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Abstract. Cerebral ischemic injury may lead to a series of 
serious brain diseases, death or different degrees of disability. 
Hypoxia‑inducible factor‑1α (HIF‑1α) is an oxygen‑sensitive 
transcription factor, which mediates the adaptive metabolic 
response to hypoxia and serves a key role in cerebral ischemia. 
HIF‑1α is the main molecule that responds to hypoxia. HIF‑1α 
serves an important role in the development of cerebral 
ischemia by participating in numerous processes, including 
metabolism, proliferation and angiogenesis. The present 
review focuses on the endogenous protective mechanism of 
cerebral ischemia and elaborates on the role of HIF‑1α in 
cerebral ischemia. In addition, it focuses on cerebral ischemia 
interventions that act on the HIF‑1α target, including biological 
factors, non‑coding RNA, hypoxic‑ischemic preconditioning 
and drugs, and expands upon the measures to strengthen the 
endogenous compensatory response to support HIF‑1α as a 
therapeutic target, thus providing novel suggestions for the 
treatment of cerebral ischemia.
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1. Introduction

In 2017, stroke was recorded as the second leading cause of 
death in people >60 years old worldwide and the leading 
cause of permanent disability (1,2). The condition has become 
a huge global health problem (3). Ischemic stroke is the most 
common type of stroke and the third leading cause of disability 
worldwide (4,5). Ischemic stroke is a pathological state of 
insufficient blood supply in specific parts of the brain, particu‑
larly in the middle cerebral artery, due to sudden rupture of 
cerebral vessels or local ischemia caused by cerebral artery 
thrombosis or embolism, resulting in an insufficient supply of 
nutrients, oxygen and glucose, energy imbalance, and finally, 
neuronal cell death (6‑9). The pathogenesis of ischemic stroke 
is complex, involving numerous mechanisms, including 
oxidative stress, neuroinflammation, excitatory neurotoxicity, 
ion imbalance, energy metabolism and apoptosis  (10‑12). 
At present, recombinant tissue plasminogen activator is the 
only drug approved by the Food and Drug Administration 
for the treatment of acute ischemic stroke (13). Therefore, the 
search for alternative treatment strategies for ischemic stroke 
has attracted increasing attention. Endogenous protection is 
an important mechanism of protection and recovery after 
cerebral ischemia. The hypoxia‑inducible factor‑1α (HIF‑1α) 
signaling pathway serves an important role in endogenous 
protection. HIF‑1α regulates angiogenesis, neuroprotection, 
neurogenesis, migration of neuronal stem cells to the ischemic 
area and proliferation to functional neurons by regulating the 
transcription of downstream target genes (14). Strengthening 
the endogenous compensatory response may become an inter‑
esting potential treatment strategy in stroke.

It is worth noting that the HIFs are a family of transcrip‑
tion factors involved in the hypoxia response and one of the 
key regulatory mechanisms of hypoxic stress at the cellular 
level (15,16). HIF‑1 consists of an oxygen‑regulated α subunit, 
HIF‑1α, and a constitutively expressed β subunit, HIF‑1β (17). 
Although mammals have a number of hypoxia adaptation 
mechanisms, including those that have a faster response time 
than the HIF‑1α system, the unique degree of influence of the 
HIF system makes it a more important hypoxia response regu‑
lation mechanism (18). Under normoxic conditions, the proline 
and lysine residues on the oxygen‑dependent degradation 
domain of HIF‑1α are hydroxylated, and the modified HIF‑1α 
interacts with the Von Hippel‑Lindau E3 ubiquitin ligase 
complex via ubiquitin‑proteasome pathway degradation (19). 
However, HIF‑1α is stable under hypoxic conditions  (20). 
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With the assistance of co‑activators, such as cyclic adenosine 
monophosphate response element binding protein and acetyl‑
transferase, HIF‑1α forms a heterodimer with HIF‑1β (21), and 
then HIF‑1α is transferred to the nucleus and combines with 
the target gene hypoxia response element (HRE) to induce the 
expression of downstream genes (Fig. 1). HIF‑1α regulates 
the transcription of >100 genes (22); its target genes encode 
molecules involved in vasomotor control, angiogenesis, 
erythropoiesis, cell proliferation and energy metabolism, and 
complex physiological and pathological processes, such as cell 
death and inflammation (23‑26). During cerebral ischemia, 
HIF‑1α is expressed in the chronic hypoxic area around the 
infarct area (27). Therefore, HIF‑1α may become a novel and 
valuable therapeutic target.

2. Literature screening method

The literature was searched using PubMed and ScienceDirect 
databases. With use of ‘pathogenesis of cerebral ischemia’, 
‘HIF‑1α’ and ‘cerebral ischemia and HIF‑1α’ as search terms, 
2,199, 1,550 and 42 relevant articles were retrieved, respec‑
tively. The resulting articles were then screened according 
to the clarity and specificity of the research objectives, and 
the date of publication (from December 2000 to present). A 
total of 132 articles were selected for assessment in the current 
study.

3. Role of HIF‑1α in cerebral ischemia

The role of HIF‑1α in cerebral ischemia is related to hypoxia. 
During cerebral ischemia, the oxygen supply is insufficient 
and partial oxygen pressure in the tissue decreases, leading 
to the activation of HIF‑1α (28). HIF‑1α is mainly induced in 
the penumbra of the cerebral ischemic region and serves an 
important role in angiogenesis, glucose metabolism and cell 
survival following an ischemic stroke (29‑31).

The formation of neovascularization promotes the nerve 
recovery of ischemic injury after cerebral ischemia  (32). 
Angiogenesis is one of the most important modes of neovas‑
cularization, which depends on endothelial progenitor cells 
(EPCs) (32). HIF‑1α is a transcription factor that regulates 
angiogenesis. It has been widely accepted that HIF‑1α serves a 
role in regulating angiogenesis by regulating endothelial cells 
(ECs). For example, in the acute phase of ischemia, HIF‑1α 
serves an important role in homing and germination of bone 
marrow‑derived EPCs (bmEPC) in Sprague Dawley rat brain 
tissues. This effect is related to maintaining proper astrocyte 
responses in the ischemic brain. From a molecular perspec‑
tive, the signals of the chemokine (C‑X‑C motif) ligand 12 
(CXCL12)/chemokine C‑X‑C‑motif receptor  4 (CXCR4) 
axis, high mobility group protein B1 (HMGB1) and vascular 
endothelial growth factor A (VEGF‑A)/vascular endothelial 
growth factor receptor 2 (Flk1)‑neuropilin‑1 (Nrp1)/delta‑like 
ligand‑4 (Dll4) axis between astrocytes and bmEPCs are the 
basis for HIF‑1α to regulate the homing and sprouting of 
bmEPCs (33). After a stroke, bmEPCs are mobilized from 
the bone marrow to the peripheral blood and recruited to the 
ischemic brain (34), and CXCL12 and HMGB1 expression is 
upregulated. CXCL12/CXCR4 and HMGB1 are important for 
the homing of EPCs (35,36). EPCs then attach to damaged 

blood vessels and repair them or migrate outward to start 
angiogenesis  (37). Bud angiogenesis is another important 
mode of angiogenesis guided by apical cells (38,39). Apical 
cells are usually mobile and located at the top of vascular 
buds (38,39). Morphologically, apical cells are rich in fila‑
mentous pseudopodia, which contributes to the formation of 
vascular tubes (40). ECs serve as a bank for apical cells. The 
differentiation of ECs into apical cells is controlled by the 
VEGF‑A/Flk1/Dll4 signaling pathway (38,39). Specifically, 
when Flk1‑positive ECs are stimulated by VEGF‑A, the 
levels of Dll4 are increased in these cells, and thus, these 
cells begin to differentiate into tip cells (38,39). In addition, 
Nrp1 is a co‑receptor of Flk1 and is necessary for apical cell 
formation  (41,42). The role of astrocytes in angiogenesis 
is that activated astrocytes recruit bmEPCs by secreting 
HMGB1 and CXCL12 (35). These two substances are ligands 
of advanced glycosylation end product‑specific receptor 
and recombinant CXCR4, which are expressed on the cell 
membrane of EPCs (35,43). It has been revealed that inhibi‑
tion of HIF‑1α can reduce the expression levels of CXCR4 
in bmEPCs, as well as reducing the expression levels of 
VEGF‑A, VEGF‑A/Flk‑1, NRP1 and Dll4 in bmEPCs. These 
findings suggest that HIF‑α may participate in the homing of 
bmEPCs via CXCL12/CXCR4 and HMGB1, and promotes the 
germination of bmEPCs via VEGF‑A/Flk1‑Nrp1/Dll4 (33). 
Additionally, knockdown of HIF‑1α in  vivo reduces the 
number of reactive astrocytes in the ischemic brain (33,44). 
Furthermore, a previous study (31) found that the number of 
reactive astrocytes increased in the brain of ischemic mice 
with insufficient prolyl hydroxylases (PHDs), and insufficient 
PHDs led to the stabilization of HIF‑1α. This indicated that 
astrocytes serve a key role in the homing and germination 
of bmEPCs, and HIF‑1α serves a direct role in the homing 
and germination of bmEPCs via regulation of the pathway 
between astrocytes and bmEPCs. Conversely, affecting the 
number of astrocytes has an indirect effect on the homing 
and germination of bmEPCs. In addition, HIF‑1α induces 
bone marrow dendritic cell (BMDC) homing to ECs and 
regulates angiogenesis  (45). In the molecular mechanism 
of BMDC transport, pituitary adenylate cyclase‑activating 
peptide 38 (PACAP38) increases the expression levels of 
adhesion/migration‑related proteins cellular prion protein 
(PrPc), α6‑integrin, B1  integrin, focal adhesion kinase 
and CXCR4 (46‑52), enhances the activities of MMP9 and 
MMP2 in BMDCs, and promotes the homing and migration 
of BMDCs. The PACAP38‑pituitary adenylate cyclase‑acti‑
vating polypeptide type I receptor isoform 1 (PAC1) signal is 
an important part of the homing mechanism. During ischemia 
and hypoxia, HIF‑1α upregulates PACAP38 by binding to the 
HRE on the PACAP38 promoter. The PACAP38 receptor 
PAC1 is widely expressed on BMDCs. PACAP38 binds to the 
receptor and promotes the homing of BMDCs to the ischemic 
area. In addition, PACAP38 upregulates the expression levels 
of α6‑integrin and PrPc on the surface of BMDCs. This may 
stimulate the bone marrow mesenchymal cells to move to the 
blood vessels and increase their binding to laminin. Laminin 
is concentrated on the surface of the blood vessel (53,54). The 
interaction can enable BMDCs to integrate into the vascular‑
ized parenchymal area of ​​the ischemic brain to promote tissue 
repair (Fig. 2) (53,54).
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Previous research has revealed that HIF‑1α serves a dual 
role in promoting survival or death of nerve cells during 
cerebral ischemia. First, endogenous neurogenesis is enhanced 

during cerebral ischemia and hypoxia  (55), which may be 
related to the activation of endogenous neural stem cells 
(NSCs) during cerebral ischemia (56,57). Previous studies 

Figure 1. Under normoxic conditions, the proline and lysine residues on the oxygen‑dependent degradation domain of HIF‑1α are hydroxylated, and modified 
HIF‑1α interacts with the Von Hippel‑Lindau E3 ubiquitin ligase complex via ubiquitin‑proteasome pathway degradation. However, HIF‑1α is stable under 
hypoxic conditions. With the help of co‑activators, such as CBP and p300, HIF‑1α forms a heterodimer with HIF‑1β, and then HIF‑1α is transferred to the 
nucleus and combines with the target gene HRE to induce downstream gene expression. HIF, hypoxia‑inducible factor; HRE, hypoxia response element; CBP, 
cyclic adenosine monophosphate response element binding protein; p300, acetyltransferase; VEGF, vascular endothelial growth factor; EPO, erythropoietin; 
GLUT, glucose transporter type. 

Figure 2. HIF‑1α may participate in the homing of bmEPCs via CXCL12/CXCR4 and HMGB1, and promotes the germination of bmEPCs via VEGF‑A/Flk1/Dll4. 
HIF‑1α upregulates PACAP38 by binding to the HRE on the PACAP38 promoter during ischemia and hypoxia. PACAP38 binds to the receptor PAC1 and 
promotes the homing of BMDCs to the ischemic region. In addition, PACAP38 upregulates the expression levels of α6‑integrin and PrPc on the surface 
of BMDCs. ECs, endothelial cells; CXCL12, chemokine (C‑X‑C motif) ligand 12; CXCR4, chemokine C‑X‑C‑motif receptor 4; HMGB1, high mobility 
group protein B1; RAGE, ligands of advanced glycosylation end product‑specific receptor; VEGF‑A, vascular endothelial growth factor A; Flk1, vascular 
endothelial growth factor receptor 2; Dll4, delta‑like ligand‑4; BMDCs, bone marrow dendritic cells; HIF‑1α, hypoxia‑inducible factor 1α; HRE, hypoxia 
response element; PACAP38, pituitary adenylate cyclase‑activating peptide 38; PAC1, PACAP type 1 receptor; PrPc, cellular prion protein; bmEPCs, bone 
marrow‑derived EPCs. 
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have demonstrated that both global and focal cerebral isch‑
emia can increase the proliferation and neural differentiation 
of NSCs located in the subgranular area of the dentate gyrus, 
the anterior subventricular area and the posterior peripheral 
area of the ventricle adjacent to the hippocampus  (58,59). 
HIF‑1α, by increasing activation of the Wnt/β‑catenin 
signaling pathway, stimulates NSC proliferation (60). The Wnt 
signaling pathway regulates the embryonic NSC pattern, cell 
fate determination and cell proliferation (61). Wnt signaling 
may regulate hippocampal neurogenesis in adult rats  (62). 
In fact, Wnt3α mutant mice exhibit hippocampal hypoplasia 
due to a lack of proliferation (62). Wnt family members are 
expressed in hippocampal astrocytes, while hippocampal 
stem/progenitor cells express Wnt protein receptors and signal 
components (63). It has been reported that HIF‑1α signaling 
is inhibited under oxygen‑deprived conditions, which may 
reduce β‑catenin nuclear translocation and cyclin D1 expres‑
sion, delaying NSC proliferation (60). In addition, HIF‑1α has 
different effects on the occurrence of apoptosis in different 
periods of cerebral ischemia (64,65). A previous study has 
demonstrated that HIF‑1α may have a neuroprotective effect 
in the early stage of an ischemic stroke (66). HIF‑1α is highly 
expressed in rat brain tissue in the early stage of ischemic 
stroke and may markedly reduce infarct cell apoptosis. This 
effect may be related to the inhibition of acyl CoA synthase 
long chain family member 4 (ACSL4) by HIF‑1α (67). ACSL4 
is an important metabolic isoenzyme of polyunsaturated fatty 
acids. ACSL4 promotes neuronal death by enhancing lipid 
peroxidation (a marker of iron drop disease). In addition, 
ACSL4 may promote the microglia mediated inflammatory 
response. HIF‑1α inhibits ACSL4 expression, thereby reducing 
lipid peroxidation and inflammation, and exhibiting a neuro‑
protective effect on cerebral ischemia (67). On the contrary, 
a previous study conducted by Panchision (68) demonstrated 
that HIF‑1α expression could promote neuronal apoptosis 
after long‑term severe ischemia and hypoxia. HIF‑1α may 
regulate the inflammatory response through the NLR family 
containing pyrin domain protein 3 (NLRP3) inflammasome 
complex, thereby promoting apoptosis and pyrophagocytic cell 
death after stroke (69). NLRP3 inflammatory bodies are the 
main mediators of the inflammatory response during ischemic 
stroke (70,71). Upregulation of NLRP3 inflammatory bodies 
activates pre‑caspase‑1 by cleavage (72), thus promoting the 
maturation of IL‑1B and IL‑18. HIF‑1α regulates the NLRP3 
inflammatory focal pathway, resulting in brain cell death (69). 
In addition, in the transient focal cerebral ischemia model, 
on the one hand, HIF‑1α upregulates erythropoietin (EPO) 
expression, thereby inhibiting the expression of activated 
caspase‑3 in neurons and inhibiting neuronal apoptosis to 
improve the recovery of nerve function (73). On the other 
hand, HIF‑1α exerts a neuroprotective effect on transient focal 
cerebral ischemia by upregulating VEGF and downregulating 
caspase‑9 (74). A previous study also found that the anti‑apop‑
totic effect of HIF‑1α gene therapy effectively reduced the 
neurological deficit score and brain edema at 24 and 72 h 
after reperfusion, and inhibited the pathological damage and 
apoptosis of nerve cells in a rat middle cerebral artery occlu‑
sion model (75). Additionally, a previous study reported that 
HIF‑1α may improve brain damage after ischemia/reperfusion 
(I/R) via BCL2/adenovirus E1B interacting protein 3 (BNIP3) 

and Bcl‑2 family proteins containing BH3 domain‑dependent 
enhancement of autophagy cell survival (76). Taken together, 
these observations suggest that HIF‑1α may induce cell death 
in severe and long‑term ischemia, but that activation in mild 
ischemic stress could promote cell survival (Fig. 3). This may 
be related to different mechanisms being involved in the regu‑
lation of the response to ischemic stroke by HIF‑1α. The role 
of HIF‑1α in neuroprotection requires further study.

4. HIF‑1α protects the brain via the regulation of 
endogenous substances

During cerebral ischemia, endogenous factors, such as 
neurotransmitters, amino acids and inorganic salts, serve a 
protective role against cerebral ischemia by regulating HIF‑1α 
to influence the angiogenesis and neuroprotection of ischemic 
brain tissue (77‑80). For example, choline may increase the 
levels of α7  nicotinic acetylcholine receptor, induce the 
expression of HIF‑1α and VEGF, and promote the formation 
of cerebral arteries and cerebral cortex capillaries, thereby 
effectively reducing cerebral ischemic damage in perma‑
nent middle cerebral artery occlusion (MCAO) rats  (77). 
Peroxynitrite promotes neurogenesis by activating HIF‑1α and 
enhancing the Wnt/β‑catenin signaling pathway (78). Arginine 
reduces the inflammatory response mediated by HIF‑1α and 
protects against the death of ischemic neurons after I/R 
injury in rats (79). Glycine inhibits HIF‑1α by inhibiting the 
upregulation of NF‑κB/p65 after I/R injury, thereby inhibiting 
pro‑inflammatory activity (80).

MicroRNAs (miRNAs/miRs) are a type of small endog‑
enous non‑coding single‑stranded RNA that regulate protein 
expression by inducing mRNA degradation or interfering with 
translation. miRNAs have been found to be involved in the 
pathogenesis of stroke. To date, numerous miRNAs have been 
determined to be involved in the molecular process of the isch‑
emic cascade (81,82). Several miRNAs, including miR‑376b‑5p, 
miR‑433, miR‑335, miRNA‑210 and miR‑155‑5p, have also 
been demonstrated to regulate HIF‑1α during cerebral isch‑
emia. Notably, among these miRNAs, miRNA‑210 is positively 
associated with HIF‑1n expression. When miRNA‑210 expres‑
sion is upregulated, the gene and protein expression levels of 
HIF‑1α and VEGF are increased, and their expression trends 
are consistent (83). Recently, it has been revealed that elevated 
levels of miRNA‑210 increase neuronal cell apoptosis by 
activating the HIF‑1α‑VEGF signaling pathway. By contrast, 
downregulation of miRNA‑210 expression markedly inhibits 
the gene and protein expression of HIF‑1α and VEGF (83). 
The expression levels of miR‑376b‑5p, miR‑433, miR‑335 and 
miR‑155‑5p are negatively associated with the expression levels 
of HIF‑1α (84‑87). miR‑376b‑5p inhibits angiogenesis after 
cerebral ischemia via the HIF‑1α‑mediated VEGFA‑Notch1 
signaling pathway (84). Overexpression or downregulation of 
miR‑433 alters the mRNA and protein levels of HIF‑1α and its 
downstream genes, VEGF, glucose transporter 1 (GLUT1) and 
angiopoietin 2 (Angpt2) (85). In addition, miR‑335, as a direct 
regulator of HIF‑1α, serves different roles in different periods 
of cerebral ischemia, which may be related to the different 
effects of HIF‑1α in different periods of cerebral ischemia. 
In the early stage of cerebral ischemia, miR‑335 mimic 
may reduce the area of ​​cerebral infarction, while the levels 
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of HIF‑1α protein are lower. This results in the decreased 
expression of downstream target genes of HIF‑1α, including 
Angpt2, BNIP3, MMP9, plasminogen activator inhibitor‑1 and 
VEGF‑A. By contrast, in the middle and late stages of cere‑
bral ischemia, the use of anti‑miR‑335 is beneficial. HIF‑1α 
protein is upregulated and then its downstream gene expres‑
sion levels increase (86). miR‑335 regulates HIF‑1α expression 
and also affects neurovascular permeability, cell death and 
the blood‑brain barrier, resulting in a reduction in infarct 
volume (86). Furthermore, a recent study has demonstrated 
that miR‑155‑5p targets HIF‑1α in NSCs (87). Inhibition of 
miR‑155‑5p may promote the viability of NSCs and inhibit cell 
apoptosis induced by oesophago‑gastro‑duodenoscopy (OGD). 
Additionally, after transplantation, NSCs inhibit miR‑155‑5p, 
and this also enhances the inhibition of inflammation and 
oxidative stress, which enhances the protection against cere‑
bral infarction. Long non‑coding RNAs (lncRNAs) are a 
relatively newly discovered class of non‑coding RNA, ranging 
in length from ~200 nucleotides to several kilobases  (88). 
lncRNAs are dynamically expressed in tissues, based on 
differentiation stages and cell type‑specific patterns, and 
participate in numerous normal cellular processes. lncRNAs 
can compete with specific mRNAs for the same miRNA pool. 
The result is that the binding of miRNAs to target mRNAs is 
inhibited or reduced, and the function of miRNA post‑tran‑
scriptional silencing is impaired (89,90). HIF‑1α‑AS2 is an 
antisense lncRNA derived from the natural antisense tran‑
script of HIF‑1α (91). A previous study has revealed that the 
expression levels of HIF‑1α‑AS2 are upregulated in hypoxic 
human umbilical vein ECs (HUVECs) (92). Upregulation of 
HIF‑1α‑AS2 leads to downregulation of miR‑153‑3p, which 
can reduce the post‑transcriptional silencing of HIF‑1α. 

MCAO reduces the level of miR‑153‑3p RNA in the infarct 
area and increases the protein levels of HIF‑1α, VEGF‑A and 
Notch1. This function of HIF‑1α‑AS2 promotes the activation 
of the HIF‑1α/VEGFA/Notch1 cascade, thereby promoting the 
vitality, migration and tube formation of HUVECs (92).

5. Role of HIF‑1α in cerebral ischemic preconditioning 
(IPC)

Preconditioning has a certain protective effect on cerebral 
ischemia. To date, several preconditioning methods have 
been used to induce ischemic tolerance (IT). Studies have 
revealed that during pretreatment, HIF‑1α is activated to serve 
a neuroprotective role  (93,94). Hypoxic preconditioning is 
a phenomenon in which mild hypoxia may induce a strong 
state of IT to resist the subsequent damage caused by severe 
hypoxia, which exists in a number of organs, especially the 
brain (95‑98). Hypoxic preconditioning improves the survival 
rate of rats with cerebral ischemia, reduces neurological defi‑
cits, increases the object recognition and social recognition 
memory of the rat, and inhibits the inflammatory response 
caused by cerebral ischemia. These effects are regulated 
by HIF‑1α (99). During hypoxia preconditioning, IT levels 
increase, which is related to the activation of HIF‑1α and the 
expression of its target genes GLUT1, EPO, VEGFα, Bcl‑2 
and inducible nitric oxide synthase. Also during hypoxic 
preconditioning, olfactory mucosal mesenchymal stem cells 
activate HIF‑1α in vitro to inhibit the pyrolysis and apoptosis 
of microglia after cerebral I/R injury (100). In addition to 
hypoxic preconditioning, IPC is also used as a means of cere‑
bral ischemia protection. IPC is defined as a transient sublethal 
ischemic injury, which may mobilize protective mechanisms 

Figure 3. HIF‑1α expression in ischemic stroke is controlled by different mechanisms. NSCs, neural stem cells; HIF‑1α, hypoxia‑inducible factor‑1α; ACSL4, 
acyl CoA synthase long chain family member 4; NLRP3, NLR family containing pyrin domain protein 3; IL‑18, interleukin 18; IL‑1B, interleukin 1B; EPO, 
erythropoietin; VEGF, vascular endothelial growth factor; NIX, Bcl‑2 family proteins containing BH3 domain; BNIP3, BCL2/adenovirus E1B interacting 
protein 3. 
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to improve neuronal damage following fatal ischemia (101). A 
previous study has revealed that IPC protects CA1 pyramidal 
neurons from non‑IPC lethal ischemia by increasing HIF‑1α 
expression in CA1 pyramidal neurons, thereby enhancing the 
expression of VEGF and the activation of NF‑κB (102). The 
increase of HIF‑1α may be related to the continuous increase 
of P2X7 receptors in astrocytes. Activation of P2X7 receptors 
leads to the increase of HIF‑1α. This hypoxia‑independent, 
but P2X7 receptor‑dependent mechanism could induce persis‑
tent expression of HIF‑1α in astrocytes, thereby effectively 
inducing IT and neuroprotection against ischemia  (103). 
Studies have also demonstrated that remote IPC (RIPC) 
could improve the response of peripheral immune cells by 
regulating the upregulation of HIF‑1α (104,105). This effect 
may be the protective effect of cerebral ischemia mediated by 
RIPC activation of the HIF‑1α/AMP‑activated protein kinase 
(AMPK)/70‑kilodalton heat shock protein (HSP70) signaling 
pathway. Highly conserved HSPs, as molecular chaperones 
of abnormally folded proteins in cellular stress, are induced 
through the HIF‑1α pathway during hypoxia, and the existing 
evidence also demonstrates that, in newborns, HSPs transform 
into the mature conformation, and HSP70 and HSP90 serve 
an important role in the post‑translational process (106). The 
AMPK‑histone deacetylase 5 signaling pathway promotes 
HIF‑1α through the deacetylation of HSP70 in the cyto‑
plasm (107,108). The nuclear accumulation of HIF‑1α and the 
activation of HIF‑1α function indicate that RIPC mediates 
ischemic protection through the interaction between AMPK, 
HIF‑1α and HSP70 (109). In addition, exercise preconditioning 
is a special neuronal IPC, which may induce brain tolerance 
to ischemia, enhance neuroprotection and resist a series of 
brain damages caused by ischemia (110,111). Previous studies 
have demonstrated that exercise pretreatment 3 weeks before 
stroke improves the structural integrity of the brain microvas‑
cular structure in rats (112‑114). This effect may be related to 
HIF‑1α. The pre‑IPC exercise induces cerebral IT mediated by 
neurons and astrocytes by increasing the expression levels of 
HIF‑1α (115,116). In addition, HIF‑1α triggers the expression 
of endothelin 1, increases the expression of B‑type natriuretic 
peptide and has a neuroprotective effect (117).

6. Role of HIF‑1α in the protective effects of natural 
compounds against cerebral ischemia

Platelet drugs and thrombolytic drugs are the only ischemic 
stroke drugs supported by strong clinical evidence  (118). 
However, the application of these two treatment methods is 
often limited by the potential risk of cerebral hemorrhage and 
a narrow treatment time window. In general, after decades of 
practice and investigation, the number of effective interven‑
tions for ischemic stroke is limited. Therefore, it is necessary to 
study further feasible and effective treatment options. A number 
of studies (119‑122) have demonstrated that certain natural 
compounds, chemical drugs and traditional Chinese medicine 
compounds may alleviate cerebral ischemic injury through 
HIF‑1α. A previous study found that certain compounds and 
traditional Chinese medicines serve a role in angiogenesis 
and vascular protection through the HIF‑1α/VEGF signaling 
pathway, thereby protecting against cerebral ischemic 
injury (123). In vivo and in vitro studies have demonstrated 

that catalpol directly activates the HIF‑1α/VEGF signaling 
pathway in the brain and primary cerebral microvascular ECs 
of rats with cerebral ischemia, protects the vascular structure 
and promotes blood vessel generation (120). Astragaloside IV 
activates the HIF‑1α/VEGF/Notch signaling pathway through 
miRNA‑210 to promote angiogenesis (121). Fluoxetine induces 
a cascade of events leading to the upregulation of the expression 
of HIF‑1α‑Netrin/VEGF protein, promotes angiogenesis after 
ischemic stroke and improves long‑term functional recovery 
after ischemic stroke (122,123). Racemic dl‑3‑n‑butylphthalide 
treatment could also promote functional recovery after focal 
transient cerebral ischemia, and this recovery and dl‑NBP may 
upregulate the expression of HIF‑1α‑VEGF and Notch‑Dll4, 
and then affect the integrity of white matter, the number 
of capillaries and the expression of tight junction protein 
occludin (124). In addition, certain compounds serve a neuro‑
protective role by regulating HIF‑1α. Berberine pretreatment 
enhances the accumulation of HIF‑1α by activating PI3K/Akt 
and induces the production of sphingosine‑1‑phosphate (S1P) 
by promoting HIF‑1α‑mediated sphingosine kinase 2 (Sphk2) 
transcription and activation of Sphk2. S1P protects neuronal 
cells against hypoxia and ischemia by activating high‑affinity 
G protein‑coupled receptors, and serves an important protec‑
tive role in tissue I/R injury (125). Methylene blue protects 
hippocampal‑derived neuronal cells from OGD‑reoxygenation 
damage by increasing the content of HIF‑1α protein and acti‑
vating the EPO signaling pathway (126). Salidroside induces 
the production of HIF‑1α subunit and EPO via the PI3K/Akt 
signaling pathway, and exerts anti‑inflammatory effects on 
cerebral ischemia and reperfusion (127). Certain drugs inhibit 
HIF‑1α to exert neuroprotective effects, while others upregu‑
late HIF‑1α to produce the same effect. Curcumin exerts a 
neuroprotective effect by inhibiting the interaction between 
HIF‑1α and autophagy in cerebral I/R injury (128). A recent 
study has reported that nateglinide stabilizes HIF‑1 cerebral 
I/R injury by inhibiting STAT‑3 phosphorylation and stops the 
expression of HIF‑1α‑dependent inflammation and mediators 
of apoptosis, namely phorbol‑12‑myristate‑13‑acetate‑induced 
protein 1 and NF‑κB (129). Different drugs have a neuropro‑
tective effect through the opposite regulation of HIF‑1α, which 
may be due to the different mechanisms of HIF‑1α in the 
neuroprotective effect of cerebral ischemia. Different drugs 
affect different pathways by activating or inhibiting HIF‑1α, 
and serve a role in cerebral ischemia. Angelica  sinensis 
has a neuroprotective effect on astrocyte‑mediated infarct 
expansion through HIF‑1α‑mediated angiogenesis, as well 
as HIF‑1α‑mediated anti‑apoptotic effects. Angelica sinensis 
activates p38/MAPK/HIF‑1α/VEGF‑A/cAMP‑response 
element binding protein/von Willebrand factor signaling to 
mediate angiogenesis  (130). In addition, the anti‑apoptotic 
effect of Angelica sinensis has been attributed to the acti‑
vation of the HIF‑1α/VEGF‑A/p‑Bad signaling pathway 
mediated by p38/MAPK (130). This activation could lead to 
Bad inactivation, maintain the integrity of the outer mitochon‑
drial membrane and prevent cytochrome caspase‑3‑mediated 
apoptosis in the cortical ischemic penumbra, thereby exerting 
an anti‑apoptotic effect (130). In addition, a previous study 
demonstrated that ligustilide can inhibit the upregulation 
of HIF‑1α, VEGF and aquaporin  4 in an OGD‑induced 
blood‑brain barrier model and reduce the permeability of the 
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OGD‑induced blood‑brain barrier in an in vitro model (131). 
Bu Yang Huan Wu decoction has a protective effect on the 
brain I/R injury in MCAO rats by inhibiting the activation of 
the HIF‑1α/VEGF signaling pathway in the brain and stabi‑
lizing the β epithelial Na+ channel ion channel, suggesting that 
Bu Yang Huan Wu decoction may be used to treat acute brain 
injury during stroke (Table I) (132).

7. Concluding remarks and future perspectives

An increasing number of studies have demonstrated that HIF‑1α 
serves a key role in cerebral ischemia. The present review 
describes the means by which HIF‑1α is activated during cerebral 
ischemia and how it serves a protective role in cerebral ischemic 
tissues in terms of angiogenesis and neuroprotection. In terms of 
neuroprotection, since HIF‑1α expression in ischemic stroke may 
be controlled by different mechanisms, HIF‑1α has a dual effect. 
In addition, when cerebral ischemia occurs, endogenous regula‑
tory factors directly or indirectly regulate HIF‑1α, which may 
be the key mechanism of endogenous protection during cerebral 
ischemia. Recent research has also revealed that preconditioning 
has a positive therapeutic effect on cerebral ischemia and may 
become a novel clinical treatment for cerebral ischemia. Natural 
medicines and traditional Chinese medicines could be used to 
treat cerebral ischemia by regulating HIF‑1α. HIF‑1α is expected 
to become a novel target for the treatment of cerebral ischemic 
diseases, and identifying the effect of natural products on HIF‑1α 
is also a future research direction.

Whether the signals and pathways initiated by HIF‑1α in 
hypoxia (or hypoxic diseases) serve the same role in cerebral isch‑
emia needs to be further confirmed. As HIF‑1α regulates multiple 
downstream target genes, and the related pathways and mecha‑
nisms are complex, the current literature on the mechanism of 
HIF‑1α in cerebral ischemia is not comprehensive and in‑depth. 
Therefore, it is necessary to further study the role and mechanism 
of HIF‑1α in the pathophysiology of cerebral ischemia.
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