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ABSTRACT: As in other areas, artificial intelligence (AI) is heavily promoted in different
scientific fields, including chemistry. Although chemistry traditionally tends to be a
conservative field and slower than others to adapt new concepts, AI is increasingly being
investigated across chemical disciplines. In medicinal chemistry, supported by computer-
aided drug design and cheminformatics, computational methods have long been employed
to aid in the search for and optimization of active compounds. We are currently witnessing
a multitude of AI-related publications in the medicinal-chemistry-relevant literature and
anticipate that the numbers will further increase. Often, advances through AI promoted in
such reports are difficult to reconcile or remain questionable, which hampers the
acceptance of computational work in interdisciplinary environments. Herein we attempt to
highlight selected investigations in which AI has shown promise to impact medicinal
chemistry in areas such as compound design and synthesis.

■ INTRODUCTION

In chemistry, the term artificial intelligence (AI) currently
mostly refers to machine learning (ML) andto a lesser
extentrobotics, which only represent a part of the
methodological AI spectrum.1 Other AI approaches such as
recommendation or expert systems are just beginning to be
considered. In medicinal chemistry, supported by cheminfor-
matics, ML has a history of more than two decades, especially
for molecular property prediction and virtual compound
screening.2 Here AI is by and large associated with deep
learning (DL),3 for which a great variety of deep neural
network (DNN) architectures and learning strategies have
become available.4 Currently many publications are appearing
that investigate DL and DNNs for property predictions. In
medicinal chemistry, compound property predictions are
generally based on predefined molecular representations and
data sets that are small in size compared to those used in areas
where DL has made a substantial impact, such as image
analysis or natural language processing.3 Under these
conditions, DNNs have for the most part not yielded
significant advances compared to standard ML algorithms.3

More often than not, minor increases in prediction accuracy by
DNNs under typical benchmark conditions are promoted as
substantial improvements, which is not meaningful, especially
if alternative ML approaches already perform at the 90+%
accuracy level. Of note, representation learning, a hallmark of
DL in other fields, is also being increasingly investigated in
cheminformatics and medicinal chemistry. New DNN
architectures are frequently proposed to derive (model-
internal) molecular representations from graphs or images.

Currently available results are heterogeneous. In a number of
cases, the performance of learned representations in property
predictions was comparable (or inferior) to that of descriptor-
based representations. In others, such as molecular-graph-
based learning using message-passing DNNs, improvements
were observed for predictions on a variety of data sets.5

However, representation learning generally benefits from the
availability of large data sets, which limits its general
applicability. Moreover, the extent to which relative
representation-dependent differences in model performance
detected in benchmark settings might affect prospective
applications remains largely unknown.
In compound property prediction, DL has not been shown

to substantially and consistently outperform standard ML
approaches; other applications should better be considered, as
discussed herein. In exploring potential advances of DL and
DNNs in medicinal chemistry and drug discovery, two
important aspects need to be taken into account. First, one
is still far away from a situation where algorithms would make
decisions beyond human reasoning.6,7 Instead, investigators
make the ultimate calls about new or further-improved active
compounds with the aid of ML/DL outputs. Second, practical
applications using DL beyond benchmarking are still rare in

Received: October 4, 2021
Accepted: November 18, 2021
Published: November 29, 2021

Mini-Reviewhttp://pubs.acs.org/journal/acsodf

© 2021 The Authors. Published by
American Chemical Society

33293
https://doi.org/10.1021/acsomega.1c05512

ACS Omega 2021, 6, 33293−33299

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Filip+Miljkovic%CC%81"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Raquel+Rodri%CC%81guez-Pe%CC%81rez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ju%CC%88rgen+Bajorath"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.1c05512&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05512?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05512?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05512?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05512?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/6/49?ref=pdf
https://pubs.acs.org/toc/acsodf/6/49?ref=pdf
https://pubs.acs.org/toc/acsodf/6/49?ref=pdf
https://pubs.acs.org/toc/acsodf/6/49?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.1c05512?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


medicinal chemistry,6 and such prospective applications are of
critical importance for the further development of the field.7

In the following, we attempt to highlight selected
investigations in medicinal chemistry where DL has thus far
made a notable impact with promise for the future. By its very
nature, our account remains at least in part subjective and,
given the scope of a mini-review, cannot possibly be
comprehensive. Rather, it aims to point at a number of
developments that depend on new learning architectures and
have potential for prospective applications.

■ NEW CHEMICAL MATTER

We begin the discussion by addressing upfront the question
that is most interesting and important for the practice of
medicinal chemistry: Has AI/DL already impacted compound
design and optimization in a measurable way? In other words,
have novel molecules been obtained that have advancedor
are expected to advancedrug discovery?
As stated above, reports of prospective AI/DL applications

including the generation of new chemical matter are currently
rare, and the state of the art is difficult to judge in scientific
terms. Currently, news about significant advances predom-
inantly originate from AI companies and startups, claiming the
generation of novel chemical matter with attractive activities
and/or the achievement of significant shortcuts in bringing
new compounds through development pipelines. This may be
so, but as long as the results of such efforts are not disclosed
and reported in a scientifically rigorous manner, the claims
need to be disregarded. Some case studies that have been
reported are controversial.8 While virtual compound screening
studies using ML including DNNs continue to produce
experimentally confirmed hits, as has been the case for many
years, these molecules are typically active against well-explored
targets for which many potent compounds are already
available. We also note that active compounds identified
using complex computational methods cannot be claimed to
“validate” such approaches as long as it is not conclusively
shown that simpler methods would not also identify them.
However, there are individual DL studies that have left a mark,
such as the discovery of new potential antibiotics, including
repurposed kinase inhibitors and other public-domain
compounds, using message-passing DNNs.9 In this case,
comprehensive control calculations showed that these
compounds were not identified using other computational
methods, and their antibiotic activities were confirmed in
extensive experiments. However, even in this exemplary
successful DL application, the potential of the newly identified

compounds to ultimately become antibiotics was called into
question from a medicinal chemistry perspective, and their
chemical novelty was disputed.10 Clearly, the bar for new
chemical matter in drug discovery is high, and it is too early to
judge the ability of AI to make a substantial difference.
Publication of more prospective applications will be required.
This also applies to generative de novo design, which is one of
the current growth areas of DL in medicinal chemistry, as
discussed in the following. Also here, most current work
concentrates on what might potentially be accomplished using
DL and thus must primarily be considered from a
methodological viewpoint, whereas breakthroughs in prospec-
tively generating new chemical matter remain to be reported in
a more consistent and rigorous manner.

■ SYNTHETIC CHEMISTRY

Computer-aided synthesis planning (CASP) aims at accelerat-
ing the decision-making process by which medicinal chemists
choose the most appropriate routes to synthesize new
compounds. In addition to drug exposure, efficacy, and safety,
synthetic feasibility represents a key determinant of candidate
progression toward the clinic. Accordingly, prediction of
chemical reactions and their success rates remains highly
relevant for drug discovery, from its early stages focusing on
design−make−test−analyze (DMTA) cycles to large-scale
manufacturing processes. CASP has its origins in retrosynthetic
analysis (decomposing compounds into precursors), which was
introduced in the 1960s. ML was first applied for synthesis
prediction by Gelernter et al., who developed a production-
quality knowledge base named SYNCHEM composed of
applications for inductive generalization (ISOLDE), explan-
ation-based learning (TRISTAN), and conceptual clustering
(BRANGÄNE).11 Albeit methodologically complex, SYN-
CHEM established a foundation for a growing number of
subsequent ML applications, including both retrosynthetic and
forward reaction prediction. CASP via ML is generally
complicated because of the lack of “negative” reaction
examples, which are typically not reported. Consequently,
this precludes supervised learning to distinguish between viable
and nonproductive reactions. Accordingly, Coley et al. used
data augmentation to supplement negative data samples and
predict major reaction products from sets of reactants.12 The
strategy was successfully applied to automatically extract
reaction templates, requiring no further manual curation and
revision of reaction specificity. This was most likely the first
large-scale application of generalized reaction templates (rather
than individual reactions) combined with harmonization of

Figure 1. Artificial intelligence in chemical synthesis. Shown is a blueprint for fully automated AI-driven compound generation and synthesis
executed by a robotic platform.
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successful high-yielding reactions and sampled artificial
negative representations. Moreover, Coley et al.12 abandoned
the traditional use of reactant and product fingerprints and
instead focused on transformations at the reaction sites. The
two-step model framework consisting of cross-validated
forward enumeration and candidate prioritization resulted in
a ranking of final products at the top-1, top-3, and top-5
positions in 72%, 87%, and 91% of the cases, respectively. We
note that cross-validation is a widely adopted strategy to
evaluate the performance of ML models and is not limited to
computational synthesis planning. To evaluate their work in
practice, the same group of authors developed an open-source
CASP retrosynthetic software that was linked to an
experimental robotic platform.13 Once again, generalized
reaction templates were applied to suggest appropriate
synthetic routes that were sequentially examined in silico,
reviewed by expert chemists, and then executed by the robotic
platform. The potential of this end-to-end AI setup was
demonstrated for 15 drug-like compounds, probed in the order
of increasing chemical complexity, setting a milestone for fully
autonomous chemical synthesis,13 as schematically illustrated
in Figure 1. According to the authors, the growing presence of
reaction data should further advance the development AI-
mediated robotic synthesis.
Novel methodologies successfully applied in one field often

become relevant in another where related yet scientifically
different tasks are tackled. An exemplary success story involved
the adaptation of DNN architectures originally used in natural
language processing for sequence-to-sequence transformation
to model retrosynthetic tasks.14 The authors built an encoder-
decoder system composed of two recurrent neural networks
(RNNs) and trained models on 50 000 atom-mapped U.S.
patent reactions from 10 generally defined reaction classes.
The work revealed several advantages over rule-based expert
systems, including an end-to-end training procedure, better
scaling to larger data sets, and global structural environments
for reaction species.14 Although retrosynthetic algorithms
largely operate on reaction templates, template-free approaches
like that of Liu et al. are of interest for several reasons: first, the
potential imbalance of specificity versus generality of reaction
templates might lead to recommendations that are either of
low synthetic quality or incomplete; second, handling subgraph
isomorphism in template-based approaches can become
computationally unfeasible; and third, template-free ap-
proaches have the potential to propose novel synthetic routes.
As discussed above, CASP algorithms mainly operate on

known chemical compounds with well-defined synthetic routes
that give relatively high yields. In de novo generative design,
however, a large fraction of the suggested compounds typically
suffers from limited synthesizability, even though currently
available tools fairly reproduce external reference drugs.
Therefore, synthetic feasibility assessment is highly desirable
to support the generation of novel small-molecule therapeutics.
To this end, Gao et al. applied a data-driven CASP approach to
measure the frequency of de novo-generated compounds with
questionable synthetic tractability.15 Their analysis revealed
that a significant proportion of de novo-generated molecules
contained unrealistic chemical/structural features, despite
promising benchmark system performance. Distribution
learning methods were frequently found to generate com-
pounds with synthetic potential comparable to that of the
corresponding training sets, whereas goal-directed generation
methods displayed a higher risk of producing top-ranking

compounds with limited or no synthetic feasibility. The
authors evaluated several available synthetic accessibility
scores, which often improved synthesizability at the cost of
detracting from the main objective, i.e., structural novelty. As
generative models continue to gather considerable attention in
drug discovery, their further refinement was viewed alongside
CASP algorithms through either post hoc filtering or
implementation of novel accessibility scores.15

The availability of open-source CASP software is of
paramount importance not only for quality and reproducibility
assessment by the scientific community, but also for medicinal
chemistry teams who do not have the capacity to develop a
tool of their own. Moreover, intuitive and user-friendly
interfaces would further increase their attractiveness and
adoption in medicinal chemistry programs. Although a few
such software systems currently exist, many others are not
publicly available. Recently, Genheden et al. introduced
AiZynthFinder, a retrosynthetic planning software that is
publicly available for wider use.16 It is based on a Monte Carlo
tree search algorithm that recursively decomposes compounds
of interest into purchasable educts using a set of template-
based reaction rules. The code is highly maintainable, robust,
and well-documented for practitioners. Furthermore, the
authors encourage users to contribute their ideas to
incrementally improve model quality.
Evidently, synthesis prediction is an attractive area with

potential to impact and transform medicinal chemistry.
Gradual increases in validated learning strategies, reaction
data, and user accessibility are some of desirable characteristics
for future CASP tools.

■ COMPOUND DESIGN
Generative de novo design via DNNs aims at proposing
structurally novel molecules with desired properties such as
potency, suitable drug metabolism and pharmacokinetics
(DMPK) profiles, or synthetic accessibility. Earlier computa-
tional de novo design employed different methodological
frameworks such as incremental compound “growing” or
rule-based synthetic schemes. Triggered by the use of DNN
architectures, a large number of generative de novo design
studies have appeared in recent years (both on preprint servers
and in peer-reviewed journals), which are in part con-
troversially viewed.8 However, some studies indicated new
potential for medicinal chemistry from a methodological
viewpoint (but largely remain to demonstrate impact on
practical medicinal chemistry projects). In pioneering work,
Segler et al. adopted an RNN architecture trained on large
compound data sets to generate novel chemical structures.17

Similar to Liu et al.,14 the authors recognized the potential of
RNNs for de novo compound design and hence treated the
generation of SMILES representations of molecules as a
machine translation problem. The results showed that RNNs
based on long-term short memory (LSTM) units were capable
of producing chemically reasonable structures. The models
successfully captured training set distributions of physicochem-
ical properties and generated novel candidate compounds for
library design and virtual screening. Moreover, pretrained
RNNs were fine-tuned using a limited sample of biologically
active compounds for targets of interest to increase correct
predictions of known bioactive molecules.17 While the majority
of de novo design approaches construct molecules from scratch
(i.e., atom by atom), Aruś-Pous et al. followed an alternative
approach to grow analogue series from scaffolds;18 which was
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conceptually reminiscent of earlier compound growing
algorithms but methodologically distinct. Initially, a prepro-
cessing algorithm was applied for data augmentation to
systematically fragment all acyclic bonds and create a wealth
of scaffold-substituent clusters. Then analogue series were
generated from diverse chemical scaffolds using an LSTM-
based RNN architecture, and synthetically accessible com-
pounds were selected on the basis of retrosynthetic
decomposition rules.18

Generative models are typically trained on SMILES
notations to infer chemical syntax for compound generation.
These simplified textual molecular representations are
analogous to words/expressions in natural language processing,
where DNNs have yielded considerable success. While one-
dimensional representations such as SMILES strings are often
assumed to be sufficient for de novo design applications,
molecular graph representations are also considered as starting
points. Furthermore, among medicinal chemistry practitioners,
three-dimensional (3D) structure is predominantly perceived
as an information-rich representation. Skalic et al. were among
the first to utilize 3D information for generative de novo
design.19 Starting with a seed molecule, its shape, and
computed pharmacophoric features, the authors aimed at
generating lead-like molecules with characteristic shape-based
features. 3D structural representations perturbed via a
variational autoencoder (VAE) were processed through a
combination of convolutional neural network (CNN) and

RNN architectures to ultimately extract SMILES token
sequences. As expected, a main advantage of this approach is
shape-specific compound generation with the potential to
propose chemically novel scaffolds.19

Bridging between systems biology and molecular design,
Meńdez-Lucio et al. used a generative adversarial network
(GAN), conditioned with transcriptomics data, to generate
compounds with desirable transcriptomic profiles.20 De novo-
generated molecules shared greater chemical similarity to
active compounds than those associated with similar gene
expression signatures. Compared with typical de novo methods,
no prior knowledge of active compounds, bioactivities, or
target annotations was required, which minimized over-
representation of chemical entities typically dominating
training sets.20

Synthesis planning and de novo compound design, as
discussed above, would benefit from well-documented publicly
available custom code and computational tools. Such software
would lay the groundwork for further development and
improvement of compound generation methods and increase
their attractiveness for medicinal chemistry applications. One
such contribution was made by Blaschke et al., who introduced
REINVENT, an intuitive and expandable open-source frame-
work for de novo compound design.21 REINVENT aims to
provide both exploitation (users choose a focus area to
generate compounds with similar features) and exploration
potential (generating compounds with limited structural

Figure 2. Uncertainty estimation methods. Illustrated are approaches for estimating the uncertainty of ML predictions including similarity-based
assessment, ensemble models, combined (union-based) models, and mean-variance estimation, as discussed in the text.

ACS Omega http://pubs.acs.org/journal/acsodf Mini-Review

https://doi.org/10.1021/acsomega.1c05512
ACS Omega 2021, 6, 33293−33299

33296

https://pubs.acs.org/doi/10.1021/acsomega.1c05512?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05512?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05512?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05512?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c05512?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


similarity yet desired features). It is based on a deep
reinforcement learning (RL) architecture coupled with a
multiparameter optimization scoring scheme and chemical
diversity filters.21

Integrating compound design with fully automated synthesis
capacity is a particularly attractive task for medicinal chemistry,
as exemplified by the work of Coley et al.13 mentioned above.
Recently, Grisoni et al. combined generative design with a
microfluidics platform for on-chip chemical synthesis.22 DNN
model fine-tuning toward liver X receptor alpha (LXRα)
agonists yielded novel bioactive candidates for single-step
reactions via the microfluidics-assisted synthesis platform.
Twenty-five compounds were successfully synthesized, 17 of
which were active, including 12 potent LXRα agonists.22

■ UNCERTAINTY ESTIMATION AND ACTIVE
LEARNING

Uncertainty estimation for ML predictions is another
important area of research that has the potential to significantly
impact ML in medicinal chemistry.23 While model applicability
domains have been investigated for years, mostly on the basis
of similarity of test instances to training sets (Figure 2),24 state-
of-the-art ML models can yield accurate property predictions
for test compounds with limited training set resemblance.
However, comparably little efforts have been made to quantify
the uncertainly associated with given predictions. Different
frameworks for uncertainty estimation have been reported,
such as frequentist analysis or Bayesian approaches. Modeling
on the basis of Bayes’ theorem derives posterior distribution
estimates for prediction outcomes, which can be translated into
a measure of uncertainty associated with predictions. Despite
these efforts, robust and generally applicable approaches for
uncertainty quantification are currently not available. In recent
years, one of the most popular methodologies has been
conformal prediction.25 This framework enables the generation
of prediction intervals for test compounds. Depending on the
desired confidence level (and nonconformity score), the width
of the prediction interval varies.26 Extensions of conformal
prediction have also been proposed. However, this method-
ology also has intrinsic limitations, and the underlying data
randomness and exchangeability assumptions are not always
met,27,28 hence limiting its general applicability. Ensemble
modeling (Figure 2) is another frequentist strategy for
probabilistic estimation that relies on the majority or weighted
voting of participating predictors. Ensemble models can be
generated by the same algorithm, e.g., executed with different
random initializations or resampling, but can also integrate
distinct ML methods and molecular representations. For
example, Corteś-Ciriano and Bender introduced DNN
ensemble predictions in which network weights were saved
as snapshots at local minima during the optimization phase.27

The authors integrated the conformal prediction framework
and obtained results similar to those produced by independ-
ently trained DNNs. Of note, Bayesian NNs yield the complete
posterior probability distribution for predictions but quickly
become impractical for larger data sets.29 In recent work,
Hirschfeld et al. have benchmarked different uncertainty
quantification approaches for regression modeling.30 None of
the evaluated methods succeeded in accurately ranking
predictions by absolute error, and the relative performance of
the approaches heavily depended on the applied metrics.
Nonetheless, the authors recommended a combination of
message-passing neural networks (MPNNs) and random forest

(RF) as an appropriate approach. Accordingly, an MPNN is
trained, and the latent representation is used as input for an RF
model to obtain a probabilistic prediction (Figure 2). Other
approaches that consistently performed well in different
comparisons included the combination of MPNN with
Gaussian process modeling as well as a mean-variance-
estimation MPNN, which modifies the MPNN output layer
to predict both the mean and the variance of a given property
(Figure 2). However, a standard RF model trained using
molecular fingerprints yielded a strong (baseline) reference.30

In light of these findings, Soleimany et al. proposed a new
uncertainty quantification method for property prediction
based on evidential DL.31 Following this approach, learning is
considered as an evidence acquisition process in which newly
selected training instances further support the learned
distribution. The loss function and output layer of any NN
architecture can be modified to incorporate this uncertainty
estimation. The method achieved stronger correlation between
estimated uncertainties and model errors than ensemble
approaches or dropout sampling methods.31

The concept of active learning is closely related to
uncertainty quantification.32 Active learning refers to the
iterative process of retraining a model with increasing numbers
of labeled instances, aiming to minimize learning sets by
concentrating on the most informative data points (Figure 3).

To improve model performance and generalization, the
selection strategy typically focuses on uncertainty estimates.32

In addition to uncertainty estimation, greedy selection and
other approaches are also applicable to guide active learning. If
uncertainty is estimated, compounds predicted with high
uncertainty (corresponding to high information entropy) are
generally selected for addition to the training set (which is
called exploration learning), and selection frequently relies on
positive predictions (model exploitation).33 For instance,
active learning was applied to predict the outcome of new
reactions. In a retrospective analysis, ML models were trained

Figure 3. Active learning scheme. Shown is an exemplary iterative
active learning cycle. Experimental results are used to train ML
models, and uncertainty estimation enables the selection of
informative outputs, which are reconfirmed and included in training
sets.

ACS Omega http://pubs.acs.org/journal/acsodf Mini-Review

https://doi.org/10.1021/acsomega.1c05512
ACS Omega 2021, 6, 33293−33299

33297

https://pubs.acs.org/doi/10.1021/acsomega.1c05512?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05512?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05512?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05512?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c05512?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


for reaction screening, and the selection of experiments with
high information content led to superior models compared
with random selection.34 Another recent application of active
learning was reported in the context of protein−ligand
docking. A DNN was trained to predict docking scores on
the basis of chemical structure and applied to a library of 1.36
billion compounds. Predictions were used to update virtual hits
and select candidates for docking, which were included in the
training set for the next iteration. The approach required 50-
times fewer molecules than standard docking for comparably
high hit recall.35 Notably, Hie et al. applied an active learning
approach based on Gaussian process models in prospective
applications leading to the identification of compounds with
nanomolar kinase activity as well as inhibitors of Mycobacte-
rium tuberculosis.36 Active learning is of particular interest for
medicinal chemistry, as many available data sets are relatively
small, and this approach provides a viable complement or
alternative to DL. Notably, active learning and DL are not
mutually exclusive, as exemplified by the use of multitask and
transfer learning strategies that are pursued using DNNs and
also benefit from most informative training instances establish-
ing correlations between related yet distinct prediction tasks.

■ CONCLUSIONS

DL and other AI approaches are increasingly being considered
across different chemical disciplines, and their popularity is
anticipated to further increase. Given the traditionally strong
orientation of cheminformatics toward drug discovery, it is not
surprising that medicinal chemistry is one of the focal points of
DL/AI in chemistry. While most of the current efforts
concentrate on the development and calibration of new
computational methods, prospective applications demonstrat-
ing their impact are still rare. Given strong claims that are
occasionally placed concerning the potential of AI to
“revolutionize” drug discovery (which no single approach or
technology has ever accomplished), it is of utmost importance
for the further development and acceptance of new computa-
tional concepts to balance the hype associated with AI in this
and other fields. In medicinal chemistry, DL using a variety of
DNN architectures adapted from other fields and robotics are
the prevalent AI approaches. Herein we have attempted to
highlight selected studies that have made a demonstrated
impact on the field, mostly at the methodological level, given
the current sparsity of prospective applications reported in a
scientifically rigorous manner. While progress in compound
property predictions has been limited, despite heavy use of
DNN architectures, for reasons discussed herein, DL has
opened the door to exploring tasks in areas such as chemical
synthesis or compound design that would be difficult if not
impossible to address using shallow ML approaches. Here a
methodological framework is being generated with promise to
put medicinal chemistry on a new level, provided that it is
possible to translate methodological advances into demon-
strated success in practical applications, which might eventually
circumvent roadblocks on the paths to new small-molecule
drugs. Clearly, it is too early to judge, but there is potential in
some areas to make a difference if new computational concepts
are not oversold, but evaluated in a scientifically rigorous
manner.
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