Table 13.
Model | Accuracy | Precision | Recall | F-measure | AUC | Training time |
---|---|---|---|---|---|---|
Haralick input features | ||||||
SVM-2D | 93.00 | 0.9386 | 0.9300 | 0.9343 | 0.9940 | 1.6 |
SVM-3D | 90.20 | 0.9181 | 0.9200 | 0.9190 | 0.9910 | 1.8 |
SVM-RBF | 91.20 | 0.9252 | 0.9120 | 0.9186 | 0.9700 | 1.5 |
MLP-50 | 61.60 | 0.6160 | 0.6160 | 0.6159 | 0.6600 | 6.4 |
MLP-100 | 70.10 | 0.8083 | 0.7010 | 0.7508 | 0.8000 | 9.3 |
MLP-200 | 76.10 | 0.7947 | 0.7610 | 0.7775 | 0.7800 | 12.2 |
RF-100 | 68.50 | 0.7652 | 0.6850 | 0.7229 | 0.8500 | 6.4 |
RF-500 | 68.70 | 0.7665 | 0.7210 | 0.7431 | 0.9600 | 31.8 |
RF-1000 | 68.90 | 0.7676 | 0.6890 | 0.7262 | 0.9620 | 63.5 |
Haralick-plus-Zernicke input features | ||||||
SVM-2D | 93.40 | 0.9417 | 0.9340 | 0.9378 | 0.9950 | 1.7 |
SVM-3D | 92.70 | 0.9363 | 0.9270 | 0.9316 | 0.9930 | 2.4 |
SVM-RBF | 91.70 | 0.9788 | 0.9170 | 0.9469 | 0.9600 | 1.6 |
MLP-50 | 76.00 | 0.8132 | 0.7600 | 0.7857 | 0.7900 | 7.5 |
MLP-100 | 77.40 | 0.7874 | 0.7740 | 0.7806 | 0.7200 | 10.8 |
MLP-200 | 78.30 | 0.8123 | 0.7830 | 0.7974 | 0.7800 | 13.2 |
RF-100 | 71.10 | 0.7852 | 0.7110 | 0.7463 | 0.9600 | 7.3 |
RF-500 | 72.00 | 0.7903 | 0.7200 | 0.7535 | 0.9650 | 36.5 |
RF-1000 | 72.10 | 0.7893 | 0.7210 | 0.7536 | 0.9680 | 74.0 |
Accuracy is in percentage while the training time is measured in seconds.