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As artificial intelligence (AI) algorithms increasingly affect 
decision-making in society1, researchers have raised con-
cerns about algorithms creating or amplifying biases2–11. In 

this work we define biases as differences in performance against, 
or in favor of, a subpopulation for a predictive task (for example, 
different performance on disease diagnosis in Black compared with 
white patients). Although AI algorithms in specific circumstances 
can potentially reduce bias12, direct application of AI has also been 
shown to systematize biases in a range of settings2–7,13,14. This ten-
sion is particularly pressing in healthcare, where AI systems could 
improve patient health4 but can also exhibit biases2–7. Motivated by 
the global radiologist shortage15 as well as by demonstrations that AI 
algorithms can match specialist performance particularly in medi-
cal imaging16, AI-based diagnostic tools present a clear incentive for 
real-world deployment.

Although much work has been done in algorithmic bias13 and 
bias in health2–11, the topic of AI-driven underdiagnosis has been 
relatively unexplored. Crucially, underdiagnosis, defined as falsely 
claiming that the patient is healthy, leads to no clinical treatment 
when a patient needs it most, and could be harmful in radiology spe-
cifically17,18. Given that automatic screening tools are actively being 
developed in research19–23 and have been shown to match specialist 
performance16, underdiagnosis in AI-based diagnostic algorithms 
can be a crucial concern if used in the clinical pipeline for patient 
triage. Triage is an important diagnostic first step in which patients 
who are falsely diagnosed as healthy are given lower priority for a 
clinician visit. As a result, the patient will not receive much-needed 
attention in a timely manner. Underdiagnosis is potentially worse 
than misdiagnosis, because in the latter case, the patient still 
receives clinical care, and the clinician can use other symptoms and 
data sources to clarify the mistake. Initial results have demonstrated 

that AI can reduce underdiagnosis in general24,25 but these studies 
do not deeply consider the existing clinical biases in underdiagnosis 
against under-served subpopulations. For example, Black patients 
tend to be more underdiagnosed in chronic obstructive pulmonary 
disease than non-Hispanic white patients9.

Here, we perform a systematic study of underdiagnosis bias in 
the AI-based chest X-ray (CXR) prediction models, designed to 
predict diagnostic labels from X-ray images, in three large public 
radiology datasets, MIMIC-CXR (CXR)26, CheXpert (CXP)27 and 
ChestX-ray14 (US National Institutes of Health (NIH))28, as well 
as a multi-source dataset combining all three on shared diseases. 
We focus our underdiagnosis study on individual and intersectional 
subgroups spanning race, socioeconomic status (as assessed via the 
proxy of insurance type), sex and age. The choice of these subgroups 
is motivated by the clear history, in both traditional medicine and 
AI algorithms, of bias for subgroups on these axes6,8,10,11. An illustra-
tion of our model pipeline is presented in Fig. 1.

Results
A standard practice among the AI-based medical image classifi-
ers is to train a model and report the model performance on the 
overall population regardless of the patient membership to sub-
populations16,19–23. Motivated by known differences in disease mani-
festation in patients by sex6, age29, race/ethnicity8 and the effect of 
insurance type in quality of received care11, we report results for all 
of these factors. We use insurance type as an imperfect proxy of 
socioeconomic status because, for example, patients with Medicaid 
insurance are often in the low income bracket. Given that binarized 
predictions are often required for clinical decision-making at the 
individual level, we define and quantify the underdiagnosis rate 
based on the binarized model predictions. To assess model decision  
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biases in underdiagnosed patients, we compare underdiagnosis 
rates across subpopulations in the overall population. We define the 
underdiagnosis rate as the false-positive rate (FPR) of the binarized 
model prediction for the ‘no finding’ label, indicating that no dis-
ease is diagnosed, at the levels of subgroup (for example, female) 
and intersectional identities (for example, Black and female).

We measure the underdiagnosis rate in distinct chest X-ray 
diagnosis models trained in four dataset settings: MIMIC-CXR 
(CXR, 371,858 images from 65,079 patients)26, CheXpert (CXP, 
223,648 images from 64,740 patients)27, ChestX-ray14 (NIH, 
112,120 images from 30,805 patients)28, and a multi-source com-
bination of all three (ALL, 707,626 images from 129,819 patients) 
on shared labels. The CXR, CXP and NIH datasets have relatively 
equal rates of male and female patients, and most patients are 
between 40 and 80 years old. Note that the CXP and NIH datasets 
report only patient sex and age, whereas the CXR dataset addition-
ally reports patient race/ethnicity and insurance type for a large 
subset of images. In the CXR dataset we note that both race/eth-
nicity and insurance type are highly skewed. We use the term ‘sex’ 
to match the reported terminology in the underlying data. Gender 
presentation plays a large role in societal biases but these data are 
not routinely collected26–28. More detailed summary statistics for 
the datasets are listed in Table 1. The full data collection descrip-
tion per dataset is available in the Methods.

Underdiagnosis in under-served patient subpopulations. We find 
that the underdiagnosis rate for all datasets differs in all considered 
subpopulations. In Fig. 2a we show the subgroup-specific underdi-
agnosis for CXR dataset on race/ethnicity, sex, age and insurance 
type. We observed that female patients, patients under 20 years 
old, Black patients, Hispanic patients and patients with Medicaid 
insurance receive higher rates of algorithmic underdiagnosis than 
other groups. In other words, these groups are at a higher risk of 
being falsely flagged as healthy, and of receiving no clinical treat-
ment. We summarize a similar analysis of the other datasets (CXP, 
NIH and ALL) in Table 2 and Extended Data Figs 1–3. Additional 
data for image counts on the test set per subgroup are given in 
Supplementary Tables 1–3.

We find that the patterns of bias are consistent across the CXR 
(Fig. 2a), ALL (Extended Data Fig. 1a) and CXP (Extended Data 
Fig. 2a) datasets—that is, female and younger patients have the larg-
est underdiagnosis rates. However, in the NIH dataset (Extended 
Data Fig. 3a), male patients and patients aged >80 years have the 
largest underdiagnosis rate. This may be partially due to the small 
subset sizes, given that the test set for patients aged >80 years has 

only 37 samples with the no finding label with which to estimate 
FPR. The NIH dataset is also different from the CXP and CXR data-
sets in several key ways: it contains frontal images only, rather than 
frontal and lateral images; it does not use the CheXpert labelers27 to 
create diagnostic labels; and it has only seven of the shared disease 
labels instead of 14, meaning that the no finding label denotes the 
absence of different diseases. Moreover, the NIH dataset originates 
from a hospital that “...does not routinely provide standard diag-
nostic and treatment services. Admission is selective: patients are 
chosen by Institute physicians solely because they have an illness 
being studied by those Institutes.” (from https://clinicalcenter.nih. 
gov/about/welcome/faq.html). Thus, the NIH dataset may have less 
diverse samples than the CXP and CXR datasets, which originate 
from clinical hospitals (see Methods for more detail).

Underdiagnosis in intersectional groups. We investigate intersec-
tional groups, here defined as patients who belong to two subpopu-
lations, for example, Black female patients. Similar to prior work 
in facial detection14, we find that intersectional subgroups (Fig. 
2b) often have compounded biases in algorithmic underdiagnosis. 
For instance, in the CXR dataset, Hispanic female patients have a 
higher underdiagnosis rate—that is, a no finding FPR—than white 
female patients (Fig. 2b(i)). Also, the intersectional subgroups of 
patients who are aged 0–20 years and female, aged 0–20 years and 
Black, and aged 0–20 years with Medicaid insurance have the larg-
est underdiagnosis rates (Fig. 2b(ii)). The underdiagnosis rate for 
the intersection of Black patients with another subgroup of age, sex 
and insurance type (Fig. 2b(iii)) and that for patients with Medicaid 
insurance with another subgroup of sex, age and race/ethnicity 
(Fig. 2b(iv)) is also shown in Fig. 2b. We observe that patients who 
belong to two under-served subgroups have a larger underdiagnosis 
rate. In other words, not all female patients are misdiagnosed at the 
same rate (for example, Hispanic female patients are misdiagnosed 
more than white female patients) (Fig. 2b(i)). The intersectional 
underdiagnosis rate for the ALL, CXP and NIH datasets is shown in 
Extended Data Figs. 1c, 2c and 3c, respectively, where the intersec-
tional identities are often underdiagnosed even more heavily than 
the group in aggregate. The most underdiagnosed age groups for 
female patients are listed under the Female–Age attribute in Table 2.

Underdiagnosis or overall noise. The false-negative rate (FNR) for 
no finding (Fig. 2c) and FPR (Fig. 2a) show an inverse relationship 
across different under-served subgroups in the CXR dataset. Such 
an inverse relationship also exists for intersectional subgroups (Fig. 
2d). This finding is consistent across all datasets (compare both the 
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Fig. 1 | The model pipeline. a, We examine chest radiographs across several datasets with diverse populations. b, A deep learning model is then trained 
from these data (training across all patients simultaneously) to predict the presence of the no finding label, which indicates that the algorithm did not 
detect disease for the image. c, The underdiagnosis rate (that is, the false-positive rate (FP) of the no finding label) of this model is then compared in 
different subpopulations (including sex, race/ethnicity, age and insurance type) to examine the algorithm’s underdiagnosis rate. FN, false negative; TN, 
true negative; TP, true positive. Symbol colors indicate different races of male and female patients.
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overall and intersectional FPR and FNR in Extended Data Figs. 
1–3), except for the age >80 years and 0–20 years subgroups in the 
NIH dataset, which may again be due to the small number of sam-
ples in the >80 years subgroups or to potential dataset selection bias 
(Methods). The fact that FPR and FNR show an inverse relation-
ship, rather than an increase for both FPR and FNR, suggests that 
under-served subpopulations are being aggressively flagged errone-
ously as healthy by the algorithm, without a corresponding increase 
of instances of erroneous diagnoses of disease by the algorithm. This 
is consistent only with selective algorithmic underdiagnosis rather 
than simple, undirected errors that could arise from a higher rate of 
noise alone. Using Fig. 2c,d and Extended Data Figs. 1b,d,2b,d,3b,d 
we summarize subpopulations with the lowest overdiagnosis rates 
(lowest FNR for no finding) across the datasets in Table 2.

Likelihood of underdiagnosis in specific diseases. The distribu-
tion of disease prevalence in the underdiagnosed patient population 
is significantly different to that in the general patient population. 
We compare the disease prevalence in the unhealthy population and 
the underdiagnosed population for the intersections of race/ethnic-
ity and sex in Supplementary Table 4. For example, underdiagnosed 
populations are proportionally more likely to have a positive label 
for lung lesion and less likely to have a positive label for pleural effu-
sion. This suggests that the task of disease detection is more difficult 
for some diseases than others.

Fairness definitions in a healthcare context. Our study considers 
underdiagnosis as the main fairness concern, due to its potentially 
harmful impact on patients, such as causing a delay in receiving 
treatment (for example, assigning lower priority to the under-
diagnosed population in a triage use case). We acknowledge that 
depending on the use case of the algorithm there are many other 
fairness definitions one may consider. One such definition is pre-
dictive parity, which implies equal positive predictive value, or, 
equivalently, false discovery rate (FDR) between the groups30.  

In Supplementary Table 6 we report the additional data for FDR of 
a no disease diagnosis (that is, the likelihood that the patient is ill 
given that the classifier predicts no finding). We observe that, simi-
lar to FPR and FNR, significant gaps exist across many protected 
attributes. In particular, these disparities tend to follow a different 
pattern of that seen for FPR, favoring, for example, female people 
over male people and younger people over older people. The under-
lying cause is the difference in prevalence between groups—that is, 
given that there are far fewer sick people in the 0–20 year age group 
(Supplementary Tables 1–3), we will have relatively fewer false posi-
tives and true negatives, which, keeping all else constant, will cause 
a decrease in the FDR.

Discussion
We have shown consistent underdiagnosis in three large, public 
datasets in the chest X-ray domain. The algorithms trained on all 
settings exhibit systematic underdiagnosis biases in under-served 
subpopulations, such as female patients, Black patients, Hispanic 
patients, younger patients and patients of lower socioeconomic sta-
tus (with Medicaid insurance). We found that these effects persist 
for intersectional subgroups (for example, Black female patients) 
but are not consistently worse in the smallest intersectional groups. 
The specific subpopulations most affected vary in the NIH dataset, 
specifically male patients and patients aged >80 years, which should 
be explored further. Beyond these immediate take-aways, there are 
several topics for further discussion and investigation.

First, we highlight that automatic labeling from notes should be 
carefully audited. We note that in chest X-ray datasets, there has been 
a general shift in machine learning from manual image labeling to 
automatic labeling, with natural language processing (NLP)-based 
methods used to generate the labels in radiology reports. This has 
resulted in large annotated chest X-ray datasets26–28 that are widely 
used for training deep learning models and for providing AI solu-
tions16,19–23,31. Although automatic labelers have been validated 
for labeling quality26–28 and adapted as reliable ground truth, the  

Table 1 | Summary statistics for all datasets

Subgroup Attribute CXR CXP NIH ALL

No. of images 371,858 223,648 112,120 707,626

Sex (%) Male 52.17 59.36 56.49 55.13

Female 47.83 40.64 43.51 44.87

Age (%) 0–20 years 2.20 0.87 6.09 2.40

20–40 years 19.51 13.18 25.96 18.53

40–60 years 37.20 31.00 43.83 36.29

60–80 years 34.12 38.94 23.11 33.90

>80 years 6.96 16.01 1.01 8.88

Race/Ethnicity (%) Asian 3.24 – – –

Black 18.59 – – –

Hispanic 6.41 – – –

Native 0.29 – – –

White 67.64 – – –

Other 3.83 – – –

Insurance (%) Medicare 46.07 – – –

Medicaid 8.98 – – –

Other 44.95 – – –

AUC ± 95% CI 0.834 ± 0.001 0.805 ± 0.001 0.835 ± 0.002 0.859 ± 0.001

The datasets studied are MIMIC-CXR (CXR)26, CheXpert (CXP)27, ChestX-ray14 (NIH)28 and a multi-source dataset (ALL) composed of aggregated data from the CXR, CXP and NIH datasets using the 
shared labels (disease labels and the no finding label) in all three datasets. The deep learning model is trained on each of the CXR, CXP, NIH and ALL datasets. The model’s AUCs are then estimated for 
each of the labels in the CXR (14 labels), CXP (14 labels), NIH (15 labels) and ALL (8 labels) datasets, and are averaged over all of the labels for each dataset. The reported AUC ± 95% confidence interval 
(CI) for each dataset is then the average of the AUCs for the five trained models with different random seeds using the same train–validation–test split.
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Fig. 2 | Analysis of underdiagnosis across subgroups of sex, age, race/ethnicity and insurance type in the MIMIC-CXR (CXR) dataset. a, The underdiagnosis 
rate, as measured by the no finding FPR, in the indicated patient subpopulations. b, Intersectional underdiagnosis rates for female patients (b(i)), patients 
aged 0–20 years (b(ii)), Black patients (b(iii)), and patients with Medicaid (b(iv)). c,d, The overdiagnosis rate, as measured by the no finding FNR in the same 
patient subpopulations as in a and b. The results are averaged over five trained models with different random seeds on the same train–validation–test splits. 
95% confidence intervals are shown. Subgroups with too few members to be studied reliably (≤15) are labeled in gray text and the results for these subgroups 
are omitted. Data for the Medicare subgroup are also omitted, given that data for this subgroup are highly confounded by patient age.
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inconsistent and may vary based on individual factors such as age, 
socioeconomic level or the level of acculturation to society39. This 
heterogeneity in self-identification may result in lower model per-
formance for patients of groups in which self-identification criteria 
are more complex. Finally, this solution is ideal only in cases in 
which the per-group ROC curves have intersections. In cases in 
which the ROC curves do not intersect, or we desire an FNR–FPR 
combination not corresponding to an intersection between curves, 
achieving equal FNR and FPR would require randomization— 
that is, systematic worsening of the model performance in par-
ticular subgroups37. It is unclear whether worsening the overall 
model performance for one subgroup to achieve equality is ethi-
cally desirable. This is especially relevant in the medical context, 
in which we do not expect that all subgroups would have similar 
areas under the ROC curve (AUCs), given that the difficulty of the 
problem often varies with the protected group, for example, with 
age. We do note that equal FPR alone is easily achievable through 
threshold adjustments if the underdiagnosis is the main fairness 
concern. However, such a solution could still induce large overdi-
agnosis (FNR) disparities, in addition to requiring knowledge of 
the patients’ group membership.

Fourth, despite the fact that we do not have the same disease 
prevalence between subgroups based on real data26–28, and our choice 
of fairness metrics does not directly involve prevalence between 
subgroups, we stress that equal underdiagnosis rates between sub-
groups of age, sex and race/ethnicity are still desired. If a classifier 
deployed in a clinical pipeline mistakenly underdiagnosed a certain 
subgroup (for example, Black patients) more than others due to the 
lower prevalence of the disease, this still leads to disadvantage for 
members of that group and could lead to serious ethical concerns8.

Fifth, we note that fairness definitions must be chosen carefully 
in a healthcare context, given that many definitions are not con-
currently satisfiable as shown through fairness impossibility theo-
rems38,40. For example, given that the base rates of the two groups 
are different, it is impossible for them to have equal FNR, FPR and 
FDR, unless the classifier predicts all samples perfectly40.

Last, regulatory and policy decision-makers must consider 
underdiagnosis. Our work demonstrates the importance of detailed 
evaluation of medical algorithms, even those that are built with 
seemingly robust model pipelines. Given that medical algorithms 
are increasingly widespread, practitioners should assess key met-
rics such as differences in underdiagnosis rates and other health 
disparities during the model development process and again after 
deployment. Furthermore, the clinical application and historical 
context of each medical algorithm and the potential biases in data 
gathering should guide the type and frequency of introspection. 
Moving AI-based decision-making models from paper to practice 
without considering the biases that we have shown, as well as the 
ability of AI-based models to detect attributes such as the race of 
the patients from X-rays41, may harm under-served patients. We 
therefore suggest fairness checks, for underdiagnosis to be merged 
into the regulatory approval of medical decision-making algo-
rithms before deployment, particularly in the case of triage, where 
underdiagnosis delays access to care. Moreover, developers, practi-
tioners and the clinical staff need to take into account biases such 
as the underdiagnosis of under-served populations in the AI-based 
medical decision-making algorithms and its harmful effect17,18 on 
patients. Additionally, given that different fairness metrics are not 
concurrently satisfiable, a thorough use-based study to analyze the 
advantages and disadvantages of different fairness metrics is essen-
tial. Such studies guide policymakers to standardize the fairness 
checks of AI-based diagnostic algorithms prior to deployment. 
Finally, it is important to acknowledge that a rapidly changing 
research landscape can yield iterative modifications to regulations 
as we continue to better understand how algorithmic bias can per-
meate medical algorithms.

performance of these labelers in different subpopulations has not 
been explored. Given that NLP-based techniques have shown biases 
against under-represented subpopulations in both medical32 and 
non-medical33 domains, the automatic labeler could potentially be 
a large source of bias.

Second, bias amplification is likely to be generalizable. The 
present results should be considered in the context of known 
biases in clinical care itself, in which under-served subpopula-
tions are often underdiagnosed by doctors without a simultane-
ous increase in privileged group overdiagnosis9. Our prediction 
labels are extracted from clinical records, and are therefore not 
an unbiased ground truth; in other words, our labels may already 
contain the same bias that our model is then additionally dem-
onstrating. This is a form of bias amplification, when a model’s 
predicted outputs amplify a known source of error in the process of 
data generation34 or data distribution35. This is an especially dan-
gerous outcome for machine learning models in healthcare, given 
that existing biases in health practice risk being magnified, rather 
than ameliorated, by algorithmic decisions based on large (707,626 
images), multi-source datasets.

We note that some of our observed differences in underdiagnosis 
have been established in other areas in clinical care, such as under-
diagnosis of female patients9,10, Black patients5,8,9 and patients with a 
low socioeconomic status36. Therefore, we would expect our results 
to hold regardless of the algorithm used, given that the disparities 
probably originate from the data. Moreover, missing data, small 
sample size and the consistently suboptimal care delivered to some 
subpopulations have been sources of bias amplification concerns36. 
Patients with low socioeconomic status may have fewer interactions 
with the healthcare system, or they may be more likely to visit a 
teaching or research clinic where clinical reasoning or treatment 
plans may be different36. Our results may not be replicable in health 
settings in which the dynamics of sex or racial identity are different, 
or in which the health insurance system operates differently.

Third, although there are possible post-hoc technical solu-
tions for imposing fairness, it comes with deep flaws. One simple 
post-processing method for achieving equal FNR and FPR across 
subgroups is the selection of different thresholds for different 
groups corresponding to the intersection of their receiver operat-
ing characteristic (ROC) curves37,38. However, there are many flaws 
involved in using a different threshold for each group. For example, 
for intersectional subgroups with small populations, an accurate 
approximation of the threshold might be difficult to obtain because 
of the large degree of uncertainty. The number of thresholds 
required to be computed also grows exponentially with the num-
ber of protected attributes, which makes it largely infeasible for 
intersections of three or more protected attributes. Additionally, 
race and ethnicity are partially social constructs, with unclear 
boundaries. As a result, self-reported race and ethnicity may be 

Table 2 | Age and sex subgroups with the most underdiagnosis 
and least overdiagnosis for all four datasets

Subpopulation CXR CXP NIH ALL

Most underdiagnosed group

Sex Female Female Male Female

Age (years) 0–20 20–40 >80 0–20

Female–Age (years) 0–20 20–40 0–20 0–20

Least overdiagnosed group

Sex Female Female Male Female

Age (years) 0–20 20–40 0–20 0–20

Female–Age (years) 0–20 20–40 0–20 0–20
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In conclusion, we demonstrate evidence of AI-based underdi-
agnosis against under-served subpopulations in diagnostic algo-
rithms trained on chest X-rays. Clinically, underdiagnosis is of 
key importance because undiagnosed patients incorrectly receive 
no treatment. We observe, across three large-scale datasets and a 
combined multi-source dataset, which under-served subpopula-
tions are consistently at significant risk of algorithmic underdi-
agnosis. Additionally, patients in intersectional subgroups (for 
example, Black female patients) are particularly susceptible to algo-
rithmic underdiagnosis. Our findings demonstrate a concrete way 
that deployed algorithms (for example, https://models.acrdsi.org/) 
could escalate existing systemic health inequities if there is not a 
robust audit of performance disparities across subpopulations. As 
algorithms move from the laboratory to the real world, we must 
consider the ethical concerns regarding the accessibility of medi-
cal treatment for under-served subpopulations and the effective and 
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Methods
Dataset. We have utilized three large public chest X-ray datasets in this study: 
MIMIC-CXR (CXR)26, CheXpert (CXP)27 and ChestX-ray14 (NIH)28. The CXR 
dataset was collected from Beth Israel Deaconess Medical Center (Boston, MA, 
United States) between 2011 and 2016, the CXP dataset was collected from 
Stanford Hospital (Stanford, CA, United States) between October 2002 and July 
2017, and the NIH dataset was collected from the NIH Clinical Center (Bethesda, 
MD, United States) between 1992 and 2015. The CXR and CXP datasets contain 14 
diagnosis labels and the NIH dataset contains 15 diagnosis labels, and all contain 
one extra label indicating no predicted diagnosis of the other disease labels (‘no 
finding’). We focus on the no finding label for our underdiagnosis analysis. Disease 
labels are consistent in CXR and CXP, while only eight labels of the NIH dataset 
are matched with them. In the multi-source ALL dataset we aggregate the three 
aforementioned datasets on the eight shared labels.

Dataset collection and inclusion criteria. Because of the size of these large 
datasets and the fact that no exclusion criteria are mentioned in the dataset 
descriptions, we do not anticipate any issues with selection bias and assume that 
the collected datasets are representative of patients at these hospitals over the 
specified years. Only the ChestX-ray14 dataset is gathered from the NIH clinical 
research dedicated hospital, where patients are treated without charge and are 
selected based on whether the illness is being studied by the Institutes.

The NIH dataset has only frontal view images, whereas the other datasets have 
both frontal and lateral view images. We include all of the images of each dataset, 
regardless of the view, in the model training and evaluation. The race/ethnicity 
and sex data are self-reported in the MIMIC-CXR dataset and age is reported at a 
patient’s first admission. In the CheXpert dataset, sex is assigned by clinicians and 
the age is reported at the time of the examination. In the ChestX-ray14 dataset, 
the sex is self-identified and the age corresponds to the time of the examination. 
In the MIMIC-CXR dataset, the race/ethnicity and insurance type data were 
collected only if the patient was admitted to an intensive care unit, therefore there 
are around ~100,000 X-rays for which we do not have these data (these are X-rays 
done for patients who were admitted only to the emergency department. The 
reported race/ethnicity in the MIMIC-CXR dataset are white, other, Hispanic/
Latino, Black/African American, and American Indian/Alaska Native, and in this 
study we have used the shorter terminology white, other, Hispanic, Black, and 
Native for each group, respectively.

Definition and quantification of the fairness metrics. Commonly used fairness 
definitions such as equality of odds and equality of opportunity37 rely on equal 
binarized prediction metrics across subgroups. We evaluate the fairness of models 
in binarized fairness metrics because binarized prediction is most often required 
for clinical decision-making at the individual level. To assess model decision 
biases in underdiagnosed patients we compare underdiagnosis rates across 
subpopulations. We define the underdiagnosis rate as the FPR of the binarized 
model prediction for the no finding label at the levels of the subgroup (sj), that is, 
FPRsj (for example, female patients) and the intersectional (si,j) identities, that is, 
FPRsi,j (for example, Black female patients), as given by:

FPRsj = P
[

Ŷ = 1|sj, Y = 0
]

(1)

FPRsi,j = P
[

Ŷ = 1|si,j , Y = 0
]

(2)

where i, j denote subgroups with distinct attributes, Y is the true label and Ŷ  is the 
predicted label. We then compare these underdiagnosis rates across subpopulations 
including age and sex in all four datasets, as well as race/ethnicity and insurance 
type in the CXR dataset specifically.

Additionally, we measure the FNR for the no finding label across all 
subgroups (the definitions are similar to equation (1) and equation (2), but 
with Ŷ = 0 and Y = 1 with the patients belonging to sj or si,j). This measure is 
useful to help differentiate between overall model noise (for example, when 
predictions are flipped at random in either direction), which would result in 
approximately correlated FPR and FNR rates across subgroups, and selective 
model noise (for example, when predictions are selectively biased towards a 
prediction of no finding), which would result in un- or anti-correlated FPR 
and FNR rates. Although both kinds of noise are problematic, the latter is a 
form of technical bias amplification because it would show the known bias of 
clinical underdiagnosis as being selectively amplified by the algorithm—that 
is, the model is not only failing to diagnose those patients who clinicians are 
misdiagnosing, but it may also fail to diagnose other patients who clinicians did 
not underdiagnose.

Finally, we evaluate the FDR for the no finding label across all subgroups, 
defined in equation (3). FDR (or, equivalently, positive predictive value (PPV)) is a 
common metric used to evaluate the performance of classifiers. For our problem, 
this corresponds to the likelihood that a patient is ill given that the classifier 
predicts no finding.

FDRsi,j = P
[

Y = 0|si,j , Ŷ = 1
]

(3)

Medical images and labels preprocessing. In the CXR and CXP datasets the 
images are labeled with either a ‘positive’, ‘negative’, ‘uncertain’ or ‘not mentioned’ 
label. As in ref. 7, we aggregate all the non-positive labels to a negative label (that 
is, 0) and train the classifiers via multi-label classification, although we focus solely 
on the no finding label to examine underdiagnosis and the other fairness metrics. 
For each image, the no finding label is 1 if none of the disease labels are ‘positive’. 
All images are resized to 256 × 256 pixels following standard practice7,16 and are 
normalized using the mean and standard deviation of the ImageNet42 dataset.

Model training. The trained models used in this study are identical to that of ref. 7  
for all datasets, except for the NIH dataset. We train a 121-layer DenseNet43, with 
weights initialized using ImageNet42. Given that we need the no finding label, we 
include this label in the training of the model on the NIH dataset as well as all the 
other datasets. The train–validation–test set sizes for the ALL dataset are 575,381–
67,177–65,068, for the CXR dataset they are 298,137–37,300–36,421, for the CXP 
dataset they are 178,352–23,022–22,274 and for the NIH dataset they are 98,892–
6,855–6,373, respectively. The splits are random, and no patient is shared across 
splits. We use the same split as in ref. 7. The ALL dataset aggregates the original 
splits of the CXP, CXR and NIH datasets. Therefore, patients in the test set of each 
individual dataset stay in the test set of the ALL split. We applied center crop and 
random horizontal flip data augmentation. Similar to ref. 7, for the NIH dataset 
we applied a 10°, and for the other datasets we applied a 15° random rotation data 
augmentation for model training. Adam optimization with default parameters and 
binary cross-entropy loss functions are applied7. We have initialized the learning 
rate to 0.0005 and implement an early stop condition so that the learning rate 
drops to half if validation loss does not improve over three epochs, and the model 
stops training if no validation loss deduction occurs over 10 epochs.

All of the reported metrics such as the AUC, FPR, FNR and FDR are evaluated 
on the same test set. However, they are evaluated in each of five models (the 
same model trained five times with five different random seeds7), with the train–
validation–test split kept fixed in the training of the five models. The seeds have 
been chosen randomly from numbers between 0 and 100. Thus, per dataset, the 
reported outcomes—that is, the AUC, FPR, FNR and FDR (Fig. 2, Extended 
Data Figs. 1–3 and Supplementary Table 7)—in this study are the average of the 
outcomes of the five models (with different random seed initializations) ± the 
95% confidence interval . Following best practice16,32 for FPR, FNR and FDR 
estimation, we select a single threshold for all groups, which maximizes the F1 
score. Moreover, the protected attributes may not be available for all of the images. 
Only images that do not have missing corresponding values are considered in the 
count and in the FPR, FNR and FDR analysis. However, all of the images have been 
used for training the models, regardless of their protected attributes. Only medical 
images have been fed into the model at train and test times and the protected 
attributes of the patients have not been used in the model.

Model performance. The average AUC of our models over all of the labels is given 
for each dataset in Table 1. To the best of our knowledge, our classifiers are either 
state of the art (SOTA) (14 labels for the CXP and CXR datasets and eight shared 
labels for the ALL dataset)19–22 or near SOTA (15 labels for NIH)22 in the multi-label 
disease classification task, as measured by AUCs averaged across all of the labels 
for each dataset. In Supplementary Table 7, our trained models are compared with 
the SOTA models. For the CXP dataset, the SOTA models27 and the leaderboard 
ranking (https://stanfordmlgroup.github.io/competitions/chexpert/) used a 
private, unreleased dataset of only 200 images27 and five labels, whereas we used a 
randomly sub-sampled test set of 22,274 images. Thus, our results are not directly 
comparable with those. Also, for the NIH dataset, the SOTA model1 is trained on 
14 disease labels only, whereas we also included the label ‘no finding’ (15 labels).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All three datasets used for this work are public under data use agreements. We have 
followed all protocols associated with the data use agreements, and the experiments 
are conducted on observational, retrospective data. All datasets are referenced in 
the paper: the MIMIC-CXR26 dataset is available at https://physionet.org/content/ 
mimic-cxr/2.0.0/, the CheXpert27 dataset is available at https://stanfordmlgroup. 
github.io/competitions/chexpert/ and the ChestX-ray1428 dataset is available at 
https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one- 
largest-publicly-available-chest-x-ray-datasets-scientific-community. Access to all 
three datasets requires user registration and the signing of a data use agreement, 
after which access is provided in a timely manner. Only the MIMIC-CXR dataset 
requires the completion of an additional credentialing process. After following 
these procedures, the MIMIC-CXR data are available through PhysioNet44. The 
MIMIC-CXR project page on PhysioNet describes the data access procedure45. The 
race/ethnicity and insurance type for the patients are not provided directly with 
the download of the MIMIC-CXR dataset. However, these data are available by 
merging the patient IDs in MIMIC-CXR with subject IDs in MIMIC-IV46 using the 
patient and admissions tables. Access to MIMIC-IV requires a similar procedure as 
MIMIC-CXR and the same credentialing process is applicable for both datasets.
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Code availability
The code for training the models on the MIMIC-CXR (CXR)26, CheXpert  
(CXP)27 and ALL datasets is identical to that in https://github.com/LalehSeyyed/ 
CheXclusion. The code for training the ChestX-ray14 (NIH)28 dataset on  
15 labels as well as the code for all of the analyses in this paper is presented in 
https://github.com/LalehSeyyed/Underdiagnosis_NatMed. We have provided the 
Conda environment in the same repository for the purpose of reproducibility. We 
are not able to share the trained model and the true labels and predicted labels 
CSV files of the test set due to the data-sharing agreement. However, we have 
provided the patient ID per test splits, random seed and the code. The true label 
and predicted label CSV files and trained models can then be generated by users 
who have downloaded the data from the original source following the procedure 
described in the Data Availability section.
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Extended Data Fig. 1 | Analyzing underdiagnoses over subgroups of sex, age, within ALL dataset (combined CXR, CXP and NIH dataset on shared 
labels). Fig. S1. Analyzing underdiagnoses over subgroups of sex, age, within ALL dataset (combined CXR, CXP and NIH dataset on shared labels). The 
results are averaged over 5 trained model with different random seed ± 95% confidence interval (CI). A. The underdiagnosis rate (measured by ‘No 
Finding’ FPR). B. The overdiagnosis rate (‘No Finding’ False Negative Rate (FNR)) over subgroups of sex, age. C. The intersectional underdiagnosis rates 
within only female patients. D. Examining the overdiagnosis rate for the intersectional identities. The number of images with actual 0 or 1 ‘No Finding’ label 
in the age - sex intersections in the test dataset is presented in Supplementary Table 1.
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Extended Data Fig. 2 | Analyzing underdiagnoses over subgroups of sex, age, within CheXpert (CXP) dataset. Fig. S2. Analyzing underdiagnoses 
over subgroups of sex, age, within CheXpert (CXP) dataset. The results are averaged over 5 trained model with different random seed ± 95% CI. A. The 
underdiagnosis rate is FPR in ‘No Finding’. B. Examining the overdiagnosis rate (‘No Finding’ FNR) over sex and age subgroups, C. The intersectional 
underdiagnosis rates within only female patients, and D. measure the overdiagnosis rate for the intersectional identities. The subgroups labeled in gray 
text, with results omitted, indicate the subgroup has too few members (<= 15) to be used reliably. The number of images with actual 0 or 1 ‘No Finding’ 
label in the age - sex intersections in the test dataset is presented in Supplementary Table 1.
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Extended Data Fig. 3 | Analyzing underdiagnoses over subgroups of sex, age, within ChestX-ray14 (NIH) dataset. Fig. S3. Analyzing underdiagnoses 
over subgroups of sex, age, within ChestX-ray14 (NIH) dataset. The results are averaged over 5 trained model with different random seed ± 95% 
confidence interval (CI). A. The underdiagnosis rate (‘No Finding’ FPR). B. The over diagnosis rate (‘No Finding’ FNR) over subgroups of sex and age. C. The 
intersectional underdiagnosis rates within only female patients. D. The over diagnosis rate for the intersectional identities. The subgroups labeled in gray 
text, with results omitted, indicate the subgroup has too few members (<= 15) to be used reliably. The number of images with actual 0 or 1 ‘No Finding’ 
label in the age - sex intersections in the test dataset is presented in Supplementary Table 1.
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