screened 462 unique environmental 

chemicals26. Following extraction of 1,300 features, concentration-response modeling was 

performed using the BMDExpress software package27 to identify individual features 

affected by chemical treatment. We then grouped the features into biologically meaningful 

categories (based on the channel, compartment and analysis module). Chemicals where at 

least one category had ≥ 30% of constituent features identified as concentration-responsive 

were considered active, and their phenotype altering concentration (PAC) was defined as 

the median potency of the most sensitive (i.e. potent) category. Using this approach, 95% 

of tested chemicals were identified as active, which is helpful in terms of identifying 

a minimum bioactive concentration that can be used to prioritize chemicals using a 

bioactivity:exposure ratio26, 28. Although a high rate of actives was expected due to the 

nature of the chemical test set (i.e. enriched in pesticides and chemicals with biological 

activity in ToxCast assays28) and the use of a permissive benchmark response (BMR) 

(i.e. 1*standard deviation (SD) of controls29), the proportion of false active hits using this 

approach was unclear. This was due to uncertainty regarding the identity and proportion of 

true negative (i.e. biologically inert) chemicals present in the test set in the concentration 

range tested and the aforementioned challenges in establishing hit criteria for HTP assays.

In the present study, we compared various approaches for identification of hits in imaging-

based phenotypic profiling (i.e. Cell Painting) data using the above-mentioned data set. 

The goal of this work was to understand the impact of decisions made in the data 

analysis workflows on the resulting active or inactive hit calls and the associated PACs 
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for perturbation of cellular biology, as these results may inform future chemical safety 

evaluations. With a focus on applications for in vitro bioactivity screening as the first 

step in a tiered toxicity testing strategy9, both multi-concentration and single-concentration 

approaches for hit identification were considered (Fig. 1). To optimize selection of a fit-for-

purpose approach for hit identification, reference chemicals, test chemicals screened in 

duplicate, and a “null” or inactive data set constructed from conditions with no expected 

bioactivity were used to optimize and compare the performance of different approaches. 

Results were compared quantitatively to identify the approach(es) that provided the highest 

concordance of hit classifications (active vs. inactive), the lowest variability in PACs for 

reference chemicals and chemicals screening in duplicate and the lowest probability of 

observing high potency false active hit calls, as such approaches would be most informative 

and reliable for use in chemical safety evaluation.

Materials and Methods

Experimental Data

The data set used for this study has been previously published26 and is publicly available at 

(https://doi.org/10.23645/epacomptox.12132621).

Briefly, U-2 OS human osteosarcoma cells were treated for 24 h with 8 concentrations (1/2 

log10 spacing, typically 0.03 – 100 μM) of each chemical. The screen was performed in 

384-well plate format. A total of 462 unique test chemicals from the ToxCast chemical 

library were screened. A total of 16 randomly selected chemicals were screened in duplicate 

which brought the total number of chemical samples evaluated to 478. The screen was 

performed using 12 dose plates, each with a different subset of test chemicals in a dilution 

series. Each chemical sample was screened in four independent cultures (i.e. biological 

replicates) with one technical replicate (i.e. well) per culture for each concentration of each 

chemical sample. Test plates from each biological replicate that were dosed with the same 

sub-set of test chemicals belong to the same plate group. Each test plate also contained 

24 solvent control wells and six concentrations of four phenotypic reference chemicals: 

berberine chloride, Ca-074-Me, rapamycin and etoposide (see also Fig. S1 in Nyffeler, et 

al.26). For the reference chemicals, each plate group was considered to be independent of 

one another; i.e., resulting in a total of 12 response profiles for each reference chemical, 

which we refer to as ‘replicates’.

For phenotypic profiling, labels were applied to visualize the nucleus (DNA), nucleoli 

(RNA), endoplasmic reticulum (ER), actin skeleton, golgi and plasma membrane (AGP) and 

mitochondria (Mito). Following image acquisition, 1300 features were extracted for each 

cell. Cell-level data was normalized to the solvent control using median absolution deviation 

(MAD) normalization5 and aggregated to well-level by calculating the median of normalized 

cell-level data within each well. Well-level data were further z-standardized within plate by 

scaling to the standard deviation (SD) of solvent control wells. These previously reported 

well-level results were used as the starting point for the present study.

A parallel set of plates was live-labeled with propidium iodide and Hoechst 33342 to 

assess cytotoxicity and cytostasis. Information from this cell viability (CV) assay was 
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used to identify a benchmark concentration (BMC) for onset of cytotoxicity/cytostasis and 

subsequently identify the highest non-cytotoxic concentration (CV.NOEC) and the lowest 

cytotoxic concentration (CV.LOEC). As previously reported, data from wells above the 

CV.LOEC were not used for concentration-response analysis26.

Data Analysis Software

The data processing, storage, analysis and visualization were performed using R v3.6.230. 

The R scripts are available at https://doi.org/10.23645/epacomptox.12589256.

Generation of a null data set

A null data set representative of inactive response profiles was constructed using the 

well-level data from concentrations of test chemicals that had a low probability of being 

bioactive. This consisted of data from the two lowest concentrations of each test chemical, 

but only using test chemicals for which there was no inferred bioactivity at or below the 

third lowest tested concentration in the previous study26. Using these constraints, 472/478 

test chemicals demonstrated no activity at the two lowest concentrations tested. Therefore, 

these wells were included in constructing the null data set.

For each test plate, well-level data for these inactive test chemical concentrations were 

randomly assigned to one of nine ‘null chemicals’ and one of 8 concentration indices (with 

½ log10 spacing, consistent with the actual design of the screening study). The test plate 

to plate group relationship was maintained. Of note, the four biological replicates of a null 

chemical × concentration were derived from different test chemicals through the random 

sampling process. A total of 108 ‘null chemicals’ were generated.

Metrics for Comparison of Analysis Approaches

Specificity was defined as the percentage of ‘null chemicals’ (n = 108) that were correctly 

identified as inactive. Conversely, the false positive rate (FPR) was calculated as 1 – 

specificity. Sensitivity (or true positive rate, TPR) was defined as the percentage of true 

positives that were correctly identified as active. While all four phenotypic reference 

chemicals could have served as true positives, we decided to only focus on replicate 

screenings of the reference chemical berberine chloride (n = 12) as a true positive for this 

analysis, as it had subtle, but reproducible effects in a small number of measured features26. 

The “hit rate” was calculated as the percentage of test chemicals (n = 478) that were 

identified as active. Concordance was defined as the percentage of test chemicals screened in 

duplicate (n = 16) for which both replicates were identified as either inactive or active.

Parameters for each analysis approach were optimized to maximize TPR while maintaining 

an FPR of ~ 10%. Tunable parameters for the various approaches included: cutoff threshold 

(based on variance in the solvent control) and hit call probability for tcplfit2, threshold for 

effect size for BMDExpress or threshold for signature generation, as described below. A list 

of all fixed and tunable parameters, as well as the final choices is provided in Table S1. 

If multiple sets of parameters produced equivalent results according to these criteria, the 

most permissive threshold was chosen (e.g. the lowest threshold for signature generation, as 

described below) that retained maximal concordance.
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Multi-concentration Analysis Approaches

The starting point for all multi-concentration approaches was well-level data. For each 

chemical, concentrations above the CV.LOEL were excluded from concentration-response 

modeling to avoid potential problems with non-monotonic curve behavior that can be 

observed at cytotoxic test concentrations. Different levels of data were modeled, in some 

cases preceded by feature reduction, to derive between 1 and 1300 potency estimates 

(benchmark concentrations, BMC). For all approaches, BMCs below the tested range were 

set to ½ order of magnitude below the lowest tested concentration (corresponding to dividing 

the concentration by 3), while BMCs above the tested range or above the CV.LOEC were 

discarded as invalid. Three test chemicals (disulfiram, thiram, ziram) had < 4 concentrations 

remaining and were not modeled with tcplfit2 in accordance with previous recommendations 

regarding the use of benchmark dose modeling in toxicology31, 32. Therefore, some multi-

concentration approaches and figures include only results from 475 test chemicals.

Feature-level fitting—Two different concentration-response modeling software packages 

were used: (1) BMDExpress27 (https://www.sciome.com/bmdexpress/) and (2) tcplfit2, a 

curve-fitting package that includes constant, Hill, and gain-loss models from tcpl33 and 

additional models to match the functionality of BMDExpress.

For BMDExpress, modeling parameters were identical to the previous study26. Briefly, the 

command line version of BMDExpress (v2.2.180) was used. Only features with an absolute 

mean response > 1 in at least one test concentration were modeled. Four functions were fit 

to the data: Hill, power, and first- and second-degree polynomial. The model with the lowest 

Akaike information criterion (AIC) was selected as the winning model. The benchmark 

response (BMR) was set at ±1 (i.e. 1 SD from vehicle control). For the present study, an 

additional threshold for effect size was chosen to increase stringency. BMCs of features that 

had an absolute effect size ≤ 1.75 (designated as absolute maximal fold change of ≤ 2^1.75 

in BMDExpress) were excluded.

For fitting with tcpl, a new version (tcplfit2, v.0.1.0, https://ncct-bitbucket.epa.gov/projects/

TCPLFIT2/repos/tcplfit2/browse) of curve fitting was used, that allows fitting of effects in 

either direction and includes more fit functions: the four functions used with BMDExpress 

were run, as well as four exponential models (Exp2 – Exp5) and a constant model. 

Additionally, tcplfit2 returns a continuous hit call probability, ranging from 0 to 1. 

Analogous to BMDExpress, features were only modeled if there was at least one test 

concentration with an absolute mean response > 1. The BMR was defined using the median 

and normalized median absolute deviation (nMad, Nyffeler, et al.26) of the vehicle controls 

(of the corresponding plate group) and was set at 1 nMad (corresponding to 1 SD). BMCs 

were only retained if the hit call probability was ≥ 0.95.

For both approaches, chemicals were considered active if more features were affected (i.e. 

had a valid BMC) as compared to the 90th percentile of the null data set. For BMDExpress, 

chemicals with > 20 affected features were considered active. For tcplfit2, chemicals with 

> 24 affected features were considered active. The phenotype altering concentration (PAC) 

was calculated as the 5th percentile of the valid BMCs (using R, function quantile with 

option type=7 for linear interpolation of the quantile from continuous data).
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Category-level aggregation—Each of the 1300 features was assigned to exactly one of 

49 categories, based on the channel, compartment and module it was derived from (Table S2 

in Nyffeler, et al.26). Analysis was conducted exactly as described in Nyffeler, et al.26: For 

each category, a median BMC was calculated from the individual feature BMCs if ≥ 30% of 

features within a category were affected (i.e. had a valid BMC). Category-level aggregation 

was performed with both BMDExpress and tcplfit2 feature-level fitting results. Chemicals 

were considered active if they had at least one affected category (i.e. the category had a 

median BMC). The PAC was defined as the potency of the most potent category BMC.

Global fitting (Euclidean distance)—For each well, the Euclidean distance from 

the mean of the vehicle controls (of the corresponding culture plate) was calculated as 

dE(x , μ ) = ∑i = 1
1300 xi − μi

22  where x  and μ  represent the vector of the 1300 features for 

the particular well and the mean of the vehicle controls, respectively. Subsequently, the 

Euclidean distances were modeled with tcplfit2, using nine functions and the median and 

nMad of the null data sets (of the corresponding plate group) to define the BMR, which was 

set at 1 nMad. BMCs were discarded if the hit call probability was < 0.2 or if the top of the 

curve was negative (smaller than the average distance to the mean of the vehicle controls is 

not considered an effect). Chemicals with a valid BMC were considered active, and the PAC 

was set equal to the BMC.

Feature reduction—For several of the approaches described below, well-level data was 

first transformed to a reduced set of eigenvectors, which we term ‘eigenfeatures’, using 

principal component analysis (PCA). Wells with < 100 cells were excluded, as was the 

null data set (because it was sampled from the original data). PCA was conducted using R 

(v3.6.2), package stats30 and function prcomp with options center=F and scale.=F using the 

entire data set as input. The first 260 principal components, covering > 95% variance in the 

data set were used to transform the original data set to the eigenfeatures.

Eigenfeature-level fitting—Fitting of eigenfeature-level data was performed with 

tcplfit2, similarly as to described above. The BMR was defined based on the median and 

nMad of the vehicle control (of the corresponding plate group) and set at 1 nMad. Nine 

functions were fit, and eigenfeatures were only fit if there was at least one concentration that 

exceeded the BMR. BMCs were only retained if the hit call probability was ≥ 0.50. Hits and 

PACs were defined as described in ‘Feature-level fitting’.

Global fitting (Mahalanobis distance)—A covariance matrix was calculated from 

eigenfeature-level data using all wells with ≥ 100 cells (the null data set was not used). 

The inverse of the covariance matrix (Σ−1) was then used to calculate the Mahalanobis 

distance. Analogous to the Euclidean distance, the Mahalanobis distance was calculated 

for each well x  relative to the mean of solvent control wells μ  per culture plate as 

dM(x , μ ) = (x − μ )TΣ−1(x − μ )
2

. Well-level Mahalanobis distances were then modeled 

as described in ‘Global fitting (Euclidean distance)’.

Category-level fitting (Mahalanobis distance)—For each category, well-level data 

was transformed using PCA as described in ‘Feature reduction’, except that only the features 
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within the category were used as input. The first N eigenfeatures that cover ≥ 90% of 

variance within that category were retained. Mahalanobis distance was then calculated for 

each category as described in ‘Global fitting (Mahalanobis distance)’.

Subsequently, the category-level Mahalanobis distances were modeled with tcplfit2, using 

nine functions and the median and nMad of the null data sets (of the corresponding plate 

group) to define the BMR, which was set at 1 nMad. BMCs were discarded if the hit call 

probability was < 0.80 or if the top of the curve was negative (smaller than average distance 

to the mean of the vehicle controls is not considered an effect). Chemicals with at least one 

valid BMC were considered active and the lowest BMC was defined as the PAC.

Category-level fitting (single sample gene set enrichment analysis, ssGSEA)
—The ssGSEA approach was originally developed for transcriptomics data and was adapted 

for use with the HTPP data with slight modification34. In brief, “gene sets” were defined 

as the set of features within each category as described in ‘Category-level aggregation’. 

Normalized feature data for each chemical and concentration were rank-ordered based on 

scaled response magnitude and zero-centered prior to calculating the Kolmogorov-Smirnov-

like running sum statistic as described previously34, 35. The category enrichment score is 

the sum integration of the Kolmogorov-Smirnov-like running sum of features within the 

category and features outside of the category. Enrichment scores were further normalized by 

the range of scores across all test samples and categories. Large positive or negative scores 

for a category indicate that a sample is enriched in features for that category in the top or 

bottom extremes of the ranked feature set distribution, respectively.

Category enrichment scores were modeled with tcplfit2, using nine functions and the median 

and nMad of the null data sets (of the corresponding plate group) to define the BMR, 

which was set at 1.349 nMad. BMCs were discarded if the hit call probability was < 0.50. 

Chemicals with at least one valid BMC were considered active and the lowest BMC was 

defined as the PAC.

Single-Concentration Analysis Approaches

To ‘simulate’ single concentration data, we tested approaches that utilize only one 

concentration for each test chemical. In this study, the tested concentration range varies 

across chemicals. As we have cell viability information for all chemicals, we chose to use 

the highest non-cytotoxic test concentration for each chemical (i.e. CV.NOEC) in evaluation 

of the single-concentration analysis approaches. This is the highest concentration below 

the threshold for cytotoxicity or cytostatic effects. For chemicals where no cytotoxicity or 

cytostatic effects were observed this value corresponds to the highest tested concentration.

Generation of profiles and signatures—A profile was defined as a vector consisting 

of the scaled response magnitude of the 1,300 features at the corresponding concentration. 

To reduce noise, signatures were constructed from profiles by replacing all values that 

were below a certain signature threshold with 0 (signature thresholds are applied uniformly 

across all features). For the following approaches, signature thresholds between 0 and 6 

were evaluated. The best signature threshold was selected independently for each method 

below based on highest sensitivity with FPR ≤ 10%, followed by having the lowest (most 
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permissive) signature threshold that produced high concordance of hit calls for chemicals 

screened in duplicate. The approaches described below were also used to model eigenfeature 

transformed data (covering > 95% of variance). In that case, no signature threshold was 

used.

Signal strength overall—Well-level data for a chemical was aggregated to a median 

across biological replicates (e.g. within plate group). Three different measures of signal 

strength (SS) were tested: (1) the Euclidean norm SS = ∑i = 1
1300 xi

22 ; (2) the Manhattan 

norm SS = ∑i = 1
1300 xi ; (3) the number of features with a value above the signature 

threshold. The measure with the best performance was the Euclidean norm with a signature 

threshold of 1.5 (for feature-based data). Chemicals were considered active if the chemical’s 

SS was above the 90th percentile of the SS of the null data set.

Signal strength plate-wise—In this approach, SS was calculated for each biological 

replicate of a chemical. The same three measures as described above were evaluated. The 

four values for SS were then compared to the distribution of SS for null chemicals (from 

the same plate group, i.e. 36 values) using a Wilcoxon rank-sum test (R function wilcox.test 
with option alternative=”greater”) to test if the SS values of the chemical is greater than the 

SS distribution of the null data. For null chemicals, the four SS values were compared to the 

SS values from the remaining null chemicals (i.e. 32 values).

Chemicals were considered active if the resulting p-value was below the 10th percentile of 

p-values of the null data set. The option with the best performance was Euclidean norm 

with a signature threshold of 2.25 (for feature-based data) and without a threshold (for 

eigenfeature-based data).

Profile correlation among biological replicates—The signatures of the four 

biological replicates were compared pairwise to each other using four different measures: 

(1) Pearson correlation; (2) cosine similarity x ⋅ y
x ⋅ y

; (3) Jaccard similarity36, and (4) 

p-value of Jaccard similarity37. Jaccard similarity was calculated using the R function 

jaccard.test in package jaccard with option method=”asymptotic”. Each measure resulted in 

six comparisons, of which the third best value was used as the overall correlation/similarity 

score (this allows for the fact that if there was one outlier replicate, it would produce three 

low correlations).

Chemicals were considered active if the third best value was higher than the 90th percentile 

of values of the null data set (or lower than the 10th percentile for Jaccard p-values). The 

option with the best performance was Pearson correlation with a signature threshold of 1.75 

(for feature-based data) and cosine similarity (for eigenfeature-based data).
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Results

Overview of the Different Approaches

For this study we compared several multi-concentration and single-concentration approaches 

for hit identification as illustrated in Figure 1. Definitions for hit calls and potency estimates 

are summarized in Table S2. The different approaches have varying levels of mathematical 

and computational complexity. We hypothesized that the approaches would have differing 

abilities to identify chemicals as bioactive and varying susceptibility to assay noise; in 

particular, chemicals with weak or very specific effects might demonstrate the greatest 

variation in hit identification and potency across methods.

Comparison of Performance of Hit Determination Approaches

A previously published dataset26 was reanalyzed and results compared using all the 

described approaches. The dataset comprised 462 unique test chemicals, of which 16 were 

screened in duplicate. Four reference chemicals were screened in concentration-response 

12 times (corresponding to the number of plate groups in the study). In addition, a null 

data set comprised of 108 ‘null chemicals’ was constructed using data from the lowest two 

concentrations of test chemicals.

These various quality control datasets (i.e. duplicated test chemicals, reference chemicals, 

null data set) were used to optimize parameters for each individual modeling approach 

and to subsequently compare their performance. The FPR was empirically measured using 

the null data sets, while the TPR was based on the ability to reliably detect a subtle, 

specific reference chemical (berberine chloride). Concordance was based on hit calls for 16 

chemicals screened in duplicate, i.e. the ability to consistently call both instances as inactive 

or bioactive. Parameters of each approach were optimized to achieve an FPR of ~ 10% and 

maximal TPR. If multiple sets of parameters produced equivalent results according to these 

criteria, the most permissive threshold with high concordance was chosen.

For 11/15 approaches, 100% TPR was achieved at an FPR ≤ 10% (Fig. 2, green triangles 

for FPR). Only the single concentration approaches using eigenfeature-level data and global 

fitting using Euclidean distance were not able to identify all berberine chloride replicates 

as bioactive. All approaches with 100% TPR also achieved concordance ≥ 75% (Fig.2, 

blue diamonds for concordance), with feature-level fitting using tcplfit2 achieving 100% 

concordance.

Overall, the evaluated approaches identified between 49 – 68% of test chemicals as 

bioactive. Multi-concentration approaches had a slightly higher hit rate than single 

concentration approaches in general. Of note, fitting with tcplfit2 resulted in more chemicals 

identified as bioactive than fitting with BMDExpress, for both feature-level fitting and 

category-level aggregation of feature-level fits as the basis for hit calls.

Concordance of Hit Calls Among Approaches

Next, we wanted to investigate whether different approaches identify the same chemicals 

as bioactive. Overall, there was a large number of test chemicals that were identified as 
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bioactive by all approaches, while another group of test chemicals, together with most null 

chemicals, were identified as inactive with all approaches (Fig. 3A). Single-concentration 

approaches clustered separately from the multi-concentration approaches; a small group of 

chemicals was bioactive in the latter but not the former group of approaches. For these 

13 chemicals, the PAC approximated the highest non-cytotoxic concentration (data not 

shown). Feature-level fitting and category-level aggregation methods clustered together by 

curve-fitting strategy (i.e. tcplfit2 or BMDExpress) rather than by aggregation level.

To quantify the concordance among approaches, only the 11 approaches with 100% TPR 

were considered. These approaches identified the four reference chemicals (berberine 

chloride, Ca-074-Me, etoposide, rapamycin) as bioactive in all twelve replicates. For the 

null chemicals, 57% (62/108) were inactive with all approaches, with an additional 30% 

(32/108) identified as active by only one or two approaches (Fig. 3B, left).

In contrast, 38% (181/475) of test chemicals were considered active with all approaches, and 

an additional 13% (64/475) were called as active by nine or ten of the approaches (Fig. 3B, 

right). Approximately 30% (144/475) of chemicals were called as inactive by at least nine 

approaches. Overall, for 82% (389/475) of test chemicals, at least nine of the approaches 

agreed.

Concordance of Potency Estimates Among Multi-Concentration Approaches

One potential application of phenotypic profiling in regulatory toxicology is the derivation 

of potency estimates for perturbations of cellular biology from HTP data. For this purpose, 

limited detection of false actives is acceptable. However, avoiding false actives associated 

with highly potent estimates of bioactivity (i.e. those identified within the lower portion 

of the tested concentration range or below and associated with assay noise and not true 

biological activity) is desirable. Potency estimates such as these would not be an accurate 

representation of the biological activity of the chemical.

To evaluate these performance characteristics of the concentration-response modeling 

approaches, potency estimates (e.g. PAC) of reference chemical replicates were compared. 

While the true PAC is not known, previous analysis showed the reference chemical 

replicates yielded highly reproducible phenotypic profiles26; therefore, PACs of individual 

replicates should be similar. This was the case for most approaches, particularly for the 

two reference chemicals with broad phenotypic effects (etoposide, rapamycin) (Fig. 4A). 

For berberine chloride, which has subtle and specific effects on a particular organelle 

(i.e. mitochondria), feature-based approaches produced PACs with low variability across 

replicates. PACs calculated from global approaches were less potent than those calculated 

from other approaches. Similarly, Ca-074-Me has very potent effects on Golgi morphology, 

which was detected by feature-level and category-level approaches; while global approaches, 

ssGSEA and eigenfeature-level fitting yielded less potent estimates.

We also compared the potency estimates from each method for null chemicals, which 

provides a model of false positive hits. As described above, each method was optimized to 

achieve an FPR of ~ 10%. Thus, by definition, only a small subset of null chemicals was 

identified as active and subsequently assigned a PAC by each approach. However, comparing 
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the distribution of PACs for known false positives in each method provides an estimate 

of which methods are more prone to incorrectly calling bioactivity at higher potencies. 

We observed marked differences in the potencies estimated for null chemicals when 

comparing feature-level fitting and category-level aggregation approaches as compared to 

category-level and global fitting approaches: all feature-level and category-level aggregation 

approaches resulted in potency estimates well below the upper limit of the concentration 

range assigned to the null data set (i.e. 100 μM) (Fig. 4B). We term these ‘high-potency false 

actives’: i.e. potency estimates of ‘null chemicals’ that are lower than the second highest 

assigned dose (i.e. 30 μM). In contrast, global approaches and category level-fitting nearly 

exclusively estimated PACs close to the highest concentration level assigned to the null data 

sets and did not yield high-potency false active results.

Another important performance metric for each method is the similarity of PACs for 

chemicals screened in duplicate. Specifically, we computed “PAC range” as the log-scale 

difference in PAC estimates from the same method, between each pair of duplicate 

chemicals. Ideally, the PACs of duplicate chemicals should be close together (low PAC 

range). This was the case for the two global approaches and for category-level fitting of 

Mahalanobis distance (Fig. 4C). Overall, the PAC range was < ½ an order of magnitude 

for most chemicals, which in our opinion, indicates sufficient reproducibility for a first-tier 

screening assay.

Lastly, potency estimates of test chemicals were compared across the approaches. As the 

true potencies were not known, we calculated the median potency across all approaches for 

test chemicals called as active by all nine methods. We then investigated how individual 

approaches performed relative to this median. Feature-level and eigenfeature-level fitting 

resulted in the lowest PACs (highest potency estimates) for the majority of these test 

chemicals, sometimes > 1 order of magnitude below the median, followed by category-

level fitting of Mahalanobis distance (Fig. 4D). Global approaches were mostly above the 

median, and ssGSEA yielded the highest PACs. In pairwise comparisons of each approach, 

correlations of potency estimates for complete cases (i.e. a chemical being identified as a 

hit in both of the approaches being compared) were high (Fig. S1). Of note, most bioactive 

chemicals identified by each method in our dataset had a PAC between 10 – 100 μM (Fig. 

4E).

To summarize, feature-based approaches (feature-level fitting and category-level aggregation 

approaches) generally resulted in lower PACs, but also produced a greater frequency of 

high-potency false active results.

Comparison of Bioactivity Profiles Across Feature- and Category-Based Approaches

We also wanted to investigate whether the phenotypic features and feature categories 

identified as most sensitive for a given chemical were consistently identified using the multi-

concentration modeling approaches. In this context, the “most sensitive” feature/category 

is defined as having the lowest potency estimate compared to other features/categories 

within a given method and is distinct from the calculation of TPR described above. For 

this purpose we leveraged the reference chemicals that were tested in twelve replicates and 

whose qualitative effects have been described previously6, 26. Potency and effect size values 
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for feature-level data were averaged across the twelve replicates and plotted (Fig. 5A). In 

addition, median potency values for affected categories were calculated and rank-ordered 

for each reference chemical (Fig. 5B). Only features/categories affected in the majority 

of replicates are shown. Thus, the displayed profiles represent a robust measure for each 

modeling approach.

Overall, fitting with BMDExpress and tcplfit2 resulted in very similar bioactivity profiles, 

both on the feature-level (Fig. 5A) and category-level (Fig. 5B). Mitochondrial compactness 

was identified as being affected by berberine chloride using all six approaches, consistent 

with previous qualitative observations. For Ca-074-Me, feature-level approaches showed that 

the AGP/ER channel was most sensitive (BMCs below the tested concentration) and that 

nucleus morphology was affected at higher concentrations, both of which are consistent with 

previous observations. This potent effect of Ca-074-Me is also captured with the category-

aggregation approaches and category-level fitting of Mahalanobis distance, but not with 

ssGSEA. ssGSEA was less sensitive and did not identify the AGP phenotype in a manner 

similar to the other approaches (this phenotype is clearly visible upon manual inspection of 

images from Ca-074-Me treated cells26). Many features/categories were affected following 

etoposide and rapamycin treatment. The rank order of the categories varied among the 

approaches, but there was a consensus regarding the potency estimate and the affected 

categories for all approaches except ssGSEA. ssGSEA again produced higher PACs and 

identified many fewer affected categories compared to the other three category-based 

approaches. A similar trend was observed for a sub-set of test chemicals (Fig. S2).

Overall, the two curve-fitting software tools BMDExpress and tcplfit2 had good agreement, 

both on the feature-level as well as with regards to category-aggregation. Category-level 

Mahalanobis was comparable to the aforementioned approaches, while category-level 

ssGSEA yielded largely discordant results.

Discussion

High-throughput profiling (HTP) assays are becoming increasingly popular in the 

pharmaceutical and toxicological sciences for investigating the effects of chemicals or 

genetic manipulations on cellular biology. The high dimensionality of these assays makes 

hit identification in the context of HTS very challenging. In the regulatory science arena, 

it has been proposed that HTP assays can be used to rapidly screen chemicals for the 

purpose of hazard identification and identification of bioactive concentrations9, 12. However, 

at present there are no widely accepted standard practices for identifying hits or potency 

estimates from imaging-based HTP assays15. The lack of standardized approaches for data 

analysis, including demonstration of reliable approaches for classification of chemicals as 

inactive or bioactive with some accompanying estimation of potency, represents a barrier 

to broader use of imaging-based HTP data for application to regulatory decision-making. 

We previously screened a set of 462 environmental chemicals with the Cell Painting assay 

in U-2 OS cells26. In the previous study, we used feature-level fitting with BMDExpress 

followed by category-level aggregation to identify bioactive chemicals and determine PACs. 

However, we did not explore other approaches for data analysis and PAC determination. The 

previously implemented category-level aggregation approach used an empirical threshold of 
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30% of features being concentration-responsive in order for a category to be considered 

active. One objective of the present study was to explore the use of category-based 

and global analysis approaches that were not dependent on this inflexible criteria for 

classifying chemical as inactive or bioactive. In the present study, we analyzed the data 

set from Nyffeler, et al.26 with nine multi-concentration and six single concentration 

approaches (including the previously implemented category-aggregation approach using 

the BMDExpress software package) and systematically compared hit concordance and 

potency estimates where applicable. For the present study, we optimized each approach 

in terms of FPR as determined using a null data set and TPR as determined using a 

subtle, but reproducible, phenotypic reference chemical. For the vast majority of test 

chemicals, there was good agreement among the different approaches, both in terms of 

hit calls and potency estimates. However, we did observe differences among the approaches, 

in particular with regards to consistency of potency estimates for chemicals screened in 

duplicate and the risk of identifying high-potency false actives. Based on the comparisons 

performed in this work, category-wise Mahalanobis distance calculation followed by curve-

fitting demonstrated the lowest variability in PACs determined from duplicate screening 

of chemicals and demonstrated the lowest risk of identifying high potency false active 

chemicals. Both of these performance characteristics are desirable for analysis of HTP data 

in the context of environmental chemical bioactivity screening and potential use in chemical 

safety assessment applications.

In the present study, we evaluated approaches with varying degrees of complexity that yield 

inactive versus bioactive hit calls (all approaches) and, for multi-concentration approaches, 

PACs based on calculation, aggregation and/or ranking of feature-, category-, or global-level 

potency values (Fig. 1). The starting point for the comparative analysis was category-level 

aggregation of BMDExpress fitted feature-level data, as described in Nyffeler, et al.26. 

This approach was adapted from a standard approach used in transcriptomics research 

for concentration-response modeling of high-dimensional data that also provides biological 

context for interpretation of chemical effects by mapping to gene sets12, 29, 38, 39. Phenotypic 

category-based analysis (similar to gene set-based analysis in transcriptomics) facilitates 

biological interpretation of high-dimensional feature data by aiding in identification of 

effects on organelles that may be associated with chemical bioactivity or toxicity. Feature-

level fitting with BMDExpress was time consuming (~20 min per chemical for modeling 

4 curve shapes on a computer with 20 processing cores) and documentation of and access 

to the underlying model executables was limited within the confines of the R computing 

environment. We therefore explored if modeling with the R package tcplfit2 would yield 

equivalent results, improve data processing efficiency, and make the curve-fitting procedure 

used more accessible. Tcplfit2 was faster (~3 min per chemical for modeling 9 curve 

shapes on a computer with 4 processing cores) and its code is amenable to adaptations 

for applications to this and other data streams. The slower processing efficiency of 

BMDExpress may be due to use of validated model executables deployed as part of the 

low-throughput BMDS modeling approach (https://www.epa.gov/bmds) and differences in 

the approaches BMDExpress and tcplfit2 use to calculate confidence intervals around the 

BMCs, a requirement for regulatory testing40.
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We also evaluated other approaches used frequently in image-based profiling for 

discrimination of treatment from control samples: namely, Euclidean and Mahalanobis 

distance metrics15, 41. We had previously used the latter approach in a steroidogenesis 

screening assay that measures levels of 11 hormones (e.g. “features”) to calculate a 

single metric for discrimination of active and inactive environmental chemicals in a 

screening for prioritization context42, 43. The Mahalanobis distance-based approach requires 

dimensionality reduction, a process frequently implemented in imaging-based profiling 

studies8, 15 and accounts for covariance among features, a common property of imaging-

based profiling data. Here, we used feature reduction with PCA to derive eigenfeatures 

that were then used to calculate Mahalanobis distances. Both Euclidean and Mahalanobis 

distances were computed globally (i.e. using all the feature data). We then took the 

novel step of concentration-response modeling the global distance metrices (as well as 

the eigenfeatures used to derive the latter) using tcplfit2 to identify PACs. While an 

apparent advantage of the global-fitting approach was derivation of a single response 

variable for hit determination and calculation of PACs, a decided disadvantage was the 

loss of biological or mechanistic interpretability: i.e. it is unclear from the global modeling 

approaches which feature(s) or category(ies) are most sensitive to perturbation or driving the 

phenotypic response. We therefore implemented the Mahalanobis distance approach within 

the pre-defined phenotypic categories to maintain biological interpretability similar to the 

aforementioned category aggregation approaches while also accounting for correlations in 

similarly derived features. We adapted the ssGSEA approach from transcriptomics34, 35 

using the phenotypic categories as de facto gene sets and z-standardized responses in lieu of 

fold-changes; ssGSEA scores were also modeled using tcplfit2. The signal strength approach 

in this study is a modification of the global Euclidean distance for the single-concentration 

application and has been used in a different form by others7. Finally, we evaluated profile 

comparison approaches that have been used in both transcriptomics studies37, 44–47 and 

image-based profiling15, although we repurposed the approach to measure similarity of 

biological replicates of a single chemical. While the primary focus of our research is 

concentration-response screening, the profile comparison and signal strength approaches 

are appropriate for use in hit determination by researchers conducting single-concentration 

screening studies, a common practice used to reduce the resources required to screen 

large chemical libraries. Overall, the described suite of hit determination approaches have 

trade-offs with regards to computational complexity, computing time, ease of biological 

interpretability, and provision of potency values that should be taken into account by 

researchers in the context of their particular research objectives.

The different approaches were compared by estimating FPR (from a null data set), TPR 

(from berberine chloride replicates) and concordance (from duplicated test chemicals). To 

compare the approaches in a consistent way, we first tuned each method to achieve a target 

FPR of 10% (Fig. 2). As Cell Painting is likely to be used as a first-tier toxicity screening 

assay, high sensitivity was preferred over high specificity. For all multi-concentration 

approaches (except global Euclidean) and all single-concentration approaches based on 

features (not eigenfeatures), a 100% TPR was achieved at an FPR of 10% or less, indicating 

high sensitivity of these approaches as implemented. For a subset of approaches (both 

global fitting approaches), the FPR was below 10% using a BMR of 1 nMad. Decreasing 
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the BMR further to achieve the 10% FPR for these approaches didn’t seem reasonable 

for detecting meaningful biological effects. In addition, the concordance of hit calls for 

chemicals screened in duplicate was ≥ 75% for approaches where a TPR of 100% could 

be achieved. This indicated that each of those approaches reproducibly classified a random 

set of environmental chemicals as active or inactive a majority of the time. However, it 

should be noted that the TPR (and associated sensitivity) was estimated from only 12 

replicates of a single phenotypic reference chemical, berberine chloride. Using only a single 

reference chemical could lead to ‘overtraining’ of approaches to detect this particular type 

of response. Therefore, this metric of sensitivity should be interpreted with caution. For 

a more thorough evaluation of sensitivity, it would be desirable to evaluate a larger set 

of chemicals with previously characterized biological activity that is representative of the 

environmental chemical space (such as chemicals selected from the ToxCast collection48) 

and that have been evaluated repeatedly in our test system. As we are in an early stage 

of implementing the assay, we have not yet identified or screened a set of well-known 

“positive” chemicals within the environmental chemical space that could be used for this 

purpose. Instead, we decided to make use of the phenotypic reference chemicals run on each 

plate for the current sensitivity analysis. These reference chemicals (i.e. berberine chloride, 

Ca-074-Me, etoposide, rapamycin) were originally included in the screening study design 

to assess assay reproducibility as they produce robust, reproducible, visually discernable 

phenotypes. We decided to use only berberine chloride to estimate TPR, as this chemical 

is the one most closely resembling suspected behavior of environmental chemicals, with 

subtle, yet reproducible, phenotypic effects. Of note, the other three reference chemicals 

have larger effects and were identified by all approaches as active. Overall, there was large 

concordance among the approaches in terms of hit calls (Fig. 3A). There was a group of 

13 chemicals that were identified as active using multi-concentration approaches but not 

identified as active with single-concentration approaches. Apart from this observation, there 

was no clear pattern among the approaches, suggesting that chemicals with discordant hit 

calls were probably chemicals with borderline activity and depending on the specifics of 

the approach they were classified as either active or inactive. This hypothesis is supported 

by the observation that there is a general trend of an increasing number of approaches that 

called a chemical as active with increasing signal strength (Fig. S3). Most null chemicals 

were consistently identified as inactive across different approaches (Fig. 3B, left), with only 

4/108 null chemicals identified as active with the majority of approaches. For 96/108 null 

chemicals, ≤ 2 approaches identified them as hits. On the other hand, 82% of test chemicals 

were identified by all or most (9 out of 11) approaches as either active or inactive, with 

few chemicals in between (Fig. 3B, right). High concordance of hit calls across a variety 

of approaches provides a relatively greater weight-of-evidence that chemicals were either 

biologically active or inactive in our testing scenario (i.e. U-2 OS cells exposed to 24 h 

for up to 100 μM). Conclusions regarding the biological activity of chemicals associated 

with discordant hit calls across a variety of approaches would be associated with a relatively 

lower degree of confidence.

All the approaches we evaluated had a comparable hit rate for test chemicals, between 

50 – 70%. This was surprising, as these approaches were implemented using different 

levels of “compressed” data. For example, Global fitting with the Mahalanobis approach 
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worked surprisingly well, although the 1300 features were “compressed” to only one 

number (e.g. Mahalanobis distance) before curve fitting. Moreover, single-concentration 

approaches were able to identify a similar number of bioactive chemicals as compared to 

the multi-concentration approaches. Thus, if hit identification is the primary goal of a study 

(and not estimating potency), single-concentration screening might be sufficient for this 

purpose. However, it should also be noted that in the present study, we utilized information 

from multi-concentration cytotoxicity screening to choose the most informative (single) 

concentration to include in the analysis.

The hit rate of 50 – 70% was also substantially lower than the 95% hit rate reported in our 

previous analysis of these data26. The main explanation for this difference was the more 

stringent hit call thresholds implemented in the present analyses, which were optimized to 

an upper limit of 10% FPR. Specifically, for feature-level fitting and subsequent category-

level aggregation of BMDExpress results, an additional effect size threshold (not used in 

the previous study) had to be introduced to reduce the FPR to 10% and led to an overall 

reduction in the percentage of chemicals identified as hits; i.e. excluding chemicals with 

non-efficacious changes in phenotypic features. From a practical perspective, calibrating the 

hit call threshold to a set FPR using the noise structure inherent to HTP data provides a 

means to identify bioactive chemicals with greater confidence, an important consideration 

when triaging chemicals for hit confirmation within a tiered toxicity testing strategy or for 

considering HTP data for use in chemical safety assessment.

Of note, fitting with tcplfit2 led to a slightly higher hit rate than fitting with BMDExpress 

using either feature-level fitting or category-level aggregation. In instances where a chemical 

was identified as active using both approaches, the number of affected features and PACs 

were highly correlated (Fig. S4). While most parameters were kept constant between the 

two approaches, there were two notable differences in the implementation: (1) In order to 

reduce FPR to the target of ≤ 10%, an additional threshold for effect size was necessary 

to incorporate into the original BMDExpress approach; and (2) nine different models were 

used for tcplfit2 fitting compared to only four models with BMDExpress. Despite fitting 

more models, tcplfit2 was faster than BMDExpress, and increasing the number of models 

tested with BMDExpress would significantly increase analysis run times. We previously 

explored using more models in BMDExpress and found that performance was not increased 

substantially, while risk for identification of high-potency false actives increased (data not 

shown). Another difference is that BMDExpress does not have a ‘constant’ model but relies 

on pre-filtering steps (not applied here) and goodness-of-fit tests to decide if a concentration-

dependent effect is present.

Concordance of potency estimates for reference chemicals was high, indicating that for 

chemicals with a robust signal most approaches give equivalent results (Fig. 4A). However, 

there were substantial differences among the approaches in terms of potency estimates for 

null chemicals (Fig. 4B). Eigenfeature-level fitting, feature-level fitting and category-level 

aggregation of feature-level null data all produced a number of high-potency false positives, 

while global fitting approaches and category-level fitting did not. One explanation is that the 

PAC for feature-level analysis was defined as the 5th percentile of potencies for individual 

features. Null data sets should – by definition – represent baseline assay noise and thus 
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generally only a few features should be identified as affected (e.g. have an estimated 

BMC). In that case, the 5th percentile coincides with the most sensitive BMC. As such, 

we strongly discourage using the 5th percentile of feature-level BMCs to derive a PAC as 

this could contribute to erroneous high potency hit calls for chemicals with little to no actual 

biological activity in the test system. Of note, category-aggregation approaches were not 

exempt from this problem, even though aggregating features within categories and defining 

the most sensitive category with ≥ 30% coverage as the PAC was an attempt to reduce 

the influence of spurious curve fits26. Correlation of features within individual categories 

may have contributed to this finding, as the category-level aggregation approaches do not 

account for this phenomenon. The category-level fitting approaches using Mahalanobis 

distance does account for correlations in the feature data within categories and did not 

suffer from the same type of performance deficit as category-level aggregation (Fig. 4B). In 

addition, category-level fitting produced the least variable estimates of biological potency 

in chemicals screened in duplicate as compared to all other multi-concentration approaches 

(Fig. 4C). Overall, feature-based approaches gave the most potent PACs, but were not very 

robust in identifying chemicals with weak bioactivity (i.e. those that did not produce large 

effect sizes in individual feature measurements) and were prone to identification of high-

potency false actives. Global approaches yielded slightly less potent PACs but had a much 

lower risk of identifying high-potency false actives. Category-level fitting of Mahalanobis 

distances was in between the two with relatively higher potency estimates (as compared 

to global fitting) and relatively lower risk for identifying high-potency false actives (as 

compared to feature-level fitting or category aggregation).

Category-level fitting of ssGSEA scores did not produce high potency false actives in 

the null chemicals but had large variability in terms of potency estimates for chemicals 

screened in duplicate. In addition, comparison of bioactivity profiles across feature-level 

fitting, category-level aggregation or category-level fitting approaches demonstrated marked 

qualitative differences between biological responses identified by ssGSEA and any of the 

other approaches (Fig. 5). The effect of berberine chloride on mitochondrial morphology 

was picked up by all these approaches, including ssGSEA, despite its specific effects on a 

few features/categories. This shows that all these approaches were overall capable of picking 

up such specific effects. However, category-level fitting of ssGSEA scores did not detect 

the effect of Ca-074-Me on the AGP channel. The effect of Ca-074-Me on the morphology 

of U-2 OS cells in the AGP channel can be discerned upon visual inspection of images, 

is associated with large magnitude changes in many features when measured quantitatively 

and is highly reproducible26, 49. Therefore, ssGSEA did not reliably identify the most 

marked morphological effects associated with a well-characterized reference chemical. In 

addition, for the other reference chemicals, ssGSEA identified fewer categories as being 

affected and the range of category-level potency estimates was broader as compared to 

other category-level modeling approaches. Of note, the most sensitive category identified 

for Ca-074-Me with ssGSEA was at a higher concentration than other category-based 

approaches. These observations might be due to the fact that in the current implementation 

of ssGSEA scores are normalized across categories. This may result in low enrichment 

scores for chemicals with broad effects across many phenotypic features / categories, as no 

specific category will be enriched compared to all others in terms of being the extremes 
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of the distribution. Overall, these results indicate that while ssGSEA has been applied 

successfully to transcriptomics data34, it did not perform well on our phenotypic profiling 

data, at least in the present configuration.

In this study, the null data set was constructed from data from the lowest two 

test concentrations used for chemical screening. As chemicals with activity at these 

concentrations were excluded, we are confident that the null data set is an appropriate 

surrogate for inactive chemicals. However, other strategies to build null data sets could 

be used. For example, for some applications it might be desirable to randomly sample 

individual feature values independently, rather that randomly sample individual wells as 

we have done here. Our current strategy was chosen to maintain the observed correlation 

among features in our profiling data and to provide a fair comparative basis for approaches 

that inherently account for this correlation. In addition, while we included some approaches 

that model a reduced feature set (eigenfeatures), we haven’t explored all of the feature 

reduction and feature selection strategies that have been proposed in the imaging-based 

profiling research community, including machine-learning based approaches15. Because 

many features within imaging-based profiling data are inherently correlated, feature 

reduction could decrease the amount of data input into the analysis and equalize the weight 

of each feature. The benefit of feature reduction can be seen in the present study by 

comparing global fitting with Euclidean distance (all features) vs Mahalanobis distance 

(reduced feature set): global Mahalanobis had a higher TPR at the fixed FPR. We observed 

in preliminary work that the results of approaches based on eigenfeatures depend on the 

choice of input data to the PCA. More work is needed to find the optimal input data set, 

feature reduction method and number of retained eigenfeatures.

For our purposes, the Cell Painting assay is envisioned as a “first-tier” bioactivity assay 

for environmental chemicals9. As with any other in vitro assay, a low FPR is desirable. 

However, from the perspective of human health protection, identification of false positives is 

preferred over misclassification of true positives as inactive, particularly when only positive 

hit calls will undergo follow-up testing. With these principles in mind, the present study 

was tailored for screening of environmental chemicals, under the hypothesis that many (but 

not all) environmental chemicals will have marginal bioactivity as evaluated using the Cell 

Painting assay or produce nonspecific (i.e. promiscuous) molecular effects in human cells. 

This is in sharp contrast to pharmaceutical screenings, where bioactivity of small molecules 

is desired and expected. In our study, approaches were optimized for high sensitivity 

and consequently accepted a relatively high FPR of 10%. Overall, using the described 

optimization criteria, we found that feature-based approaches were sensitive but had a higher 

risk of high-potency false actives, and that category-based modelling with Mahalanobis 

distance had nearly as high a sensitivity, but a lower risk for high-potency false actives. This 

category-level fitting approach also facilitates biological interpretation of the profiling data, 

a utility that is lacking using the global fitting approaches. While some of these findings 

described here might be specific to the chemical space examined and the optimization 

schema, the general framework of comparing different approaches to gain confidence in 

hit identification should be of broad interest to both the high-throughput screening and 

regulatory research communities. In particular, this analysis framework can be applied to 

ongoing applications of the Cell Painting assay to a broader range of human-derived in 
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vitro models and screening a larger chemical space to calculate thresholds for chemical 

bioactivity and discern putative cellular MOA for environmental chemicals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AGP actin skeleton, golgi and plasma membrane

AIC Akaike information criterion

BMC benchmark concentrations

BMR benchmark response

CV cell viability

CV.LOEL lowest cytotoxic concentration

CV.NOEL highest non-cytotoxic concentration

ER endoplasmic reticulum

FPR false positive rate

HTP high-throughput profiling

HTS high-throughput screening

MOA mechanism of action

MIE molecular initiating events

nMad normalized median absolute deviation

PAC phenotype altering concentration

PCA principal component analysis
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SD standard deviation

SS signal strength

ssGSEA single sample gene set enrichment analysis

TPR true positive rate

USEPA United States Environmental Protection Agency
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Fig. 1: Approaches for Hit Determination from Imaging-Based Phenotypic Profiling Data.
Multi-concentration approaches for hit determination are shown in blue. Single-

concentration approaches for hit determination are shown in pink. The number of individual 

BMCs that could potentially be derived from each multi-concentration approach are shown 

in the triangle to the left. The starting point for all approaches was well-level data for each 

phenotypic feature. Feature-level data can be fit and directly used for potency estimation, 

or the fit results can be aggregated to the category level (i.e. collection of related features) 

before determining hit calls and calculating potency estimates. Data from our adaptation 

of the Cell Painting assay26 can be reduced to 49 categories before curve-fitting using 

either feature reduction (PCA) or ssGSEA approaches. The 1300 individual features can 

also be used to calculate a Euclidean distance from controls and model this value as a 

single response variable. Similarly, feature-level data can be transformed to eigenfeatures to 

account for correlation among features and then distance from controls can be calculated 

using the Mahalanobis approach42, 43. Eigenfeature-level data can also be used directly for 

curve fitting. For single concentration approaches, feature-level or eigenfeature-level data 

can be used to derive signatures and overall signal strength of the signature can be compared 

to controls. Alternatively, the correlation of signatures among biological replicates of the 

same treatment can be used as a hit calling criteria.
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Fig. 2: Comparison of Performance of Hit Determination Approaches.
A previously published data set26 was used to compare all approaches. U-2 OS cells were 

exposed for 24 h to the chemicals. Chemicals were tested in four biological replicates, 

resulting in a total of 48 assay plates organized as 12 plate groups. Approaches were 

optimized to a false positive rate of ~ 10% (vertical dashed line) based on a randomized null 

data set (red circles; n = 108) and the best possible true positive rate based on the reference 

chemical berberine chloride (green triangles; n = 12). Sixteen random test chemicals were 

screened in duplicate and used to calculate concordance (blue open diamonds) as the number 

of unique chemicals classified in both occurrences as either active or inactive. The hit 

rate of test chemicals (black squares) was calculated from 478 test chemicals, with the 

exception of approaches using tcplfit2 to fit, for which three chemicals had fewer than four 

concentrations and were excluded from concentration-response modeling. Method name 

abbreviations: ssGSEA: single sample gene set enrichment analysis; F: feature-based; E: 

eigenfeature-based.
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Fig. 3: Concordance of Hit Calls Across Approaches.
(A) Heatmap illustrating hit calls for all approaches (rows) and all chemicals (columns). 

Colors in the heatmap indicate whether the chemical was considered bioactive (gray) or 

inactive (white). The column annotation indicates the type of chemical: test chemical (blue), 

reference chemical (green), and null chemical (gray). The row annotation indicates multi-

concentration approaches (blue) and single-concentration approaches (pink). (B) Pie charts 

summarizing the concordance among eleven approaches. Each pie chart slice indicates the 

proportion of 108 null chemicals (left) and 475 test chemicals (right), that were called 

as active by the number of approaches indicated by the numerical labels surrounding the 

pie charts. Four approaches with < 100% TPR were excluded (Global Euclidean, Signal 

Strength overall E, Signal Strength plate-wise E and Profile Correlation E). Three test 

chemicals had less than four concentrations, were not modelled with approaches that 

use tcplfit2, and were therefore excluded from the heatmap and pie chart. Abbreviations: 

ssGSEA: single sample gene set enrichment analysis; F: feature-based; E: eigenfeature-

based.
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Fig. 4: Concordance of Potency Estimates Across Multi-Concentration Approaches.
(A) Reproducibility of potency estimates of reference chemicals. All four reference 

chemicals were tested in twelve replicates within the study. The gray area indicates the range 

of tested concentrations. Replicates with potencies below the tested concentration range and 

replicates without a potency estimate (i.e. inactives) are displayed ½ an order of magnitude 

below or above the tested concentration range, respectively. (B) Potency estimates of null 

chemicals that were identified as active by each approach. Null chemicals were arbitrarily 

mapped to a concentration range of 0.03 – 100 μM with ½ log10 spacing. (C) For the 16 test 

chemicals screened in duplicate, the difference of the two potency estimates is displayed for 

each test chemical that was identified as active in both instances for a respective approach 

(n = 7 – 10 per approach). The potency range is in units of log10(μM). (D) Differences in 

potency estimates of test chemicals across the nine approaches. For each test chemical that 

was active across all nine approaches (n = 229), the median potency was estimated. Then, 

for each approach (rows), the difference of each chemical potency to the median potency 

was calculated. (E) Potency estimates for all test chemicals (n = 475 for approaches fit 

with tcplfit2, and n = 478 for all others) and all approaches. Abbreviation: PAC: phenotype 

altering concentration; ssGSEA: single sample gene set enrichment analysis.
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Fig. 5: Comparison of Bioactivity Profiles Across Feature- and Category-Based Approaches.
(A) Potency (x-axis) vs effect size (y-axis) for both feature-level approaches (BMDExpress 

and tcplfit2). For each reference chemical and feature, the median BMC and the median 

absolute top of the curve was calculated from the 12 replicates. Features are only displayed 

if they had a valid BMC in the majority of replicates (i.e. ≥ 7). (B) BMC accumulation plots 

for all category-based approaches. For each reference chemical and category, the median 

BMC was calculated from the 12 replicates. Categories that had a valid BMC in the majority 

of replicates (i.e. ≥ 7) were ranked according to their potencies. Only the 15 most potent 

categories are displayed. In both (A) and (B), features and categories, respectively, were 

coded with respect to shape/fluorescent channel (color), feature type (letter) or cellular 

compartment (shape).
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