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Abstract

To understand the environmental and anthropogenic drivers of stream nitrogen (N) concentrations 

across the conterminous US, we combined summer low flow data from 4997 streams with 

watershed information across three survey periods (2000-2014) of the US EPA’s National Rivers 

and Streams Assessment. Watershed N inputs explained 51% of the variation in log transformed 

stream total N (TN) concentrations. Both N source and input rates influenced stream NO3/TN 

ratios and N concentrations. Streams dominated by oxidized N forms (NO3/TN ratio > 0.50) were 

more strongly responsive to N input rate compared to streams dominated by other N forms. NO3 

proportional contribution increased with N inputs, supporting N saturation enhanced NO3 export 

to aquatic ecosystems. By combining information about N inputs with climatic and landscape 

factors, random forest models of stream N concentrations explained 70%, 58%, and 60% of the 

spatial variation in stream concentrations of TN, dissolved inorganic N, and total organic N, 

respectively. The strength and direction of relationships between watershed drivers and stream N 

concentrations and forms varied by N input intensity. Model results for high N input watersheds 

indicated potential contributions from contaminated groundwater to high stream N concentrations, 

but also the mitigating role of wetlands.
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Introduction

Human demand for food, fiber, and energy has reshaped the global nitrogen (N) cycle, 

leading to an approximate five-fold increase in anthropogenic production of reactive 

N during the last century, causing a cascade of consequences1–3. Excess N input 

to the landscape can contaminate drinking water supplies4,5, stimulate the production 

of greenhouse gas and stratospheric ozone depleting nitrous oxide6,7 and accelerate 

eutrophication8–10.

Understanding the controls on nutrient concentrations is important for managing aquatic 

ecosystems17–20. States often develop criteria for nutrient concentrations to help mitigate 

and manage the negative outcomes caused by excess nutrients in streams18,21. Summer N 

concentrations are particularly important to track in light of recent evidence that N plays 

a role in cyanobacterial blooms and toxin formation22–24 and the documented increase in 

harmful algal blooms25. Despite the importance of nutrient concentration for management, 

much of the focus of previous work has been on understanding the major driver of river 

loads for watersheds across the US26. To complement the historic efforts predicting N loads, 

our work focuses on the biologically important summer N concentrations of rivers and 

streams across the US.

Compilation of spatial datasets of nutrient inputs to watersheds has proven instrumental in 

modeling stream and river loads26–29. Several recent studies examined temporal trends in 

stream and river N concentrations30–32, but they did not make direct connections between 

concentrations and N input rates. Other efforts have focused on a limited set of intensively 

monitored sites, mainly large streams and rivers, that may not adequately characterize 

the widespread variability of watershed responses to nutrient inputs26,33. More studies are 
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needed to connect variation in concentrations to changes in N inventories at large scales. 

Newly assembled nutrient input inventories 34,35 allow for more direct connections between 

the variations in N inputs and aquatic N concentrations. Coupled analysis of nutrient inputs 

and stream N concentrations across many watersheds can aid in assessing water quality 

issues in rivers and streams at regional or national scales.

In this work, we studied nearly 5000 US watersheds capturing the wide variability in 

stream N concentrations and the associated watershed characteristics across the country. 

National nutrient input inventories34 (NNI) and watershed landscape and climate variables 

were paired with stream N concentration data from EPA’s National Rivers and Stream 

Assessment (NRSA) to 1) understand whether and to what extent changes in N inputs are 

reflected in stream concentrations of total N (TN) and N species in the conterminous US 

(CONUS); 2) understand the relationships between various landscape and climate drivers 

and stream nutrient levels; and 3) identify the context dependency of these relationships in 

response to intensifying amounts of N inputs.

Materials and Methods

National Rivers and Streams Assessment (NRSA)

Water chemistry data (concentrations of TN, NO3, NH4, and total organic N) originated 

from the EPA NRSA surveys that have been conducted across the CONUS since 2000 

(Figure S1). The first survey cycle was conducted in 2000-200436 (Survey 1, n = 1170). 

Subsequent survey cycles in 2008-2009 (Survey 2, n = 1877) and 2013-2014 (Survey 3, n = 

2046).

Across the three surveys, almost all samples were collected during the May-October index 

period with the goal of indexing summer baseflow conditions. Less than 1% of samples 

were sampled outside the index period. We present data on NO3 (NO3 plus NO2), NH4, 

and TN determined by persulfate digest. We also calculate total organic N (TON) as TN 

minus NO3-N and NH4-N. Further information on field and laboratory protocols can be 

found in Supporting Information (SI). Roughly 10% of the sites were sampled a second 

time within the summer index period within each survey year to assess temporal variability 

relative to spatial variability. Bellmore et al.38 showed that 80-90% of the variation in 

NRSA N samples was associated with spatial variation rather than within year variation. 

In this study, we only used data from the first site visit in our analyses. We combined the 

data from all three survey cycles into one sample population and conducted analyses of 

the combined data, to allow focus on the drivers of spatial patterns in N concentrations. 

Sites were spatially grouped into three ecoregions39 for our analyses (Figure S1): Western 

Mountains (also referred to as the West in the study), Plains and Lowlands (also referred to 

as the Midwest or plains), and Eastern Highlands (also referred to as the East).

We calculated ratios of different N species to TN across sites to explore the spatial 

distribution and factors influencing watershed N retention and stream chemistry. We 

categorized NRSA sites based on stream NO3/TN ratio: the ‘oxidized’ stream N group 

with NO3/TN ratio > 0.50, and the ‘reduced’ stream N group with NO3/TN ratio < 0.50. We 

also separated watersheds into three groups based on N input levels: low input watersheds (n 
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= 2219) with N input rate <15 kg N ha−1; medium input watersheds (n = 1565) with N input 

rate ranges between 15 and 50 kg N ha−1; and high input watersheds (n = 1213) with N input 

rate > 50 kg N ha−1.

Watershed and Climate variables

To model NRSA stream TN concentrations, we used a suite of landscape, climate, and 

nutrient input data as independent covariates. The landscape data for each NRSA site came 

from the EPA StreamCat dataset, which contains a wide variety of watershed metrics that are 

derived from coverages that characterize both natural and anthropogenic landscape features 

(see SI and Table S1)40. From StreamCat, we selected a set of watershed features that we 

hypothesized would influence stream TN concentrations based on our understanding of such 

factors and previous research38, such as land use present in the watershed of each NRSA site 

(see SI for more details and Table S1 for other variables).

In addition to StreamCat data, we also summarized annual and monthly mean climate 

variables from PRISM and NASA Earth Observatory data for each watershed from the 

corresponding year and month when each site was sampled (Table S1). These data included 

annual and monthly means of precipitation, snow cover, numbers of fires, land surface 

temperature, and vegetation cover within the watershed. More details on data sources and 

methods can be found in the SI.

National Nutrient Input Inventory (NNI)

The NNI (downscaled from Sabo et al.34) compiles data for many nitrogen sources for the 

entire CONUS including agricultural and residential fertilizer, crop biological N fixation, 

land applied manure, human waste, and deposition. We connected each NRSA survey 

with its closest year of record; Survey 1—NNI 2002; Survey 2—NNI 2007; and Survey 

3—NNI 2012. Input NNI rasters were summarized to the NRSA watershed scale using 

zonal statistical procedures in GIS software (see details in the SI). Total watershed N inputs 

were calculated by summing agricultural N fertilizer, N-fixing crop cultivation, livestock N 

waste, urban N fertilizer, human N waste, and total N deposition inputs. Watersheds were 

categorized based on the proportionally largest N sources described above. These categories 

were then used in subsequent analyses as shown in the next section.

Spatial and statistical comparisons

We mapped NRSA sample sites by their largest N source to explore spatial patterns of N 

inputs and sources. In addition, we used linear regression to initially test the relationships 

between N inputs and stream N concentration. To further investigate regional variations in 

both N inputs and stream N concentrations, we calculated means and standard errors of 

response variables (N inputs and stream N concentrations and ratios) at both regional and 

national levels.

ANOVA and t-test were used to examine the response of stream TN concentration to N input 

rate and its dependence on stream N type (‘oxidized’ where NO3/TN > 0.5 vs ‘reduced’) 

and input level, respectively. We also applied ANOVA to compare stream NO3/TN ratios for 

different N input sources and levels to further understand how stream dominant N speciation 
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changed with land use and input intensity. These tests were also carried out to examine 

regional differences in N species.

Random forest models

We used random forest41 modeling to explore relationships between stream N and watershed 

features, climate, and N inventories by combining data from the three surveys. Random 

forest models are robust to violations of the assumptions made by parametric statistical 

approaches including multicollinearity among predictors41. However, to improve model 

interpretation, we minimized collinearity of predictors by pre-selecting a subset of variables 

before modeling (see details and code in SI). The final set of 21 predictor variables 

included 15 variables from StreamCat, PRISM and the Earth Observatory Network, and 

6 N input rate variables of six sources from the N inventories (Table S1). With these data, 

we developed a series of random forest models to explain stream TN and different N species. 

We combined NO3 and NH4 as dissolved inorganic nitrogen (DIN) in our models to avoid 

potential data and modeling issues caused by too many low values (< detection limit) of 

NH4 concentration. There were 4997 data points used in our final analyses after removing 

erroneous outliers that had TN input rate > 1000 kg N ha−1 and/or negative TON values.

The first set of models contained data from the full set of sample sites to explain 

concentrations of stream TN, DIN, and TON. To examine how the importance and behavior 

of explanatory variables varied among N input levels, sites were separated into three groups 

in subsequent N models based on the three N input levels we defined above42. Although 

not required by random forest, stream concentration and N inventories data were natural log 

transformed to improve interpretations when plotting modeled relationships43. We added a 

‘1’ to the inventory variables so that zero values could be transformed. The dataset for each 

model was randomly divided into training (75% of total available data) and testing (25%) 

datasets to evaluate model performance.

All data analyses were conducted using R programming language44 (version 3.6.2) and the 

associated packages (dplyr_0.8.4; randomForest_4.6-14; caret_6.0-86 ).

Results

Connecting the N inventory to stream N

Sources and rates of N inputs were strongly related to stream N concentrations across the 

CONUS (Figure 1 & S2). Watersheds where agricultural inputs (farm fertilizer, manure, 

and crop N fixation) were the major N source, had higher total watershed N input rates 

and stream TN concentrations. Sites with atmospheric N deposition as the largest watershed 

N source were associated with lower N input rates and stream TN concentrations. At the 

national scale, stream TN concentrations were strongly correlated with N input (Figure 1a; 

r2 = 0.51, p<=0.001).

Nitrogen source also affected stream N forms. We separated the watersheds into three types 

based on largest N source: agricultural, deposition and human. On average, sites dominated 

by agricultural N inputs had significantly higher N concentrations and NO3/TN ratios than 

sites where deposition was the largest N source (ANOVA, p < 0.0001), but the latter had 
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higher proportional TON contributions than agricultural and human types of watersheds 

(ANOVA, p < 0.0001). Watersheds with human waste and urban fertilizer as the largest N 

source, categorized as the ‘human’ group, only accounted for about 3.6% of total sampled 

sites. These sites on average had the highest NO3/TN ratio and the lowest TON/TN among 

three land use types (ANOVA, p < 0.0001). Within each watershed group where either 

agricultural inputs or atmospheric deposition was the largest N source, stream NO3/TN 

ratio increased significantly with increasing input level (Figure 2a & Table 1a). Within the 

‘human’ group, NO3/TN ratio changes were either not significant or not computable due to 

small number of sites (Table 1a). Combining all input groups, the mean NO3/TN ratios in 

the low N input, medium N input, and high N input groups were respectively 0.24, 0.37, 

and 0.51, and mean TON/TN ratios in these watershed groups were 0.71, 0.59, and 0.45, 

respectively.

The dominant N forms in streams interacted with input rates. Streams where NO3 was the 

largest N form, (the ‘oxidized’ type), exhibited a stronger and steeper relationship with N 

inputs as compared to the ‘reduced’ type of streams (Figure 2b). The difference in regression 

slopes of the two types of watersheds (equal to 0.27) was statistically significant (p < 

0.0001). We further examined such difference in slopes at three input levels, and determined 

that the contrast between ‘oxidized’ and ‘reduced’ slopes were minimum and insignificant 

among low N input watersheds, but grew greater and significant as input level increased 

(Figure S3).

The three ecoregions (see regions map in Figure S1) varied in N input and stream N 

chemistry (Table 1b). Western Mountains region, where a large portion of watersheds 

had deposition as the largest N source, also had the lowest N input rates on average, 

stream N concentrations, and NO3/TN ratios compared to the other two regions (p < 

0.0001). In contrast, watersheds in the Plains and Lowlands region had the highest mean 

inputs and stream N concentrations, the latter was enhanced by both high stream NO3 

and TON concentrations. Streams in Eastern Highlands had the highest regional NO3/TN 

ratios compared to the other two regions. The ‘reduced’ type of watersheds had about 

equal numbers with the ‘oxidized’ type in the sampled streams in the East, but were more 

prevalent in the western and plains regions (Table 1b), with streams in the plains showing 

the highest mean TON and NH4 concentrations especially in its ‘reduced’ type. At the 

regional level, most ‘oxidized’ type of sites had significantly greater mean N input rate 

(ANOVA, p < 0.0001 except in the Western Mountains) and stream TN concentration 

(ANOVA, all p < 0.01) than those of the ‘reduced’ type of sites within the same region. 

(Table 1b).

Random forest models of stream N concentrations

The models that included all sample sites explained 70%, 58%, and 60% of the variation 

in stream TN, DIN, and TON concentrations, respectively (Figure 3a–3c). Cross validations 

using the withheld testing dataset yielded r2 values of 0.90, 0.86, and 0.88, respectively, 

for TN, DIN, and TON concentrations. The most important predictors varied by N form, 

indicating that drivers affected cycling of N species in different ways. Agricultural land use 

and input rates were among the most important variables for all three models. Proportional 
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baseflow contribution and the annual mean Normalized Vegetation Difference Index (NDVI) 

– a standard remotely sensed index of plant greenness and health and generally positive 

correlated with net primary productivity — were also important across models. Human 

waste and atmospheric deposition input rates were key to predicting DIN concentrations, 

while wetland coverage and annual mean precipitation were more critical for the TON 

model. Annual mean temperature was only important in predicting TON. Agricultural input 

rates ranked higher than land use percentages in their importance in predicting TN and DIN 

concentrations.

Subsequent random forest models and partial dependance plots conducted on data subsetted 

by input level further revealed how different factors influenced stream N species under each 

N input level (Figure S4–S6). The lowest input category primarily represented watersheds 

where deposition was the largest source. The highest input category represented a large 

proportion of sites where fertilizer was the largest source, and the intermediate category had 

a mixture of largest source types.

For low N input watersheds, vegetation index and baseflow contribution were important 

predictors and exhibited negative relationships with TON and DIN concentrations (Figure 

S4). Other than agriculture related variables, wetland coverage also had a positive 

relationship with stream TON concentration, which was its second most important predictor. 

N deposition rate and monthly mean precipitation exhibited positive relationships with DIN 

concentration. Monthly mean areal fire counts (per 1000 km2 per day) were positively 

associated with TON, DIN, and TN concentrations when count was > 1. Variable importance 

and correlations with TN concentration mostly followed those in the TON sub-model 

(Figure 3d & S4), as a result of TON being a more important contributor to stream N 

in low N input watersheds.

For watersheds with intermediate N input level, predictors associated with direct human 

activities became important in DIN and TN sub-models, such as urban land use (%), 

NPDES site densities, and human waste N input rate (Figure S5). However, human waste 

input rate showed a negative relationship with TON concentration but a positive one 

with DIN concentration. Baseflow also played an opposing role in affecting TON and 

DIN concentrations. It appeared to dilute stream TON but increased DIN, leading to a 

non-monotonic relationship with TN concentration. Annual mean of vegetation greenness 

and precipitation were negatively associated with TON and TN concentrations, but their 

impact on DIN was varying. Monthly mean precipitation was positively associated with 

TON concentration but negatively with TN concentration.

For high input watersheds, one of the most important predictors of DIN and TN 

concentrations was baseflow contribution, which was positively associated with DIN and 

TN concentrations (Figure 3e & S6). In contrast, baseflow contribution had a negative 

relationship with TON concentration. Similarly, wetlands also affected N forms in different 

ways: increasing wetland coverage was associated with decreasing stream DIN and TN 

concentrations but increasing TON concentration (Figure 3e & S6). Predictors related to 

human activities were also crucial in the high N input sub-models. Crop N fixation rate was 

the most important predictor for TN concentration probably due to its positive association 
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with agricultural practices, rather than because it was the ubiquitously most important source 

of high N inputs in these watersheds. Monthly mean fire numbers had a positive relationship 

with TON but a negative relationship with DIN concentration.

Environmental Implications

N inputs establish spatial patterns of stream N concentrations

Watershed N inputs alone explained approximately half of the spatial variation in stream 

TN concentrations, like a previous finding of 47%38. Spatially explicit models45 of seasonal 

nutrient concentrations across the US also uncovered spatial patterns similar to our findings, 

but these models did not include nutrient inputs, and yielded correlation coefficients ranging 

between 0.61 and 0.78, thus explained 37-61% of the variation in TN concentrations. 

Our model results based on all sample sites explained 58-70% of the variation in stream 

N concentrations, affirming that model predictive power may be improved by including 

watershed-specific and time-specific nutrient inventory variables.

Recent studies26,46 demonstrated that temporal variations in hydrological nutrient export 

were largely controlled by hydrological factors, but the spatial patterns were better predicted 

by nutrient inputs. Our results support the finding that inputs drive the spatial patterns. 

Spatial variations and relationships between N inputs and stream concentrations are thought 

to be somewhat stable over time47, which in part could be related to time lags and nutrient 

legacies48,49, and relatively static land cover and inputs over the recent decade31. The long-

term imprint of high N inputs, largely from agricultural sources, has proven challenging to 

erase over time despite many years of efforts to reduce the release of N.

Impact of N inputs on stream N speciation and watershed retention

The speciation or forms of stream N varied with N input level. Stream TN was dominated 

by reduced N, especially TON in areas with low N inputs. This was probably due to wetland 

contributions of organic N in these watersheds. But NO3/TN ratio increased significantly 

with enhanced N inputs (Table 1a & Figure 2a). The elevated level and proportional 

contribution of in-stream NO3 as N inputs increase supports N saturation theory, where 

organic N dominates in less disturbed watersheds, but stream NO3 export increases with 

added inputs as terrestrial and aquatic ecosystems lose their ability to retain added N50–54.

Our work provides new insights about the factors leading to watershed N saturation 

and changing stream N forms. The stronger and steeper relationship between stream TN 

concentration and N input rate in NO3-dominated streams (Figure 2b & S3) suggests 

that NO3-dominated streams respond more strongly to further N inputs and become more 

saturated at a faster rate than the ‘reduced’ group. Therefore, increasing nutrient inputs not 

only affects immediate aquatic nutrient level and speciation, but can also alter long-term 

nutrient cycling by limiting N retention capacity in some watersheds and exacerbating 

nutrient loss and aquatic eutrophication.
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Impact of climate and landscape drivers

While spatial variation of stream N concentrations corresponds closely to patterns of 

N inputs and sources26, there remains substantial scatter around this relationship38,55,56. 

Many factors can affect watershed nutrient dynamics and stream nitrogen concentrations, 

including hydrology, soils, and geology46,57–59. Random forest modeling validated that a 

complex variety of climate and physical watershed features can interact to drive instream N 

concentrations across the CONUS.

The relationship between hydrology and nutrient concentration can help interpret the 

interaction between the role of transport (precipitation) and supply (nutrient source)60. In 

low N input watersheds, stream DIN concentration increased with both monthly mean 

precipitation and deposition input rate, demonstrating that wet deposition was an important 

source of DIN in these systems. On the other hand, in watersheds where monthly mean 

precipitation was > 100 mm, stream TON decreased with increasing monthly mean 

precipitation, indicating dilution of the organic N source by precipitation and/or the 

importance of baseflow input to the summer stream flow (Figure S4).

Separating the influence of summer mean precipitation from deposition and total N inputs is 

confounding since all three increase from west to east. This spatial gradient could be driving 

the apparent negative association between stream TN and monthly mean precipitation in 

the medium N input group: watersheds in the Plains and Lowlands region on average 

had lower monthly mean precipitation but higher N input rate compared to the eastern 

watersheds. For the high N input group, the majority (> 65%) of sites were located in 

the Plains and Lowlands region, and concentrations of TON, DIN and TN all increased 

with monthly mean precipitation, suggesting these systems were transport limited rather 

than (N) supply limited60. Positive relations between hydrology and stream N concentration 

are typical for agricultural watersheds, which may result from increased soil leaching and 

surface runoff during periods of high rainfall and associated elevated flows from agricultural 

tile drainage59.

Wildfires can have large impacts on water quality and the aquatic ecosystem by altering 

stream nutrient species and concentrations61–63. The positive relationship between monthly 

mean fire counts and N concentrations (when > 1 fire within 1000km2 per day) suggested 

elevated post-fire N transport to streams, either via transport of N from the soil and 

forest floor or via increased ash and atmospheric deposition64. The impact of wildfires on 

reorganizing watershed N cycling is a complex process. For example, severe wildfires could 

change forms of organic N by converting it to the more soluble form or volatilize N61,65. 

How fast forest systems can recover from fires also affects stream N concentrations62,63,66. 

More careful separation of the drivers is required to conduct a more definitive analysis on 

wildfire impact.

Two critical landscape factors also interacted with N inputs to shape stream TN: wetland 

cover and the ratio of baseflow to total flow (i.e., the baseflow index)67. By dividing and 

modeling N concentrations at three levels of N inputs, we revealed that the context of N 

input can influence these relationships.
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Wetlands play important but varying roles—Wetlands can behave as a potential 

source of dissolved organic N68,69. In the previous examination of the NRSA 2008-2009 

survey period, TON was positively correlated with the proportion of wetland in the 

watershed, and our findings reinforce this finding38. The net effect on TN concentrations 

depends on wetland conditions70,71.

Covarying spatial gradients across the CONUS in wetland distribution and N input 

contributed to the positive relationship between wetland coverage and stream TN 

concentration in low input watersheds. Watersheds in the plains, especially the coastal 

plains and upper Midwest regions, had the highest wetland coverages and the greatest input 

rates. In general, watersheds in the Western Mountains had the lowest wetland coverage 

and N input level. Smith et al.72 also identified this spatial gradient in natural background 

stream TN concentration across the CONUS. More analyses are needed to separate the 

impact of nutrient gradients confounding with gradients in land uses. However, in the 

Eastern Highlands region, especially the Appalachians, stream TN concentration in low 

input watersheds had a positive relationship with wetland coverage, whereas N input rates 

decreased with increasing wetland coverage, indicating the importance of wetland to stream 

nutrient level (Figure S7).

The negative association of wetland cover with stream DIN and TN concentration in high 

N input watersheds (Figure 3e) supports previous work on the strong N removal potential 

of wetlands if they are present and hydrologically connected73–75. Wetlands were also an 

important source of TON in high N input sites (Figure S6). Increasing wetland coverage 

was accompanied by decreasing agricultural land coverage in many regions, hence often 

coincided with lower watershed N input rate. But wetlands can serve as a sink of stream TN 

through denitrification even though wetland N retention rate varies by region and site76. We 

found that some NRSA watersheds with the highest N input rate (>100 kg N ha−1 yr−1) and 

high wetland percentages (> 10%) had TN concentration < 2 mg N L−1 or even < 1 mg N 

L−1, indicating the effectiveness of wetland N retention and potential conservation efforts in 

these areas. For those watersheds, the location of wetlands in flow paths and in relation to 

the N input source regulate their ability to serve as removal barriers to excess nitrogen74.

Proportion of baseflow: An indicator of legacy groundwater contamination in 
high N input areas?—The impact of baseflow contribution77 on stream N concentrations 

also diverged at different input levels (Figure 3d–e). The negative relationship between 

baseflow and stream N concentrations in low N input watersheds may indicate dilution by 

subsurface contributions, especially for stream TON. Denitrification along subsurface flow 

paths could further reduce DIN concentration in streams with high baseflow contribution78. 

In contrast, we found a positive relationship between baseflow contribution and stream DIN 

in high N input watersheds, suggesting that potential baseflow inputs of NO3-contaminated 

groundwater contributed to stream N in these watersheds. We also found a negative 

relationship between baseflow contribution and TON concentration in these high N input 

watersheds, indicating that baseflow might also serve as a dilution of TON, likely as a result 

of mineralization of TON along the flow path and/or low efficiency of subsurface transport 

of dissolved organic matter controlled by sorption processes79–82. NO3/TN ratios were > 

0.95 at some high TN concentration sites (>10 mg N L−1), confirming the subsurface source 
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of N. Watersheds with long agricultural histories and high nutrient input can experience 

nutrient legacies, which potentially accumulate in soil and groundwater over decades of 

excess fertilizer application, acting as a long-term source that slowly releases N into surface 

waters and can hinder nutrient reduction efforts48,83. Our findings support the hypothesis 

that groundwater sources critical to summer low flows can be contaminated with excess N in 

high N input areas, where streams are more vulnerable to legacy N contamination84.

Model implications

By careful quantification of N inputs combined with the random forest approach to tease 

out relationships by N input level, we were able to identify context-dependent connections. 

Critical variables may have diverging impacts on stream chemistry depending on climate, 

hydrology, and long-term land use history, and can lead to either improving or degrading 

water quality.

The long-term trajectory of N inputs is important to consider – decades of high N inputs 

in some areas may lead to a very complex N input-output relationship. Where groundwater 

is contaminated with NO3, and baseflow is an important component supplying streamflow, 

thus N export may be driven by NO3 inputs from baseflow that reflect legacy N inputs 

and preferential leaching of mobile NO3. This interaction between legacy N inputs and 

groundwater contamination provides continued challenges to reducing stream N loads and 

concentrations83,85–87. By coupling information about baseflow proportion, current and 

legacy N inputs, and stream N concentrations and fluxes, it may be possible to identify these 

streams with shorter and longer timeframes for recovery and include this information in 

environmental decision making.

Limited resources are available for watersheds restoration and assessment. Spatially explicit 

datasets on watershed characteristics and water quality models can provide critical support 

to help evaluate the success of N reduction efforts. A recent study, by applying spatial 

records on nutrient inventory, identified key areas to boost nutrient use efficiency and to 

achieve biggest gains to water quality restoration88. Our high-performing random forest 

models can be applied to efficiently make predictions of stream N concentrations in all 

NHD streams in the CONUS, and interpolate water quality information for areas lacking in 

data. This next-step application of our models will provide managers with valuable insights 

to prioritize monitoring efforts (such as groundwater/baseflow monitoring), identify key 

spots for effective actions in the absence of additional in-situ measurements, and design N 

reduction strategies within or across different regions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Synopsis

Watershed nitrogen inputs drive stream nitrogen concentrations and forms, while climate, 

hydrology, and land cover are also influential
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Figure 1. 
a. Stream TN concentrations and largest N sources across the CONUS; colors and shapes 

represent different largest landscape TN sources. b. Stream TN concentrations as a function 

of N inputs; colors and shapes represent different largest landscape TN sources. Lines are 

the three regions’ boundaries (Figure S1).
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Figure 2. 
a. Comparing stream NO3 contribution at three input levels and in watersheds with different 

larges N sources. Red points indicate group means. ****: p <= 0.0001; ns: not significant. 

b. Stream TN concentrations as a function of N inputs; colors represent the main N species 

(‘oxidized’-black vs ‘reduced’-grey).
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Figure 3. 
Variable importance plots of random forest model results for a) stream TN concentration; 

b) DIN concentration, and c) TON concentration. Each model combined data from 

three surveys (n = 4997). Only the top 10 variables were plotted. Bar colors represent 

different predictor categories: Green—StreamCat landscape and land use (%) variables; 

Blue—climatic variables; Orange— N input rates of six sources. The partial dependence 

relationships of stream TN concentration vs. wetland coverage and baseflow contribution in 

low input watersheds (d) exhibited opposite trends with those in high input watersheds (e).
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