Abstract
Secondary pulmonary tuberculosis (SPT) is one of the top ten causes of death from a single infectious agent. To recognize SPT more accurately, this paper proposes a novel artificial intelligence model, which uses Pseudo Zernike moment (PZM) as the feature extractor and deep stacked sparse autoencoder (DSSAE) as the classifier. In addition, 18-way data augmentation is employed to avoid overfitting. This model is abbreviated as PZM-DSSAE. The ten runs of 10-fold cross-validation show this model achieves a sensitivity of 93.33% ± 1.47%, a specificity of 93.13% ± 0.95%, a precision of 93.15% ± 0.89%, an accuracy of 93.23% ± 0.81%, and an F1 score of 93.23% ± 0.83%. The area-under-curve reaches 0.9739. This PZM-DSSAE is superior to 5 state-of-the-art approaches.
Keywords: Secondary pulmonary tuberculosis, pseudo-Zernike moment, Sparse autoencoder, Machine learning, Deep learning
Acknowledgments
This study was supported by Royal Society International Exchanges Cost Share Award, UK (RP202G0230); Medical Research Council Confidence in Concept Award, UK (MC_PC_17171); Hope Foundation for Cancer Research, UK (RM60G0680); British Heart Foundation Accelerator Award, UK; Sino-UK Industrial Fund, UK (RP202G0289); Global Challenges Research Fund (GCRF), UK (P202PF11).
Data Availability
The data is available upon reasonable request to the corresponding authors.
Declarations
Conflict of Interest
We have no conflicts of interest to disclose concerning this paper.
Footnotes
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Shui-Hua Wang, Suresh Chandra Satapathy and Qinghua Zhou contributed equally to this work.
Contributor Information
Shui-Hua Wang, Email: shuihuawang@ieee.org.
Suresh Chandra Satapathy, Email: sureshsatapathy@ieee.org.
Qinghua Zhou, Email: qz105@le.ac.uk.
Xin Zhang, Email: 973306782@qq.com.
Yu-Dong Zhang, Email: yudongzhang@ieee.org.
References
- 1.Willie B, Hakim AJ, Badman SG, Weikum D, Narokobi R, Coy K, et al. High prevalence of pulmonary tuberculosis among female sex workers, men who have sex with men, and transgender women in Papua New Guinea. Trop Med Health. 2021;49:6. doi: 10.1186/s41182-020-00293-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Lohiya S, Tripathy JP, Sagili K, Khanna V, Kumar R, Ojha A, et al. Does Drug-Resistant Extrapulmonary Tuberculosis Hinder TB Elimination Plans? A Case from Delhi, India. Trop Med Infect Dis. 2020;5:13. doi: 10.3390/tropicalmed5010013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Almeida SRP, Bastos FZ, Barussi FCM, Lessa DAB, Alencar NX, Michelotto PV. Airway endoscopy and tracheal cytology of two-year-old thoroughbred horses during the first year of race training. Comp Exer Physiol. 2018;14:143–148. doi: 10.3920/CEP180004. [DOI] [Google Scholar]
- 4.Akhtar AN, Ahmad MS, Khokhar MI, Afzal MF. Early experience of laparoscopy in emergency operation theatre at Lahore General Hospital, Lahore. Pak J Med Health Sci. 2017;11:1291–1292. [Google Scholar]
- 5.Gaubert S, Blet A, Dib F, Ceccaldi PF, Brock T, Calixte M, et al. Positive effects of lumbar puncture simulation training for medical students in clinical practice. BMC Med Educ. 2021;21:6. doi: 10.1186/s12909-020-02452-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Arulprakash N, Narayanan L, Narayanan S. A young patient with stroke and primary tuberculosis. Journal of Neurosciences in Rural Practice. 2018;9:613–615. doi: 10.4103/jnrp.jnrp_59_18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Li XW, Li XH, Liu QL, Sun N, Zhang B, Shi CD, et al. Traditional Chinese medicine combined with western medicine for the treatment of secondary pulmonary tuberculosis A PRISMA-compliant meta-analysis. Medicine. 2020;99:10. doi: 10.1097/MD.0000000000019567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Iliyasu G, Mohammad AB, Yakasai AM, Dayyab FM, Oduh J, Habib AG. Gram-negative bacilli are a major cause of secondary pneumonia in patients with pulmonary tuberculosis: evidence from a cross-sectional study in a tertiary hospital in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 2018;112:252–254. doi: 10.1093/trstmh/try044. [DOI] [PubMed] [Google Scholar]
- 9.Rai DK, Alok Clinico-radiological Difference between Primary and Secondary MDR Pulmonary Tuberculosis. J. Clin. Diagn. Res. 2019;13:OC08–OC010. [Google Scholar]
- 10.Bagci U, Kubler A, Luna B, Jain S, Bishai WR, Mollura DJ. Computer-aided detection and quantification of cavitary tuberculosis from CT scans. Med. Phys. 2013;40:14. doi: 10.1118/1.4824979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Li LJ, Huang HY, Jin XY. Ninth International Conference on Information Technology in Medicine and Education. China: Hangzhou; 2018. AE-CNN Classification of Pulmonary Tuberculosis Based on CT Images; pp. 39–42. [Google Scholar]
- 12.Park S, Jin KN, Kim JI, Choi SY, Lee JH, Goo JM, et al. Development and validation of a deep learning-based automatic detection algorithm for active pulmonary tuberculosis on chest radiographs. Clin. Infect. Dis. 2019;69:739–747. doi: 10.1093/cid/ciz715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.James-Reynolds C, Currie E, Gao XHW. Analysis of tuberculosis severity levels from CT pulmonary images based on enhanced residual deep learning architecture. Neurocomputing. 2020;392:233–244. doi: 10.1016/j.neucom.2018.12.086. [DOI] [Google Scholar]
- 14.Xie, Y.L., Wu, Z.Y., Han, X., Wang, H.Y., Wu, Y.F., Cui, L., et al.: Computer-Aided System for the Detection of Multicategory Pulmonary Tuberculosis in Radiographs. J Healthc Eng. 12, Article ID: 9205082 (2020, 2020) [DOI] [PMC free article] [PubMed]
- 15.Zhang, Y.-D., Nayak, D.R., Zhang, X., Wang, S.-H.: Diagnosis of secondary pulmonary tuberculosis by an eight-layer improved convolutional neural network with stochastic pooling and hyperparameter optimization. J. Ambient. Intell. Humaniz. Comput. (2020). 10.1007/s12652-020-02612-9
- 16.Govindaraj, V.: Explainable diagnosis of secondary pulmonary tuberculosis by graph rank-based average pooling neural network. J. Ambient. Intell. Humaniz. Comput. (2021). 10.1007/s12652-021-02998-0
- 17.Hu M-K. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory. 1962;8:179–187. [Google Scholar]
- 18.Teague MR. Image analysis via the general theory of moments. J. Opt. Soc. Am. 1980;70:920–930. doi: 10.1364/JOSA.70.000920. [DOI] [Google Scholar]
- 19.Kar A, Pramanik S, Chakraborty A, Bhattacharjee D, Ho ESL, Shum HPH. LMZMPM: local modified Zernike moment per-unit mass for robust human face recognition. IEEE Transactions on Information Forensics and Security. 2021;16:495–509. doi: 10.1109/TIFS.2020.3015552. [DOI] [Google Scholar]
- 20.Singh, S.P., Urooj, S.: An Improved CAD System for Breast Cancer Diagnosis Based on Generalized Pseudo-Zernike Moment and Ada-DEWNN Classifier. J. Med. Syst. 40, Article ID: 105, (2016) [DOI] [PubMed]
- 21.Jiang Y. Exploring a smart pathological brain detection method on pseudo Zernike moment. Multimed. Tools Appl. 2018;77:22589–22604. doi: 10.1007/s11042-017-4703-0. [DOI] [Google Scholar]
- 22.Chong CW, Raveendran P, Mukundan R. The scale invariants of pseudo-Zernike moments. Pattern. Anal. Applic. 2003;6:176–184. doi: 10.1007/s10044-002-0183-5. [DOI] [Google Scholar]
- 23.Fricker, P.: Pseudo-Zernike Functions [MATLAB Central File Exchange]. Available: https://www.mathworks.com/matlabcentral/fileexchange/33644-pseudo-zernike-functions (2021)
- 24.Risco, S., Molto, G., Naranjo, D.M., Blanquer, I.: Serverless Workflows for Containerised Applications in the Cloud Continuum. Journal of Grid Computing. 19, Article ID: 30, (2021) [DOI] [PMC free article] [PubMed]
- 25.Darabian H, Homayounoot S, Dehghantanha A, Hashemi S, Karimipour H, Parizi RM, et al. Detecting Cryptomining malware: a deep learning approach for static and dynamic analysis. Journal of Grid Computing. 2020;18:293–303. doi: 10.1007/s10723-020-09510-6. [DOI] [Google Scholar]
- 26.Emdadi A, Eslahchi C. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model. BMC Bioinformatics. 2021;22:22. doi: 10.1186/s12859-021-03974-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Alessandri L, Cordero F, Beccuti M, Licheri N, Arigoni M, Olivero M, et al. Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining. NPJ Systems Biology and Applications. 2021;7:10. doi: 10.1038/s41540-020-00162-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Tivive FHC, Bouzerdoum A. Clutter removal in Through-The-Wall radar imaging using sparse autoencoder with low-rank projection. IEEE Trans. Geosci. Remote Sens. 2021;59:1118–1129. doi: 10.1109/TGRS.2020.3004331. [DOI] [Google Scholar]
- 29.Nguyen CD, Prosvirin AE, Kim CH, Kim JM. Construction of a Sensitive and Speed Invariant Gearbox Fault Diagnosis Model Using an Incorporated Utilizing Adaptive Noise Control and a Stacked Sparse Autoencoder-Based Deep Neural Network. Sensors. 2021;21:23. doi: 10.3390/s21010018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Benyamin M, Genish H, Califa R, Wolbromsky L, Ganani M, Wang Z, et al. Autoencoder based blind source separation for photoacoustic resolution enhancement. Sci. Rep. 2020;10:7. doi: 10.1038/s41598-020-78310-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Jelodar RA, Mehri-Dehnavi H, Agahi H. Some properties of Tsallis and Tsallis-Lin quantum relative entropies. Physica A-Statistical Mechanics and Its Applications. 2021;567:7. doi: 10.1016/j.physa.2020.125719. [DOI] [Google Scholar]
- 32.Abbaspour-Gilandeh Y, Fazeli M, Roshanianfard A, Hernandez-Hernandez M, Gallardo-Bernal I, Hernandez-Hernandez JL. Prediction of Draft Force of a Chisel Cultivator Using Artificial Neural Networks and Its Comparison with Regression Model. Agronomy-Basel. 2020;10:14. [Google Scholar]
- 33.Winzer R, Martin R, Kuhn JP, Baldus JC, Seppelt D, Heidrich FM, et al. Adrenal glands enhancement in computed tomography as predictor of short-and intermediate term mortality in critically ill patients. Clin. Imaging. 2021;70:56–60. doi: 10.1016/j.clinimag.2020.10.033. [DOI] [PubMed] [Google Scholar]
- 34.Jena R, Pradhan B, Alamri AM. Susceptibility to Seismic Amplification and Earthquake Probability Estimation Using Recurrent Neural Network (RNN) Model in Odisha, India. Applied Sciences-Basel. 2020;10:18. [Google Scholar]
- 35.Shekter, D.H., Samuelson, F.W.: Efficiently calculating ROC curves, AUC, and uncertainty from 2AFC studies with finite samples. Proc. SPIE. 11316, (2020)
- 36.Wang S-H. Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network. Information Fusion. 2021;67:208–229. doi: 10.1016/j.inffus.2020.10.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Cheng, X.: PSSPNN: PatchShuffle Stochastic Pooling Neural Network for an Explainable Diagnosis of COVID-19 with Multiple-Way Data Augmentation. Comput Math Methods Med. 2021 (2021, Article ID: 6633755) [DOI] [PMC free article] [PubMed] [Retracted]
- 38.Loyola-Gonzalez O, Medina-Perez MA, Choo KKR. A review of supervised classification based on contrast patterns: applications, trends, and challenges. Journal of Grid Computing. 2020;18:797–845. doi: 10.1007/s10723-020-09526-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Gupta A, Sahu H, Nanecha N, Kumar P, Roy PP, Chang V. Enhancing text using emotion detected from EEG signals. Journal of Grid Computing. 2019;17:325–340. doi: 10.1007/s10723-018-9462-2. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
The data is available upon reasonable request to the corresponding authors.
