Skip to main content
. 2021 Dec 16;192:116366. doi: 10.1016/j.eswa.2021.116366

Table 13.

Numerical results of the shallow models of Table 12 when they are used to classify the Haralick and Haralick-plus-Zernicke input features extracted from the CP and NCP scans of the test dataset of Table 3.

Model Accuracy Precision Recall F-measure AUC Training time
Haralick input features

SVM-2D 93.00 0.9386 0.9300 0.9343 0.9940 1.6
SVM-3D 90.20 0.9181 0.9200 0.9190 0.9910 1.8
SVM-RBF 91.20 0.9252 0.9120 0.9186 0.9700 1.5
MLP-50 61.60 0.6160 0.6160 0.6159 0.6600 6.4
MLP-100 70.10 0.8083 0.7010 0.7508 0.8000 9.3
MLP-200 76.10 0.7947 0.7610 0.7775 0.7800 12.2
RF-100 68.50 0.7652 0.6850 0.7229 0.8500 6.4
RF-500 68.70 0.7665 0.7210 0.7431 0.9600 31.8
RF-1000 68.90 0.7676 0.6890 0.7262 0.9620 63.5

Haralick-plus-Zernicke input features

SVM-2D 93.40 0.9417 0.9340 0.9378 0.9950 1.7
SVM-3D 92.70 0.9363 0.9270 0.9316 0.9930 2.4
SVM-RBF 91.70 0.9788 0.9170 0.9469 0.9600 1.6
MLP-50 76.00 0.8132 0.7600 0.7857 0.7900 7.5
MLP-100 77.40 0.7874 0.7740 0.7806 0.7200 10.8
MLP-200 78.30 0.8123 0.7830 0.7974 0.7800 13.2
RF-100 71.10 0.7852 0.7110 0.7463 0.9600 7.3
RF-500 72.00 0.7903 0.7200 0.7535 0.9650 36.5
RF-1000 72.10 0.7893 0.7210 0.7536 0.9680 74.0

Accuracy is in percentage while the training time is measured in seconds.