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Abstract

Tomographic image reconstruction is generally an ill-posed linear inverse problem. Such ill-posed 

inverse problems are typically regularized using prior knowledge of the sought-after object 

property. Recently, deep neural networks have been actively investigated for regularizing image 

reconstruction problems by learning a prior for the object properties from training images. 

However, an analysis of the prior information learned by these deep networks and their ability 

to generalize to data that may lie outside the training distribution is still being explored. An 

inaccurate prior might lead to false structures being hallucinated in the reconstructed image and 

that is a cause for serious concern in medical imaging. In this work, we propose to illustrate the 

effect of the prior imposed by a reconstruction method by decomposing the image estimate into 

generalized measurement and null components. The concept of a hallucination map is introduced 

for the general purpose of understanding the effect of the prior in regularized reconstruction 

methods. Numerical studies are conducted corresponding to a stylized tomographic imaging 

modality. The behavior of different reconstruction methods under the proposed formalism is 

discussed with the help of the numerical studies.
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I. Introduction

IN TOMOGRAPHIC imaging, a reconstruction method is employed to estimate the sought-

after object from a collection of measurements obtained from an imaging system [1]. Since 

the sought-after object is usually described as a continuous function and the measurements 

are discrete, image reconstruction methods usually seek a finite-dimensional estimate of the 

object. Moreover, it is often desirable to reconstruct images from as few measurements as 

possible, without compromising on the diagnostic quality of the image. For example, data-

acquisition times in magnetic resonance imaging (MRI) can be reduced by undersampling 

the k-space [2]. In such situations the acquired measurements are said to be sparse, i.e., 

they are generally insufficient to uniquely specify a finite-dimensional approximation of the 

sought-after object, even in the absence of measurement noise or errors related to modeling 

the imaging system. This naturally implies that the inverse problem is ill-posed and some 

form of regularization needs to be performed with priors imposed on the sought-after object. 

Various methods have been proposed for regularization that can effectively mitigate the 

impact of measurement-incompleteness on image reconstruction. Among these methods, 

regularization using sparsity-promoting penalties has been employed widely [3]–[6].

Recently, there has been considerable focus on developing regularization strategies that seek 

to learn the prior distribution that describes the object to-be-imaged from existing data, 

instead of using hand-crafted priors such as sparsity-promoting penalties. Nascent deep 

learning-based methods have inspired a new wave of reconstruction methods that implicitly 

or explicitly learn the prior distribution from a set of training images in order to regularize 

the reconstruction problem [7]–[9]. However, such learning-based methods have also raised 

concerns regarding their robustness [10]–[13] and their ability to generalize to measurements 

that may lie outside the distribution of the training data [12], [14], [15]. This is particularly 

relevant in the field of medical imaging where novel abnormalities can be present in the 

observed measurement data that may not be encountered even with a large training dataset. 

Moreover, simulation studies have shown that deep learning-based reconstruction methods 

are inherently unstable, i.e. small perturbations in the measurement may produce large 

differences in the reconstructed image [11], [12].

The potential lack of generalization of deep learning-based reconstruction methods as well 

as their innate unstable nature may cause false structures to appear in the reconstructed 

image that are absent in the object being imaged. These false structures may arise due to the 

reconstruction method incorrectly estimating parts of the object that either did not contribute 

to the observed measurement data or cannot be recovered in a stable manner, a phenomenon 

that can be termed as hallucination. The presence of such false structures in reconstructed 

images can possibly lead to an incorrect medical diagnosis. Hence, there is an urgent need to 

investigate the nature and impact of false structures arising out of hallucinations from deep 

learning-based reconstruction methods for tomographic imaging.

The topic of image hallucinations has previously been studied within the context of image 

super-resolution [16]–[19]. In image super-resolution, the term hallucination generally refers 

to high-frequency features that are introduced into the high-resolution image but do not 

exist in the measured low-resolution image. Hallucinations can also be realized in more 
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general inverse problems such as image reconstruction. In such cases, the structure of the 

imaging operator null space is generally more complicated and the hallucinations may not 

be confined to high-frequency structures [20]. However, a formal definition of hallucinations 

within the context of such inverse problems has not been reported.

This study proposes a way to mathematically formalize the concept of hallucinations 

for general linear imaging systems that is consistent with both the mathematical notion 

of a hallucination in image super-resolution and the intuitive notion of hallucinations as 

“artifacts or incorrect features that occur due to the prior that cannot be produced from the 

measurements”. In addition, the notion of a task-informed or specific hallucination map is 

introduced. Through preliminary numerical studies, the behavior of different reconstruction 

methods under the proposed formalism is illustrated. It is shown that, in certain cases, 

traditional error maps are insufficient for visualizing and detecting specific hallucinations.

The remainder of this paper is organized as follows. In Section II, salient aspects of linear 

operator theory are reviewed, and the need for describing hallucinations based on the 

measurement and null space components is motivated. The concept of a hallucination map 

is introduced in Section III, along with a definition of specific hallucination maps. Sections 

IV and V describe the numerical studies performed to demonstrate the potential utility 

of proposed hallucination maps with a stylized tomographic imaging modality. Finally, a 

discussion and summary of the work is presented in Section VI.

II. Background

A. Imaging Models

A linear digital imaging system can be described as a continuous-to-discrete (CD) mapping 

[20], [21]:

g = Hf(r) + n, (1)

where f(r) ∈ L2 ℝd  is a function of continuous variables that represents the object 

being imaged, the vector g ∈ EM denotes the measured data samples and n ∈ EM is the 

measurement noise. The linear CD operator H:L2 ℝd EM describes the action of the 

imaging system. In practice, discrete-to-discrete (DD) imaging models are often employed 

as approximations to the true CD imaging model. In a DD model, an N-dimensional 

approximation of f (r) is utilized [20], [21]:

fa(r) = ∑
n = 1

N
[θ]nψn(r), (2)

where the subscript a stands for approximate, [θ]n is the n-th element of the coefficient 

vector θ ∈ EN and ψn(r) is the n-th expansion function. On substitution from Eq. (2) in Eq. 

(1), the DD imaging system can be expressed as
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g ≈ Hfa(r) + n = ∑
n = 1

N
[θ]nHψn(r) + n ≡ Hθ + n, (3)

where H:EN EM is the system matrix constructed using H and ψn(r) n = 1
N . Image 

reconstruction methods based on Eq. (3) seek to estimate θ from g, after which the 

approximate object function fa(r) can be determined by use of Eq. (2). A well-known 

expansion function is the pixel expansion function. For two-dimensional objects f (r) with r 
= (x, y), the pixel expansion function can be expressed as [21]:

ψn(r) = 1, if x − xn and y − yn ≤ γ
2

0, otherwise
(4)

where rn = (xn, yn) represents the coordinates of the n-th grid point of a uniform Cartesian 

lattice and γ denotes the spacing between the lattice points. When a pixel expansion 

function is employed, the corresponding coefficient vector θ directly provides a digital 

image representation of the continuous object function fa(r).

B. Generalized Measurement and Null Components

For the DD imaging model described by Eq. (3), the properties of H affect the ability to 

estimate θ uniquely and stably. In the absence of measurement noise, θ can be determined 

uniquely from measurements Hθ when H is injective or if θ is known to lie in a subset S of 

EN and the restriction H|S is injective. The ability to stably reconstruct an estimate of θ is 

also of fundamental importance. Stability is a way of quantifying how “close” two estimates 

θ1, θ2 of θ will be, if they are estimated from two “close” measurement vectors g1 and g2 

respectively. For instance, g1 and g2 may correspond to the same object but differ due to 

them having two different measurement noise realizations. A popular notion of stability is 

based on how the ℓ2-distance between θ1 and θ2 relates to that between g1 and g2 [22]:

‖θ1 − θ2‖2 ≤ α‖g1 − g2‖2, (5)

where α is a constant that is additionally required to be smaller than a tolerance value ϵ.

The ability to estimate θ stably can be analyzed through the lens of the singular value 

decomposition (SVD) of H [20]:

H = ∑
n = 1

R
μnvnun† . (6)

Here, un and vn are the singular vectors of H and (μn)1/2 are the singular values. The 

vector un† is the adjoint of un and the integer R > 0 denotes the rank of H, where H is not 

necessarily full-rank. The singular values (μn)1/2 are ordered such that μ1 ≥ μ2 ≥ ⋯ ≥ μR > 0.
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A pseudoinverse-based estimate of θ can be computed as θpinv ≡ H+g, where the linear 

operator H+ denotes the Moore-Penrose pseudoinverse of H that can be expressed as

H+ = ∑
n = 1

R 1
μn

unvn† . (7)

From Eq. (3), due to the linearity of H+, θpinv can be represented as

θpinv = H+g ≈ H+(Hθ + n) = H+Hθ + H+n . (8)

Due to the presence of the term H+n in Eq. (8), when the trailing singular values of H are 

small, α in Eq. (5) is large, leading to unstable estimates of θ. In this scenario, a truncated 

pseudoinverse can be defined as

HP
+ = ∑

n = 1

P 1
μn

unvn†, (9)

where the integer P ≤ R is chosen such that, for a given tolerance ϵ, HP
+g is a stable, linear 

estimate of θ according to Eq. (5) with μP > 1/ϵ2 ≥ μP+1. The truncated pseudoinverse can 

be used to form projection operators that project θ ∈ EN onto orthogonal subspaces – the 

‘generalized’ null and measurement spaces [23]. The generalized null space of H, denoted 

by NP(H), is spanned by the singular vectors un n = P + 1
N  that correspond to singular values 

satisfying (μn)1/2 ≤ 1/ϵ. The orthogonal complement of the generalized null space is the 

generalized measurement space NP
⊥(H).

Definition 1 (Generalized Measurement and Null Components:)—Let H and HP
+

denote the forward and truncated pseudoinverse operators, described in Equations (3) and 

(9) respectively. Let HP denote the truncated forward operator, defined as

HP = ∑
n = 1

P
μnvnun† . (10)

Note that HP
+ = HP

+. The coefficient vector θ can be uniquely decomposed as θ = θmeas + 

θnull, where θmeas ∈ NP
⊥(H) and θnull ∈ NP(H) are specified as

θmeas = Pmeasθ = HP
+Hθ = HP

+HPθ, (11)

and

θnull = Pnullθ = IN − HP
+H θ = IN − HP

+HP θ . (12)
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Here, the projection operators Pmeas and Pnull project θ to NP
⊥(H) and NP(H) [20], and IN is 

the identity operator in EN.

In special cases where the singular values (μn)1/2 and the tolerance ϵ are such that P = R, the 

generalized null space is spanned by the singular vectors un n = R + 1
N  with singular values 

(μn)1/2 = 0. In such cases, the generalized null space reduces to the true null space

NP(H) = N(H) ≡ θ ∈ EN ∣ Hθ = 0 , (13)

where 0 is the zero vector in EM. Correspondingly, the true measurement space is the 

orthogonal complement of the true null space. By definition, the true null space contains 

those object vectors that are mapped to the zero measurement data vector and hence are 

‘invisible’ to the imaging system.

Having obtained the generalized measurement and null components of θ, the approximate 

object function fa(r) can also be decomposed into generalized measurement and null 

components:

fa(r) = ∑
n = 1

N
θ nψn(r)

= ∑
n = 1

N
θmeas nψn(r) + ∑

n = 1

N
θnull nψn(r)

= fa, meas(r) + fa, null(r) .

(14)

Note that for all g1, g2 ∈ EM, ‖HP
+g1 − HP

+g2‖ ≤ 1/ μP
1/2 ‖g1 − g2‖, whereas for all 

σ ∈ NP(H), ‖σ‖ ≥ ‖Hσ‖/ μP + 1
1/2. Hence, for a given θ ∈ EN, θmeas is the component of 

θ that can be stably estimated via the truncated pseudoinverse from the measurement data. 

Contrarily, θnull cannot be stably estimated from the measurement data alone; additional 

information provided through priors and regularization is needed to estimate this component. 

These observations will be essential to the definitions of hallucinations that are provided 

later.

C. Regularization in Tomographic Image Reconstruction

As discussed above, in order to obtain a stable estimate of θ from incomplete and/or 

noisy measurements, imposition of prior knowledge about the object is generally needed. 

A flexible method of incorporating priors in the estimation of θ is through the Bayesian 

formalism, where θ, g and n are treated as instances of random variables with distributions 

pθ, pg and pn respectively [22]. It is assumed that pθ, i.e. the distribution over all objects is 

known, and is called the prior. By Bayes’ theorem, the posterior distribution pθ|g, given by

pθ ∣ g(θ ∣ g) = pg ∣ θ(g ∣ θ)pθ(θ)
pg(g) , (15)
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characterizes the probability density over all possible values of the object given the prior 

and the noise model. Estimates such as the maximum a posteriori (MAP) estimate argmaxθ 
pθ|g(θ|g) can then be obtained from the posterior.

Regularization via penalization is an alternative formalism to incorporate prior knowledge. 

Here, the image reconstruction task is formulated as an optimization problem such as [21]

θ = argmin 
θ

Cd(g, Hθ) + λCp(θ), (16)

where the data fidelity term Cd(g, Hθ) enforces the estimate θ  when acted upon by H to 

agree with the observed measurement data g and the penalty term Cp(θ) encourages the 

solution to be consistent with the assumed prior. The hyper-parameter λ controls the trade-

off between data fidelity and regularization. Often, the penalty term Cp(θ) is hand-crafted to 

encode priors such as the smoothness of natural images or sparsity of natural images in some 

transform domain [9]. The solution obtained through this formalism can be interpreted as the 

MAP estimate obtained from the Bayesian formalism in Eq. (15), with pθ (θ) = exp(−λCp 

(θ)) and pg|θ (g|θ) = exp(−Cd (g, Hθ)).

Regularization can also be interpreted as restricting the possible solutions to a subset 

Sμ ⊂ EN, with Sμ being a member of a family of subsets parameterized by μ. The 

reconstruction procedure can then be represented by a possibly nonlinear mapping 

ℛμ:EM Sμ, with the image estimate given by θ = ℛμ(g). Ideally, it is desirable that ℛμ
satisfies the stability criterion described in Eq. (5).

Recently, methods that implicitly learn a regularizer from existing data have been proposed. 

Methods based on dictionary learning and learning sparsifying transforms were some of the 

earliest applications of such data-driven regularization [24]–[27]. However, the most actively 

investigated data-driven regularization methods involve learning from training data by use of 

deep neural networks, popularly known as deep learning [7], [28]. Deep learning has been 

employed in different ways to explicitly or implicitly impose priors in image reconstruction 

problems. For example, within the context of an end-to-end learned reconstruction mapping, 

a prior is imposed that is implicitly specified by the distribution of training data and network 

topology. A comprehensive survey of the current state of deep learning-based methods in 

tomographic image reconstruction can be found in recent reviews, [9], [29], [30].

However, there have been growing concerns regarding the ability of data-driven and learning 

based reconstruction methods to generalize to measurements that lie outside the training 

distribution [10]–[12], [31]. Moreover, deep learning-based reconstruction methods have 

been shown to not be uniformly stable, in the sense that certain imperceptible perturbations 

in the measurements may lead to large fluctuations in the reconstructed estimate [11], [12]. 

Such phenomena may lead to false structures appearing in the reconstructed image that 

do not exist in the object being imaged, and cannot be recovered stably from the original 

measurement data.
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III. Definition of Hallucination Maps

When comparing or evaluating image reconstruction methods, it may be useful to visualize 

and quantify false structures that cannot be stably reconstructed from the measurements. 

Such structures have been colloquially referred to as being ‘hallucinated’ and are attributable 

to use of an imperfect reconstruction prior. Error maps that display the difference between 

the reconstructed image estimate and the true object are commonly employed to assess 

reconstruction errors. Artifacts revealed by error maps encompass a broad range of 

deviations that can appear in a reconstructed image with respect to its depiction of the 

object function being imaged. For example, incorrect modeling of the system matrix H or 

measurement noise can lead to artifacts. Consequently, as demonstrated in Fig. 1, it may not 

be possible to isolate and label the artifacts attributable to the reconstruction prior from the 

error map alone. A possible way to circumvent this is to compute separate error maps for the 

null and measurement components of the reconstructed image estimate. However, precise 

definitions for hallucinations in these sub-spaces have been lacking.

In order to visualize and quantify hallucinations in tomographic images, measurement and 

null space hallucination maps are formally defined below. The proposed definitions are 

general and can be applied to analyze hallucinations produced by any reconstruction method 

that seeks to invert a linear imaging model. The defined hallucination maps will permit 

isolation of image artifacts that cannot be stably reconstructed from the measurement data 

and are attributable to the implicit or explicit reconstruction prior.

A. Hallucination Map in the Generalized Measurement Space

Let θ  denote the estimate of the coefficient vector θ obtained from g by use of an 

image reconstruction method. It is desirable that the projection of θ  onto the generalized 

measurement space NP
⊥(H), i.e. θmeas, should be near the truncated pseudoinverse solution 

θtp ≡ HP
+g. This would ensure that θmeas is consistent with the estimate of θ that can be 

stably recovered from g. However, due to the imposed regularization in a reconstruction 

method, there may be discrepancies in θmeas with respect to the stable estimate θtp in the 

generalized measurement space NP
⊥(H). In order to quantify such differences, a hallucination 

map in the generalized measurement space is defined as follows.

Definition 2 (Generalized Measurement Space Hallucination Map): As previously 

defined, let θ  be an image estimate obtained by use of a reconstruction method and let θtp
be the truncated pseudoinverse solution. The hallucination map in the measurement space is 

defined as,

θmeas
HM ≡ θmeas − θ tp . (17)

It should be noted that the computation of the hallucination map in the generalized 

measurement space requires no knowledge of the true object and simply reveals errors in the 

measurement component of θ  with respect to the stably computed estimate θtp.
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For use in cases where pixel expansion functions are not employed, it is useful to translate 

the definition of hallucination maps to the subspace of the object space L2 ℝd  spanned by a 

generic basis ψn(r) i = 1
N . By use of Eq. (2), the estimate of fa(r) can be represented as

fa(r) = ∑
n = 1

N
[θ ]nψn(r) . (18)

The hallucination map fa, meas
HM (r) can be defined in the space L2 ℝd  as

fa, meas
HM (r) ≡ ∑

n = 1

N
θmeas

HM
n
ψn(r) . (19)

B. Hallucination Map in the Generalized Null Space

As reviewed in Section II-B, to estimate the generalized null vector θnull from g, 

reconstruction methods that impose appropriate priors are required. Hence, to accurately 

capture the effect of the prior on the reconstructed image, a definition of hallucinations must 

satisfy the following two desiderata:

1. The definition must involve the assessment of how accurate the estimate 

θnull = Pnullθ  is as compared to the true generalized null vector θnull.

2. Since no prior is used in obtaining θtp, the definition must ensure that θtp does 

not have any null space hallucinations.

With these in mind, a hallucination map θnull
HM

 in the generalized null space NP(H) is defined 

as follows.

Definition 3 (Generalized Null Space Hallucination Map): Consider a pixelwise 

indicator function 1:ℝN ℝN such that for any ϑ ∈ ℝN

[1(ϑ)]n =
1, if[ϑ]n ≠ 0
0, if[ϑ]n = 0. (20)

Then, the hallucination map θnull
HM ∈ EN can be defined as

θnull
HM ≡ 1 θnull ⊙ θnull − θnull , (21)

where ⊙ denotes the Hadamard product or element-wise multiplication. Note that the 

indicator function in the definition ensures that θtp does not possess any null space 

hallucinations, since no prior was imposed.

It is important to highlight that, for the computation of the hallucination map in the 

generalized null space, one must have full knowledge of the generalized null component 
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of the true object. This is in contrast to the hallucinations in the generalized measurement 

space, where the knowledge of the generalized measurement component of the true object is 

not required. This simply reflects that, according to the provided definitions, the generalized 

null space hallucination maps depict errors in the reconstructed null component of the 

object, while the generalized measurement space hallucination maps depict errors in the 

component of the object that can be stably reconstructed via a truncated pseudoinverse 

operator from the observed measurement data.

This difference in the two definitions is associated with the fact that θtp is close to HP
+Hθ if 

the measurement noise is small in the sense of Eq. (5), and/or the model error is negligible. 

Hence, the proposed definition of θmeas
HM

 is able to reveal the effect of the prior on the 

reconstructed generalized measurement space component, without requiring the true object. 

In this sense, there is no analog of a stably reconstructed component like θtp in the null 

space; hence invoking the true null component is necessary for defining θnull
HM

. Note that 

due to our definition, θmeas
HM

 may also be influenced by the different noise propagation 

characteristics of the methods employed to form θtp and θ  and therefore may not solely 

quantify errors associated with the prior.

It should also be noted that the errors introduced by the prior in the measurement space 

can be remedied by adopting a reconstruction method that penalizes measurement space 

hallucinations without any prior knowledge of the object, e.g., via a data consistency 

constraint [12] or null space shuttle procedure [23]. Accordingly, for such constrained 

image reconstruction methods, analyzing hallucinations in the null space is critical towards 

understanding the effect of the prior on the image estimate.

Similar to the hallucination map in the generalized measurement space, the hallucination 

map fa, null
HM (r) can be defined as

fa, null
HM (r) ≡ ∑

n = 1

N
θnull

HM
n
ψn(r) . (22)

According to the proposed definitions, the truncated pseudoinverse solution θtp has zero 

hallucination in both the generalized measurement space and null space. However, that does 

not necessarily imply that θtp is without artifacts, since θtp ignores θnull completely. The 

computation of θtp leads to the recovery of only θmeas that can be estimated stably. When 

other regularized reconstruction methods attempt to reduce artifacts by imposing priors 

to estimate θnull, a trade-off is made between the estimation of θmeas and θnull that can 

potentially lead to hallucinations in the generalized measurement space and null space.

C. Specific Hallucination Maps

The use of objective, or task-based, measures of image quality for evaluating imaging 

systems has been widely advocated [20]. However, the hallucination maps as defined in 
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Section III do not incorporate any task-specific information. In particular, θnull
HM

 may contain 

an abundance of structures or textures, some of which may not confound an observer 

on a specified diagnostic task. Hence, it may be useful to identify those structures or 

textures in the hallucination maps that are task-relevant. One possible way to accomplish 

this is to process the hallucination map via an image processing transformation T, such that 

potentially task-relevant features or textures are localized while others are suppressed [32], 

[33]. Formally, this can be described as:

θnull
SHM = Tθnull

HM, (23)

where the processed pixel map θnull
SHM

 that preserves task-specific information is referred to 

as a specific hallucination map. Note that the design of the transformation T is application-

dependent, as it should localize those structures or textures from the hallucination map that 

are relevant to a specified task. Moreover, the specification of the observer (which could 

be a human or computational procedure) who will perform the task should also influence 

the design of T, as the extent to which hallucinations impact observer performance will 

vary. While requiring significant effort to formulate, specific hallucination maps open up 

the possibility of comparing reconstruction methods based on their propensities for creating 

hallucinations that influence task-performance.

The complete procedure for computing measurement and null space hallucination maps, as 

well as the specific hallucination map, is presented in Algorithm 1.

IV. Numerical studies

Numerical studies were conducted to demonstrate the utility of the proposed hallucination 

maps. Although the focus of these preliminary studies is on null space hallucination maps, 

the presented analyses could readily be repeated by use of measurement space hallucination 

maps. Hallucination maps were employed to compare the behavior of data-driven and 

model-based image reconstruction methods under different conditions.

A. Stylized Imaging System

A stylized two-dimensional (2D) single-coil magnetic resonance (MR) imaging system 

was considered. It should be noted that the assumed imaging operator was not intended 

to accurately model a real-world MR imager. Instead, the purpose of the presented 

simulation studies is only to demonstrate the potential utility of hallucination maps. Hence 

physical factors such as coil sensitivity and bias field inhomogeneity were not considered. 

Fully-sampled k-space data were emulated by applying the 2D Fast Fourier Transform 

(FFT) on the digital objects described below. Independent and identically distributed (iid) 

Gaussian noise was added to the real and imaginary components of the complex-valued 

k-space data [34] in the training dataset for the U-Net as well as in the test data during 

evaluation with different reconstruction methods. Additionally, in the test dataset, zero-mean 

random uniform phase noise [35] was introduced into the k-space measurements to emulate 

modeling errors [20]. A uniform Cartesian undersampling mask with an undersampling 

factor of 3 was applied on the fully-sampled k-space data to obtain undersampled 
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measurements, as shown in Fig. S.1 in the Supplementary file. The k-space lines that 

were not sampled were subsequently zero-filled. The Moore-Penrose pseudoinverse H+ was 

applied by performing the inverse 2D Fast Fourier Transform (IFFT) on the zero-filled 

k-space data. Since the true pseudoinverse was considered without any truncation of singular 

values, the hallucination map in the generalized null space in our studies corresponds to the 

hallucination map in the true null space.

B. Reconstruction Methods

Both data-driven and non-data-driven image reconstruction methods were investigated. 

The data-driven method considered was a U-Net based method [36]–[38], which learns a 

mapping from an initial image estimate that contains artifacts due to undersampling to an 

accurate estimate of the true object. In our studies, the initial image estimate that was input 

to the U-Net was obtained by applying the pseudoinverse on the k-space data. Two different 

non-data-driven reconstruction methods were considered. The first method, which is known 

as penalized least-squares with total variation (PLS-TV) [6], involves solving a least-squares 

optimization problem with a total variation penalty [6]. The second method is known as deep 

image prior (DIP) [39], [40], where the reconstructed estimate is constrained to lie in the 

range of an untrained deep network [28] such that the estimate agrees with the observed 

measurements in a least-squares sense. These reconstruction methods are described in detail 

in Section S.II of the Supplementary file.

C. Training, Validation and Test Data

For the U-Net based reconstruction method, training was performed on 2D axial adult brain 

MRI images from the NYU fastMRI Initiative database [41]. These will be referred to as 

the in-distribution (IND) images. The training and validation datasets contained 2500 and 
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500 images, respectively. For testing, both IND and out-of-distribution (OOD) images were 

considered. The OOD images were obtained from a pediatric epilepsy resection MRI dataset 

[42]. Both the IND and OOD testing datasets contained 69 images. It should be noted that 

the OOD images differed from the IND images in several aspects, such as the nature of the 

objects (adult for IND and pediatric for OOD) as well as the use of different MR systems 

employed to obtain the true object images in each case. All images were of dimension 320 × 

320.

After creating the training, validation and test datasets, neural network training was 

performed with the IND training and validation datasets for the U-Net method. At test time, 

images were reconstructed from both IND and OOD test datasets using the U-Net, PLS-TV 

and DIP methods. Details regarding the implementation of these methods are presented in 

Section S.II of the Supplementary file.

D. Computation of Hallucination Maps

After images were reconstructed from the testing data, null space hallucination maps θnull
HM

were computed. The quantities θnull and θnull, as required by Eq. (21), were computed 

according to Eq. (12). Subsequently, specific null space hallucination maps θnull
SHM

 were 

also computed. In this preliminary study, these maps were designed for the purpose of 

localizing regions where coherent structures, as opposed to random errors, were present 

in θnull
HM

. Such structured hallucinations could be relevant to certain signal detection tasks. 

To accomplish this, the transformation T in Eq. (23) was implemented as follows. First, 

the region of support of each object was identified using Otsu’s method [43] and binary 

support masks were formed for each object. The support masks were applied on the θnull
HM

such that errors in the reconstructed image that lie outside the region of support could be 

ignored. Subsequently, histogram equalization was performed. A 2D Gaussian filter with 

kernel width of 7 was applied on the histogram-equalized map in order to obtain a smooth 

distribution of intensities across the hallucination map. The width of the Gaussian filter was 

chosen heuristically in this study. Finally, a binary threshold was applied where the cut-off 

value was set to the 95-th percentile of intensity values in the processed map, such that 

intensities below the threshold were set to zero and intensities above the threshold were 

set to 1. From the thresholded maps, connected components that had a size of less than 

100 pixels (≈ 0.1% of total number of pixels in each image) were eliminated to remove 

localized regions with negligible dimensions, resulting in the specific hallucination maps 

θnull
SHM

 for our studies. This procedure for computing the action of T was repeated for all 

θnull
HM

 computed from both the IND and OOD test datasets for each reconstruction method. It 

should be noted that this procedure serves only as a simplistic example of the computation 

of a specific hallucination map, and there is no suggestion that it is optimal in any sense.

Finally, conventional error maps were computed as the difference between the reconstructed 

estimate θ  and the true object θ. In order to demonstrate the potential utility of the specific 

hallucination maps over processed versions of conventional error maps, specific error maps 
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were formed by acting T on the error maps. The codes employed in our numerical studies 

are available at https://github.com/compimaging-sci/hallucinations-tomo-recon.

V. Results

The numerical results are organized as follows. First, an illustration of hallucination maps 

is provided for different reconstruction methods, in order to demonstrate their utility in 

highlighting false structures that may be introduced due to the imposed prior. Differences 

in the null space hallucination maps corresponding to the data-driven U-Net method when 

applied to IND and OOD data are examined. This is followed by a demonstration of the 

difference in the quantitative performance of the U-Net method on IND and OOD data. The 

performance of the U-Net is compared with the non-data driven methods in our studies – 

PLS-TV and DIP – in terms of metrics derived by use of null space hallucination maps.

A. Differences Between Error and Hallucination Maps

Reconstructed images and corresponding error maps and null space hallucination maps from 

an IND measurement are shown in Fig. 2. It can be observed that, for all the reconstruction 

methods, the error map and the null space hallucination map have different characteristics 

in some regions of the image. This is because the error map contains false structures due 

to hallucinations as well as all other factors, whereas the null space hallucination map only 

contains errors due to the imposed prior. These differences can also be observed from the 

computed specific error maps and specific null space hallucination maps. As expected, the 

U-Net method performs well, leading to mostly low intensity regions in the null space 

hallucination map. In one of the regions that is featured in the specific hallucination map 

for all the reconstruction methods, it can be seen that the U-Net has lower hallucinations 

since it is able to faithfully recover fine structures in the region. Such fine structures were 

oversmoothed in the reconstructed images that were obtained by use of the PLS-TV and 

DIP methods, leading to higher hallucinations. On the other hand, all the reconstructed 

images also contain a distinct false structure that is revealed in the specific error map but 

not the specific hallucination map. This is an example of a false structure that can exist in 

reconstructed images, but may not necessarily be classified as a hallucination.

To further demonstrate the different characteristics of error maps and null space 

hallucination maps for this IND study, scatter plots of the centroids of the detected regions 

in each type of map corresponding to the ensemble of IND reconstructed images from all 

three reconstruction methods are shown in Fig. 3 (top row). From these scatter plots, it can 

be observed that there is a high amount of variance in the locations of the detected regions 

in the specific error maps as compared to the detected regions in the specific hallucination 

maps. The latter typically appear in similar regions across the ensemble of reconstructed 

images for all the methods. Furthermore, the concentrations of centroids for the detected 

regions in both types of maps have some degree of non-overlap. These observations reflect 

the fact that, due to additional sources of error such as measurement noise and model error 

that are also typically random in nature, the regions in the reconstructed images that are 

revealed by the error map can sometimes be different from those revealed by the null space 

hallucination map that considers error only due to an inaccurate prior.
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As the distribution shifts to OOD, as shown in Fig. 4, the null space hallucination map 

for the U-Net method appears comparable to the hallucination maps obtained by use of 

PLS-TV and DIP. False structures that can be identified as hallucinations appear in the 

image reconstructed by the U-Net method. The higher error for the U-Net method is a 

result of the change of distribution and the method’s inability to generalize well to data 

that are significantly out of distribution with respect to the training data. The change of 

distribution results in significant inaccuracies in the null component of the reconstructed 

estimate produced by the U-Net. Under such circumstances, it can be useful to identify and 

localize hallucinations due to inaccuracies in the imposed data-driven regularization through 

the null space hallucinations.

As shown in Fig. 4 and consistent with the IND results discussed above, the localized 

regions detected in the specific error map and specific hallucination map for the OOD cases 

are generally different. Scatter plots of the centroids of the detected regions in the specific 

error maps and specific hallucination maps confirm this and are displayed in Fig. 3 (bottom 

row). For all the reconstruction methods, the error map centroids again have a higher 

variance and are located away from clusters of hallucination map centroids in some regions. 

In other words, under such circumstances, one cannot rely on only the error maps without 

considering the corresponding hallucination maps in order to estimate where hallucinations 

due to the imposed prior are likely to be localized in a reconstructed image.

Although hallucination maps can reveal false structures, the impact of the false structures 

on specific applications requires further analysis. For example, a false structure may be 

classified as a false positive structure or a false negative structure [44], [45]. A false positive 

structure is one which is absent in the true object but present in the reconstructed image, 

whereas a false negative structure denotes the opposite. While an important topic, the 

classification of hallucinations is beyond the scope of this paper.

B. Investigation of Structured Hallucinations

Additional studies were conducted to validate that the specific hallucination maps actually 

revealed regions in the image that contain significant errors. To accomplish this, two 

empirical probability distribution functions (PDFs) were estimated that describe the average 

SSIM values computed over two non-overlapping regions in the reconstructed images 

for the OOD case. One region corresponded to the support of the specific hallucination 

maps described above and the second region was spanned by all other pixels in the 

image. The two empirical PDFs are shown in Fig. 5(a) and reveal that the mode of the 

distribution corresponding to the SSIM averaged over the structured hallucination regions 

is demonstrably lower than that describing the average SSIM values over the background 

regions.

The empirical PDFs that described the SSIM value averaged over the structured 

hallucination regions were also compared for each of the three reconstruction methods. 

As shown in Fig. 5(b), for the IND case, the images reconstructed by use of the U-Net 

had significantly higher SSIM values, on average, in the structured hallucination regions 

as compared to both the PLS-TV and DIP methods. This can be attributed to network 

training with a sufficiently large amount of IND data. However, for the OOD case in Fig. 
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5(c), because null space hallucinations increased for the U-Net method, the corresponding 

reconstructed images had lower SSIM values on average as compared with DIP in the 

support of the null space hallucination maps. The medians of ensemble SSIM values in 

these support regions for all the reconstruction methods with IND and OOD data are shown 

in Table I. It should be noted that, for both the IND and OOD cases, the DIP method 

was implemented with the same network architecture as the U-Net based method. Thus, 

when there is a shift in the testing data distribution, some data-driven methods such as the 

U-Net method may not provide any significant improvement in the estimate of the null 

component compared to model-based methods that do not employ training data. However, 

the data-driven methods involve the additional risk of hallucinating false structures. These 

observations gained through hallucination maps provide insight into the impact of the 

data-driven nature of the prior imposed by pre-trained neural networks.

C. Bias Maps and Hallucinations

A bias map, defined as

b ≡ Eθ − θ, (24)

determines the expected deviation of an image estimate from the true object, and as 

such, may include contributions from an incorrect prior, as well as those from incorrect 

measurement and noise models. Hence, the bias map may be correlated with the 

hallucination maps, but may display significant differences from it based on the average 

behavior of the inaccuracies in the measurement and noise models. For example, Fig. 

6 shows the bias map computed using a dataset of images estimated from simulated 

undersampled MRI measurements with fixed phase noise and iid Gaussian additive noise, 

along with the error map and the null space hallucination map for an IND and an OOD 

image. The corresponding true objects are shown in Figs. 2 and 1(b) respectively. Fig. 6 

shows that the bias map retains clusters of artifacts from the error map that are due to the 

phase noise. Hence, although the bias maps are correlated with both the hallucination maps 

and the error map, each provides a different kind of information.

VI. Summary and Conclusion

While regularization via sparsity-promoting penalties in an optimization-based 

reconstruction framework is commonly employed, emerging learning-based methods that 

employ deep neural networks have shown the potential to improve reconstructed image 

quality further by learning priors from existing data. However, an analysis of the prior 

information learned by deep networks and their ability to generalize to data that may 

lie outside the training distribution is still being explored. Additionally, there are open 

questions and concerns about the stability of such networks when applied for image 

reconstruction. While it has been understood that use of an inaccurate prior might lead 

to false structures, or hallucinations, being introduced in the reconstructed image, formal 

definitions for hallucinations within the context of tomographic image reconstruction have 

not been reported.
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In this work, by use of concepts from linear operator theory, formal definitions for 

hallucination maps in linear tomographic imaging problems are introduced. These provide 

the opportunity to isolate and visualize image hallucinations that are contained within 

the measurement or null spaces of a linear imaging operator. The measurement space 

hallucination map permits the analysis of errors in the measurement space component 

of a reconstructed object estimate with respect to the component of the object that can 

be stably computed from a given set of measurement data. Alternatively, the null space 

hallucination map permits analysis of errors in the null space component of a reconstructed 

object estimate with respect to the true object null space component. These errors are caused 

solely by the reconstruction prior. Both maps can be employed to systematically investigate 

the impact of different priors utilized in image reconstruction methods. Finally, the notion 

of a specific hallucination map was also introduced, which can be formulated to reveal 

hallucinations that are relevant to a specified image-based inference.

Numerical studies were performed with simulated undersampled measurements from a 

stylized single-coil MRI system. Both data-driven and non-data-driven methods were 

investigated to demonstrate the utility of the proposed hallucination maps. It was observed 

that null space hallucination maps can be particularly useful as compared to traditional 

error maps when assessing the effect of data-driven regularization strategies with out-of-

distribution data. Furthermore, it was shown that structured hallucinations with data-driven 

methods that are caused due to a shift in the data distribution may ultimately lead to 

significant artifacts in the reconstructed image.

The computation of the projection operations as described in Eq. (11) and Eq. (12) via 

the SVD may be infeasible for large-scale problems. Wilson and Barrett [46] proposed an 

iterative method to compute θmeas and θnull without explicit computation of the SVD of H. 

Alternatively, randomized SVD [47] is a relatively computationally efficient algorithm that 

can be employed to estimate these quantities. Kuo et al. [48] recently proposed a method 

to learn null space projection operations that can significantly reduce the computational 

burden. It may also be expected that the importance of analyzing hallucinations in image 

reconstruction can further stimulate the development of efficient methods for implementing 

projection operators. The development of such computationally efficient methods for large-

scale problems remains an active area of research.

It should be noted that the proposed definition of hallucination maps is general and can 

be applied to any linear imaging system and reconstruction method, provided that the 

computation of the projection operators Pmeas and Pnull is feasible. Depending on the 

sampling pattern involved in the data acquisition process, different system matrices H will 

have different null space characteristics. This, in turn, may lead to different properties in the 

corresponding hallucination maps that would allow a comparison of reconstruction methods 

under a variety of data acquisition strategies.

The proposed framework is most useful in situations where the generalized null component 

of the true object is significant and hence strong priors need to be incorporated 

in the reconstruction method via regularization. If the generalized null component is 

relatively small compared to the generalized measurement component, the need for 
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strong regularization during reconstruction is diminished. This, in turn, would imply 

that hallucinations are likely to be minimal or non-existent due to the imposed weak 

regularization and hence computing hallucination maps may not be necessary. In such 

situations, computing only the error map may be sufficient to assess the reconstruction 

method.

There remain important topics for future investigation. Beyond the framework presented, 

it will be important to derive objective figures-of-merit (FOMs) from ensembles of 

hallucination maps. Furthermore, the probability of occurrence of hallucinations can be 

potentially quantified from ensembles of hallucination maps. While understanding the 

interplay between hallucinations and image reconstruction priors is important in preliminary 

studies, ultimately, image reconstruction methods should be objectively evaluated with 

consideration of all physical and statistical factors.
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Fig. 1. 
From left-to-right are examples of a true object, a reconstructed estimate of the object 

produced by use of a U-Net from tomographic measurements, the total error map, the 

error in the null component of the reconstructed object, and the error in the measurement 

component of the reconstructed object. The two rows correspond to different objects. In each 

case, the true object is outside the respective training data distribution of the U-Net and 

phase noise was added to the measurements prior to image reconstruction.
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Fig. 2. 
Example of a true object and reconstructed images along with error maps and hallucination 

maps (null space) for IND data with different reconstruction methods – U-Net (top), PLS-

TV (middle) and DIP (bottom). Expanded regions are shown to the right of the reconstructed 

images. The specific error map (blue) and specific null space hallucinations map (red) are 

overlaid on the reconstructed images for each method. The image estimated by the U-Net 

method has visibly lower hallucinations in the null space compared to PLS-TV and DIP. The 

region within the red bounding box is one of the locations that contains hallucinations for 

all the reconstruction methods. In this region, the U-Net method shows mild hallucinations 

compared to PLS-TV and DIP. Fine structures in this region appear to be oversmoothed in 

the image estimates obtained by use of PLS-TV and DIP. A false structure is also shown 

(within the blue bounding box region) that appears for all the reconstruction methods due 

to the phase noise and not due to the imposed prior, and hence cannot be classified as a 

hallucination.
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Fig. 3. 
Scatter plots for centroids of localized regions in specific error maps and specific null space 

hallucination maps with different reconstruction methods for IND (top) and OOD (bottom) 

data. Note that for each type of data distribution and for all the reconstruction methods, the 

centroids of the regions detected from the error map have a higher variance compared to the 

hallucination map as well as some degree of non-overlap.
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Fig. 4. 
Example of true object and reconstructed images along with error map and hallucination 

maps (null space) for OOD data with different reconstruction methods – U-Net (top), PLS-

TV (middle) and DIP (bottom). Expanded regions are shown to the right of the reconstructed 

images. The specific error map (blue) and specific null space hallucinations map (red) 

are overlaid on the reconstructed images for each method. The image estimated by the 

U-Net method has some distinct false structures (region within red bounding box) that do 

not exist in the reconstructed images obtained by using PLS-TV and DIP. This region is 

also highlighted in the specific null space hallucination map for the U-Net method which 

suggests that the false structure is a hallucination.
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Fig. 5. 

(a) Empirical PDF of SSIM values in the structured hallucination regions (support of θnull
SHM

) 

and the regions spanned by the remaining pixels in the support of the image (background), 

respectively, for the U-Net method with OOD data. (b) and (c) Empirical PDFs of SSIM 

values in the structured hallucination regions for all three reconstruction methods with IND 

and OOD data, respectively.
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Fig. 6. 
An error map, a null space hallucination map and a bias map for IND and OOD images 

estimated by use of the U-Net method. The corresponding true objects are shown in 

Figs. 2 and 1(b) respectively. The bias map was computed over a dataset of 100 images 

estimated from a single set of simulated measurements with fixed phase noise and different 

realizations of the iid Gaussian noise. The bias map contains contributions from both the 

model error, as well as inaccuracies in the prior.
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TABLE I

Median of Ensemble SSIM Values in Support Region of Specific Null Space Hallucination Maps

Data distribution U-Net PLS-TV DIP

IND 0.84 0.71 0.73

OOD 0.75 0.73 0.76
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