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Abstract

Single-cell RNA sequencing has revealed extensive transcriptional cell state diversity in cancer, 

often observed independently of genetic heterogeneity, raising the central question of how 

malignant cell states are encoded epigenetically. To address this, here we performed multiomics 

single-cell profiling–integrating DNA methylation, transcriptome and genotype within the same 

cells–of diffuse gliomas, tumors characterized by defined transcriptional cell state diversity. 

Direct comparison of the epigenetic profiles of distinct cell states revealed key switches for state 

transitions recapitulating neurodevelopmental trajectories and highlighted dysregulated epigenetic 

mechanisms underlying gliomagenesis. We further developed a quantitative framework to directly 

measure cell state heritability and transition dynamics based on high-resolution lineage trees 

in human samples. We demonstrated heritability of malignant cell states, with key differences 

in hierarchal and plastic cell state architectures in IDH-mutant glioma versus IDH-wild-type 

glioblastoma, respectively. This work provides a framework anchoring transcriptional cancer cell 

states in their epigenetic encoding, inheritance and transition dynamics.

Single-cell RNA sequencing (scRNA-seq) of human tumors provides a powerful means 

to systematically interrogate the diversity of malignant and normal cell states. Recent 

studies have highlighted transcriptional cell state diversity across tumor types that is often 

independent of genetic clonal heterogeneity1–3. Thus, tumors are composed of admixtures 

of cells that differ in central phenotypes1,4–7, prompting several key questions. For example, 

how are transcriptional cell states encoded epigenetically? How heritable are malignant cell 

states? Further, what are the transition dynamics between cell states? While exploration of 

these central aspects of cancer cell states has begun in model organisms using artificial 

constructs for lineage tracing8–12, these questions remain largely unexplored in primary 

patient samples.

Human gliomas serve as an instructive model to address these questions, as cell state 

diversity is an important disease hallmark of both IDH-mutant (IDH-MUT) glioma and 

IDH-wild-type glioblastoma (GBM), with malignant cells recapitulating trajectories of 

neural development13–16. Stemness-to-differentiation diversity is central to the glioma stem-

cell (GSC) model, which posits that stem-like cells are uniquely capable of self-renewal, 

tumor propagation and preferential resistance to therapy17–19. Recent scRNA-seq profiling 

of gliomas provided high-resolution mapping of cell state diversity and offered additional 

granularity to the GSC model by revealing multiple transcriptionally defined cell states 
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related to neurodevelopmental cell types, which are in part independent of intratumoral 

genetic diversity7,16,20–26. Yet, while cellular states can be precisely delineated by scRNA-

seq, transcriptional information provides only a snapshot of the current state of the cell; 

therefore, glioma cell state heritability and transition dynamics are not readily discernable. 

Indeed, while malignant cell states may be propagated epigenetically27–30, the epigenetic 

underpinning of glioma cellular states is still largely unknown.

This question is of clinical relevance as heritable expression programs may be related to 

non-genetic mechanisms of therapy resistance in cancer5,6. Increased plasticity allowing 

for both differentiation and dedifferentiation may also offer a mechanism by which 

tumors could replenish their stem-cell compartment under therapeutic pressure. Attempts at 

addressing the dynamics of cell state transitions in glioma samples with stand-alone scRNA-

seq modalities (for example, by RNA velocity31) have generated conflicting results32, 

suggesting that additional technological and analytical breakthroughs are required. To 

address these questions, we applied joint capture of transcriptional, genetic and epigenetic 

information at single-cell resolution33 to primary diffuse gliomas. We leveraged this 

approach to increase the resolution of single-cell identification of copy number alterations 

(CNAs), demonstrate significant DNA methylation intratumoral heterogeneity (ITH), and 

reveal the epigenetic encoding, heritability and plasticity of cell states in glioma.

Results

High-resolution CNA mapping by single-cell multiomics.

We profiled viable cells enriched for CD45− cells from GBM (n = 7) and IDH-MUT 

glioma (n = 7) primary patient samples with multimodality single-cell sequencing of 

DNA methylation (scDNAme; by multiplexed single-cell reduced-representation bisulfite 

sequencing (MscRRBS)), scRNA-seq (Smart-seq2; ref. 34) and targeted genotyping33 (Fig. 

1a, Extended Data Figs. 1 and 2, and Supplementary Tables 1 and 2). After quality control, 

we obtained a mean of 113 cells per sample (range, 28-339 cells), with DNA methylomes 

with a mean ± s.e.m. of 198,345 ± 4,307 unique CpGs per cell and transcriptomes with 

a mean ± s.e.m. of 6,348 ± 43 genes per cell (Supplementary Table 3), comparable to 

results with stand-alone full-length scRNA-seq7,21,22. We then separated malignant cells 

from non-malignant cells on the basis of clustering of either gene expression or DNA 

methylation data (Fig. 1b and Extended Data Fig. 2c). Non-malignant cells expressed either 

typical oligodendrocytic markers (for example, PLP1) or myeloid cell markers (for example, 

CD14) (Extended Data Fig. 3a).

To orthogonally validate malignant versus non-malignant classification, we identified CNAs 

within each cell on the basis of coverage depth imbalance in the DNA methylation data 

(Extended Data Figs. 1a and 2a). CNA inference by scDNAme enabled robust detection 

of amplifications and deletions in malignant cells, including the hallmark chromosome 7 

gain and chromosome 10 loss in GBM and chromosome 1p/19q co-deletion in IDH-MUT 

oligodendroglioma (IDH-O) (Extended Data Figs. 1a and 2a). While CNA inference by 

scDNAme correlated with CNA inference by scRNA-seq7,21 (Pearsons r = 0.73; Fig. 1c), 

direct comparison7,21 at clonal CNAs (identified by bulk whole-exome sequencing with 

matched samples) (Extended Data Fig. 3b) showed that scDNAme-based CNA inference 
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afforded greater resolution (Fig. 1d, Extended Data Fig. 3c and Supplementary Table 4) 

and enabled detection of focal amplifications of oncogenes (for example, EGFR, encoding 

epidermal growth factor receptor) and their neighboring enhancers35 (Fig. 1e and Extended 

Data Fig. 3d–f).

Higher-resolution scDNAme-based CNA inference further revealed the presence of genetic 

subclones in both GBM and IDH-MUT tumors (Extended Data Figs. 1a and 2a). For 

example, we identified distinct genetic subclones marked by either complete or partial 

chromosome 6 loss in four spatially distinct regions sampled from the same GBM tumor 

(MGH105) (Fig. 1f, top). Notably, copy number loss was associated with increased 

methylation, such that DNA methylation levels increased specifically in the chromosome 

6 segments lost in each subclone ([6p25–6p11], [6q12–6q15], [6q16–6q23.2] and [6q23.3–

6q27]; Fig. 1f, bottom). This pattern was observed more broadly, with increased DNA 

methylation with copy number loss (for example, loss of chromosome 10 in GBM or 

chromosomes 1p/19q in IDH-O tumors) and decreased DNA methylation with copy number 

gain (for example, gain of chromosome 7 in GBM or chromosomes 7/8 in IDH-MUT 

tumors) across patient samples (Fig. 1g and Extended Data Fig. 3g–i). While such an 

association between CNAs and subtle DNA methylation changes (<5% on average) has 

previously been observed in bulk samples36, the underlying mechanism remains unclear 

and may be related to recruitment of DNA methyltransferases (DNMT1 and DNMT3B) 

and Polycomb family members (SIRT1 and EZH2) at the chromosomal breaks that lead 

to CNAs37. The observed anticorrelation between copy number and DNA methylation may 

serve as a mechanism that amplifies gene expression changes due to CNAs38.

Single-cell DNA methylation analysis reveals significant DNA methylation ITH.

Diffuse gliomas have been classified into six distinct tumor subtypes (LGm1–LGm6) by 

bulk DNA methylation analysis39. LGm1–LGm3 are enriched for IDH-MUT tumors and 

show genome-wide hypermethylation, while LGm4–LGm6 are enriched for GBM tumors. 

We hypothesized that the scDNAme data might reveal ITH in these bulk DNA methylation 

profiles, that is, that each IDH-MUT tumor might be composed of an admixture of 

the LGm1–LGm3 DNA methylation subtypes, while each GBM tumor might span the 

LGm4–LGm6 subtypes. To test this hypothesis, we trained a classifier, robust across DNA 

methylation platforms, on 932 glioma samples from The Cancer Genome Atlas (TCGA)40,41 

profiled with the 450K methylation array and recovered the expected bulk DNA methylation 

subtypes, achieving a mean accuracy of 0.94 in fivefold cross-validation. When this 

classifier was applied to pseudo-bulk DNA methylation profiles (based on MscRRBS) of 

malignant cells in our samples, it assigned each sample to its expected DNA methylation 

subtype, with IDH-MUT pseudo-bulk DNA methylation profiles classified as LGm1, LGm2 

or LGm3 depending on their 1p/19q co-deletion status and GBM samples resolved into 

either LGm4 or LGm5 depending on their EGFR amplification status (Fig. 1h and Extended 

Data Fig. 3d–f). Notably, pseudo-bulk analysis of non-malignant glial and immune cells 

classified them into LGm6 (Fig. 1h), a subtype found in 77 of the 932 TCGA gliomas and 

associated with either GBM or pilocytic astrocytoma-like gliomas, suggesting that the tumor 

microenvironment may contribute to bulk subtype assignments to LGm6.
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We then scored each glioma single cell to the six tumor subtypes (LGm1–LGm6; Methods) 

and observed that single cells within individual IDH-MUT tumors spanned the LGm1–

LGm3 subtypes, while single cells within individual GBM tumors spanned the LGm4 

and LGm5 subtypes (Extended Data Figs. 1c and 2d,e). Such ITH in DNA methylation 

subtypes is important to recognize, as bulk DNA methylation profiling is increasingly being 

used for clinical classification of brain tumors42. In IDH-MUT tumors, no correlation with 

cellular states7 was detected, but instead we found an association with genome-wide DNA 

methylation levels (Fisher’s exact test, P < 2.5 × 10−8; Fig. 1i and Extended Data Fig. 2d–f), 

as previously observed in bulk DNA methylation profiles39. By contrast, in GBM, ITH in 

the LGm4 and LGm5 DNA methylation subtypes correlated with recently defined GBM 

cellular states based on the expression of defining gene modules in matching scRNA-seq 

profiles21 (correlation of LGm4 with AC- and MES-like cell states and LGm5 with NPC- 

and OPC-like cell states; cell state definitions below; Fisher’s exact test, P < 10−16) (Fig. 1i 

and Extended Data Fig. 1c,d).

GBM stem-like cells exhibit PRC2 target hypomethylation.

To define the distinct DNA methylation profiles of glioma cell states, we first classified 

glioma cells on the basis of expression of gene modules and cell cycle programs previously 

defined in scRNA-seq data7,21 (Methods). GBM samples exhibited four malignant cell 

states, spanning stem/progenitor-like cells (neural progenitor-like (NPC-like) cells and 

oligodendrocyte progenitor-like (OPC-like) cells) and more differentiated states associated 

with astrocyte-like (AC-like) or mesenchymal-like (MES-like) programs (Fig. 2a and 

Supplementary Table 5), with varying representation across samples and cell cycle 

expression (Extended Data Fig. 1b), as previously observed21.

Comparison of promoter DNA methylation between transcriptional cell states revealed 

that, while stem-like cells were markedly different from differentiated-like cells, smaller 

differences were present in promoter DNA methylation levels within stem-like cells or 

within differentiated-like cells (Fig. 2b, Extended Data Fig. 4a and Supplementary Table 6). 

These data suggest that these pairs of cell states are more closely related to each other and 

that regulatory mechanisms other than DNA methylation, such as interaction with the tumor 

microenvironment, may drive certain state transitions43. In line with cross-talk between 

GBM cells and immune cells driving MES-like cell state transitions43,44, immune response-

related genes were found to be upregulated in MES-like cells (Benjamini–Hochberg (BH) 

false-discovery rate (FDR)-adjusted P < 0.05; Extended Data Fig. 4b and Supplementary 

Table 7).

We thus focused our analysis on comparison of DNA methylation profiles between stem-

like and more differentiated-like states, identifying 459 promoter differentially methylated 

regions (DMRs) (Fig. 2c, Extended Data Fig. 4c,d and Supplementary Table 6). Hypo-

methylated promoters in AC- and MES-like cells were enriched for genes correlated with the 

‘classical’ TCGA GBM subtype (TCGA-CL)45, in line with the enrichment of AC-like cells 

in TCGA-CL (BH FDR-adjusted permutation-based P < 0.05; Fig. 2c,d, Extended Data Fig. 

4e and Supplementary Table 6).
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By contrast, we identified Polycomb repressive complex 2 (PRC2) targets46 as 

hypomethylated in NPC- and OPC-like cells as compared to AC- and MES-like cells 

(BH FDR-adjusted permutation-based P < 0.05; Fig. 2d, Extended Data Fig. 4e,f and 

Supplementary Table 6). These hypomethylated PRC2 targets were enriched for HOX (for 

example, HOXD8, HOX11 and HOXA6) and homeobox (for example, CDX2 and POU4F2) 

genes, as well as for transcription factors (for example, GATA5, GATA6, FOXL1 and 

LHX2) and growth factors (for example, FGF3–FGF5) (BH FDR-adjusted Fisher’s exact 

test, P < 0.05; Supplementary Table 6), previously reported to have a role in the epigenetic 

regulation of stemness in GBM47. Notably, NPC- and OPC-like cells exhibited DNA 

hypomethylation of PRC2 targets as compared to AC- and MES-like cells even within GBM 

samples from the same patient (Extended Data Fig. 4g–i), suggesting that PRC2 target DNA 

hypomethylation is a key determinant of stem-like GBM cell states48,49. This was further 

confirmed when using chromatin immunoprecipitation and sequencing (ChIP–seq) maps50 

for the PRC2 subunits EZH2 and SUZ12 (Mann–Whitney U test, P < 0.0001; Extended Data 

Fig. 4j). We similarly defined enhancer DMRs and found that the putative gene targets51 of 

hypomethylated enhancers in stem-like cells were also enriched for PRC2 targets46 (Fig. 2e 

and Supplementary Table 6). As direct cross-talk between PRC2 and DNA methylation has 

been reported52,53, these data suggest that DNA methylation marks cell states through its 

interaction with PRC2 and its ability to catalyze the addition of H3K27me3 marks.

To explore the link between DNA methylation and histone marks, we interrogated the 

differentially methylated promoters for enrichment of histone marks associated with 

non-overlapping regulatory functions47. While hypomethylated promoters in AC- and 

MES-like cells were predominantly marked by histone modifications associated with 

active transcription (H3K4me3, H3K27ac and H3K36me3), hypomethylated promoters in 

NPC- and OPC-like cells were enriched in bivalent (H3K4me3 + H3K27me3) chromatin 

(permutation-based P < 0.001; Fig. 2f and Extended Data Fig. 5a–e), suggesting that PRC2 

complex activity may result in poised transcription at these gene promoters54. Indeed, the 

PRC2 subunit EZH2 and its targets46 were found to be upregulated (>2-fold increase) in 

NPC- and OPC-like cells in comparison to AC- and MES-like cells (Extended Data Fig. 5f,g 

and Supplementary Table 7).

To further validate the association between the stem-like states and PRC2 activity, 

we reanalyzed data from GBM single-cell assay for transposase-accessible chromatin 

sequencing (scATAC-seq)55. GBM cells formed clusters associated with the four core 

malignant cellular states described by scRNA-seq (Extended Data Fig. 5h). Gene expression 

activity inferred from scATAC-seq open chromatin (Methods) revealed a positive correlation 

between PRC2 target accessibility and the NPC- and OPC-like cellular states in single cells 

(hypergeometric test, P = 0.0015; Fig. 2g and Extended Data Fig. 5i). Similarly, intersecting 

open chromatin with ChIP–seq maps revealed that binding sites for the PRC2 subunits 

EZH2 and SUZ12 were among the most enriched in NPC- and OPC-like cells as compared 

to AC- and MES-like cells (Fig. 2h).

To examine this association in a larger sample cohort, we leveraged 67 GBM samples from 

TCGA with matched bulk RNA-seq and 450K methylation profiles40,41. In line with our 

model, we found a positive correlation between the DNA methylation of PRC2 targets46 
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and glioma differentiation (Fig. 2i and Extended Data Fig. 5j), as well as an anticorrelation 

between the expression of PRC2 targets46 and glioma differentiation (Fig. 2j). These data 

confirm that PRC2 targets not only are hypomethylated but also show greater expression in 

stem-like cells. We note that these findings are consistent with the suppressive role of PRC2, 

as its targets showed lower gene expression than non-PRC2 targets across all GBM samples. 

However, the degree of repression was stronger in tumors enriched for differentiated-like 

cell states, where these gene promoters also underwent silencing through DNA methylation 

(Mann–Whitney U test, P < 0.0001; Extended Data Fig. 5k). As expected, PRC2 target 

promoter DNA methylation was lower in LGm5 cells (enriched for NPC- and OPC-like 

cells) than in LGm4 cells (enriched for AC- and MES-like cells) (Extended Data Fig. 6a). 

TCGA bulk glioma DNA methylation profiles recapitulated this finding with lower PRC2 

target DNA methylation in LGm5 tumors than in LGm4 tumors (Extended Data Fig. 6b,c). 

In fact, using just mean PRC2 target DNA methylation as a single feature in the classifier 

separated bulk glioma DNA methylation subtypes (LGm4 and LGm5)39 with comparable 

accuracy as the multinomial logistic regression classifier (area under the curve (AUC) of 

0.98 versus 0.99, respectively; Fig. 2k), suggesting that PRC2 target DNA methylation 

underlies the classification of GBM tumors by bulk DNA methylation.

Collectively, these data show that DNA methylation of PRC2 targets is a critical feature 

of GBM cell differentiation. This epigenetic encoding of glioma supports the parallels 

between glioma differentiation and physiological neurodevelopment where stemness is also 

marked by PRC2 target hypomethylation56. Maintaining PRC2 targets in a hypomethylated 

state in glioma stem-like states may thus preserve their stemness potential and allow their 

reactivation in response to stimuli.

Aberrant epigenetic and transcriptional mechanisms in IDH-MUT gliomas.

In line with previous reports, IDH-MUT malignant cells were found to be differentiated 

along the astrocytic (AC-like) or oligodendrocytic (OC-like) glial lineages, with a 

subpopulation of undifferentiated cells associated with an NPC-like expression program23 

(Extended Data Fig. 2b and Supplementary Table 5). Cells with cell cycle expression 

signatures were enriched in this latter subpopulation, supporting a model in which stem-like 

cells are primarily responsible for fueling the growth of IDH-MUT tumors7 (Extended 

Data Fig. 2b). In contrast to GBM, differentially methylated promoters in comparisons 

of stem-like cells with AC- and OC-like cells in IDH-MUT samples were not enriched 

for PRC2 targets (Extended Data Fig. 7a–g and Supplementary Table 8). In addition, 

we did not observe significant enrichment of bivalent and repressive chromatin marks 

at hypomethylated promoters in stem-like cells as compared to AC- and OC-like cells 

(Extended Data Fig. 7h–l), suggesting that different epigenetic patterning is at play in the 

maintenance of stemness in IDH-MUT gliomas.

Mutated IDH produces 2-hydroxyglutarate (2HG), an onco-metabolite and a competitive 

inhibitor of the TET family of 5-methlycytosine hydroxylases57. TET enzymes oxidize 

5-methylcytosines to promote demethylation, and deficiency in TET activity may lead 

to increased DNA methylation, primarily at regulatory elements58–61. Indeed, DNA 

methylation levels were highest in IDH-MUT cells as compared to GBM and non-malignant 
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cells at gene promoters (Mann-Whitney U test, P < 10−16; Fig. 3a). Comparison of 

GBM and IDH-MUT samples revealed that enhancers were particularly susceptible to 

hypermethylation in IDH-MUT cells (Mann–Whitney U test, P < 10−16; Fig. 3b), which also 

affected regions enriched for H3K27ac—a histone modification marking active enhancers62 

(Extended Data Fig. 8a,b). To obtain higher-coverage single-cell DNA methylomes in 

CpG-sparse regions, such as enhancers, we performed dual-restriction enzyme digestion 

(HaeIII + MspI) of cells from two IDH-MUT samples (MGH201 and MGH208). This 

allowed us to increase coverage to a mean of 325,492 ± 21,118 unique CpGs per cell as 

compared to IDH-MUT cells digested with a single restriction enzyme (Extended Data Fig. 

8a), thus enabling more accurate measurement of DNA methylation in regulatory regions. 

Enhancer hypermethylation was observed in both subsets of cells from IDH-MUT tumors 

exhibiting the glioma CpG island methylator phenotype (G-CIMP-low and G-CIMP-high 

subsets) (Extended Data Fig. 8c), supporting the preferential involvement of TET enzymes 

in the regulation of DNA methylation at enhancers59–61. We observed that enhancer DNA 

hypermethylation increased with differentiation to AC- and OC-like cells as compared to 

NPC-like cells (Mann–Whitney U test, P = 0.016; Fig. 3c and Extended Data Fig. 8d).

Cancers are known to exhibit stochastic DNA methylation changes (epimutations), resulting 

in discordant DNA methylation at neighboring CpGs33,63–66. In line with this notion, single-

cell epimutation at promoters was higher overall in malignant cells than in non-malignant 

cells (Extended Data Fig. 8e). There were more epimutations at promoters in IDH-MUT 

cells than in GBM cells, in line with a deficiency in TET-mediated demethylation58 (Mann–

Whitney U test, P < 10−16; Extended Data Fig. 8e). This increase in promoter epimutation 

was associated with decoupling of the typical anticorrelation between gene expression 

and promoter (transcription start site (TSS) ± 1 kb) DNA methylation67 in IDH-MUT 

malignant cells (Mann–Whitney U test, P < 0.05; Fig. 3d and Extended Data Fig. 8f). This 

decoupling led to a positive correlation between DNA methylation and expression, such that 

expression of genes central to the oncogenic phenotype (for example, cell cycle and DNA 

damage response genes) persisted despite high promoter DNA methylation68,69 (Fig. 3e and 

Extended Data Fig. 8g).

An additional mechanism through which hypermethylation in IDH-MUT cells may 

cause aberrant gene activation is through stochastic hypermethylation of CTCF-binding 

sites (Mann–Whitney U test, P < 10−16; Fig. 3f), with loss of gene insulation 

between topologically associating domains (TADs) leading to aberrant enhancer–promoter 

interactions70. To directly assess cell-to-cell variation in CTCF-binding site methylation and 

insulation efficacy, we identified pairs of neighboring genes separated by TAD-boundary-

associated CTCF-binding sites (<180 kb apart (the average contact domain size)70) and 

computed their gene expression correlation as a function of CTCF-binding site DNA 

methylation. Single-cell CTCF-binding site hypermethylation in IDH-MUT cells correlated 

with loss of gene insulation (that is, the higher the DNA methylation, the stronger the 

correlation in the expression of gene pairs across boundaries; Mann–Whitney U test, P = 

1.7 × 10−10; Fig. 3g and Extended Data Fig. 8h,i). In line with previous work using bulk 

sequencing methods70, this result suggests that even small changes in DNA methylation 

are sufficient to disrupt CTCF binding and domain boundaries, thereby affecting gene 

expression in IDH-MUT gliomas. We further confirmed stronger expression correlation 
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between PDGFRA, a prominent glioma oncogene, and FIP1L1 in IDH-MUT cells than in 

GBM cells (Fisher’s exact test, P < 10−16; Fig. 3h), as previously reported70. Stochastic 

methylation of CTCF-binding sites may thus provide the basis for higher transcriptional 

variation within IDH-MUT tumors by permitting malignant cells to activate alternate gene 

regulatory programs, eventually leading to the selection of epigenetic clones with higher 

fitness28.

GBM cells display higher cellular plasticity than IDH-MUT cells.

While DNA methylation changes may mark cell states, we and others have previously 

shown that the large majority of DNA methylation changes in cancer reflect stochastic, 

passenger events that do not impact gene regulation33,63–66,71,72. These heritable stochastic 

DNA methylation changes serve as a molecular clock33,71–73 and were therefore exploited as 

native barcodes to infer a high-resolution lineage history of GBM and IDH-MUT cells 

from primary patient samples (Fig. 4a,b and Extended Data Fig. 9a,b). Projection of 

information on subclonal CNAs (for example, on chromosome 6 in GBM (MGH105) and 

chromosome 11 in IDH-MUT glioma (MGH107)) and single-nucleotide variants (SNVs; 

for example, RPL5 chr1:g.93303106C>G) onto the lineage trees revealed that genetically 

defined subclones mapped accurately to distinct clades inferred solely on the basis of DNA 

methylation information (Fig. 4a,b and Extended Data Fig. 10a; note that chromosomes 

with CNAs were excluded from DNA methylation tree inference), providing orthogonal 

validation to lineage tree inference. We further validated that tree topologies were driven 

primarily by heritable passenger DNA methylation changes by excluding DMRs and PRC2 

targets from lineage tree inference (Extended Data Fig. 10c).

In GBM (for example, MGH105), projection of scRNA-seq-derived cell states onto the 

lineage tree revealed little differential enrichment of the four core cell states in distinct 

clades of the tree, despite the clades also being marked by CNAs and involving spatially 

distinct regions of the tumor (Fig. 4c,e and Extended Data Fig. 10a). By contrast, in 

IDH-MUT samples (for example, MGH107), projection of cellular state onto the lineage 

trees revealed differential enrichment of the two main differentiated cellular states (AC- and 

OC-like) in separate clades of the tree, which were also marked by a distinct CNA profile 

on the long arm of chromosome 11 (11q; Fisher’s exact test, P = 7.7 × 10−5; Fig. 4d,e 

and Extended Data Fig. 10b). These observations may suggest a model of higher cellular 

plasticity in GBM while there is a more stable differentiation hierarchy in IDH-MUT 

tumors16 and raise the question of the extent to which glioma cell states are heritable.

To investigate the heritability of glioma cell states, we assessed phylogenetic association of 

cellular states on the lineage tree as a proxy for the heritability of gene expression programs. 

We observed decreased transcriptional similarity between glioma cells as a function of their 

lineage distance (Fig. 4f and Extended Data Fig. 10d,e). We also compared transcriptional 

correlation to phylogenetic cross-correlation74 for pairs of genes. As expected, genes 

within the same module (for example, cell cycle or stem-like genes) exhibited highly 

correlated transcription. However, stem-like genes (expressed in NPC- and OPC-like cells) 

tended to also have high phylogenetic cross-correlation, reflecting heritable expression of 

these lineage-specific genes over the course of cellular divisions. By contrast, cell cycle 
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genes, despite exhibiting highly correlated expression, did not show high phylogenetic 

cross-correlation, reflecting their transient, non-heritable status (Fig. 4g and Extended Data 

Fig. 10f). To directly assess cell state heritability, we measured with Moran’s I (ref. 74) the 

autocorrelation between cell state gene module expression and found that the majority of 

IDH-MUT samples (4 of 7) and a subset of GBM samples (2 of 7) showed significant cell 

state heritability (Fig. 4h, Extended Data Fig. 10g,h and Supplementary Table 9).

Focusing on glioma samples with the highest degree of cell state heritability, we observed 

that cell state lineage proximity mirrored transcriptional similarity; in GBM, NPC- 

and OPC-like cells tended to cluster together on the lineage trees, and AC-like cells 

exhibited the closest phylogenetic proximity to MES-like cells. This pattern of phylogenetic 

cross-correlation may indicate that cell state heritability dynamics in GBM cohere with 

neurodevelopment trajectories (Fig. 4i, Extended Data Fig. 10i and Supplementary Table 

10). In IDH-MUT tumors, this analysis revealed two distinct clusters of differentiated cell 

states in the majority of patients. This result likely reflects the branched unidirectional 

developmental hierarchy, with activation of neural stem-cell programs at the top of 

the hierarchy that branches into two distinct cellular states resembling astrocytic and 

oligodendrocytic lineages7 (Fig. 4i and Extended Data Fig. 10i).

These heritability findings prompted us to quantify the transition dynamics governing 

the distribution of glioma cell states across lineage trees. We hypothesized that plastic 

differentiation hierarchies (that is, those with a high degree of dedifferentiation in which 

differentiated cells can more easily revert to stemness) would result in lineage trees where 

the cell states were distributed more randomly across clades, whereas a strict unidirectional 

hierarchy would result in lineage trees with cell states that were more clustered, as observed 

in GBM and IDH-MUT tumors, respectively. In line with this hypothesis, simulated lineage 

trees with varying rates of dedifferentiation in comparison to stem-like cell self-renewal 

showed that the phylogenetic clustering of cell states (as measured by Moran’s I) decreased 

as the rate of dedifferentiation increased (Fig. 5a).

To examine this hypothesis directly in patient samples, we inferred cell state growth 

and transition rates from glioma phylogenetic trees with leaves annotated for cell state. 

Specifically, we adapted a maximum-likelihood method of binary character evolution and 

speciation from comparative phylogenetics75,76 (Methods, Extended Data Fig. 10j,k and 

Supplementary Table 11). To validate the model’s parameter estimates, we used two sources 

of orthogonal data. First, we compared the model’s estimates of growth in differentiated-like 

versus stem-like states to cycling rates derived from the expression profiles and observed 

high correlation (Spearman’s rho = 0.8, P = 0.014; Fig. 5b). Second, we found that 

the model’s estimates of dedifferentiation correlated with dedifferentiation rates inferred 

from RNA velocity estimation31 of gene module trajectories (Spearman’s rho = 0.71, P = 

0.0014; Fig. 5c). We further validated the model’s estimates by excluding DMRs and PRC2 

targets from lineage tree inferences (Extended Data Fig. 10l), confirming again that DNA 

methylation-derived tree topology reflects stochastic passenger DNA methylation changes 

rather than cell state encoding.
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When the binary character evolution method was applied to IDH-MUT samples, the model 

predicted a low rate of dedifferentiation in comparison to stem-like cell self-renewal (Fig. 

5d and Extended Data Fig. 10m), in line with the highly structured lineage trees for 

these tumors (Fig. 5a,e). By contrast, GBM samples showed a significantly higher level of 

dedifferentiation (Mann–Whitney U test, P = 0.0046; Fig. 5d and Extended Data Fig. 10m), 

in line with the lower degree of cell state clustering on the trees and lower transcriptional 

similarity by lineage distance (Fig. 5a,e). Together, these data demonstrate that cell states are 

heritable across malignant gliomas. However, while in IDH-MUT tumors, differentiation far 

outpaces dedifferentiation in line with a standard hierarchical model7, GBM tumors harbor 

a higher degree of cell state plasticity allowing replenishment of the ranks of stem-like cells 

through dedifferentiation (Fig. 5f).

Discussion

Studies across cancer types have shown that heterogeneous transcriptional cell states within 

a single tumor contribute to tumor initiation and progression1,4–7. In glioma, cellular state 

diversity mirrors neurodevelopmental trajectories7,17–23. Here, through the application of 

multiomics single-cell sequencing to primary glioma clinical samples, we provide evidence 

that DNA methylation changes reflect glioma cellular states and may contribute to their 

propagation.

Specifically, we showed that IDH-MUT cells exhibit preferential enhancer hypermethylation 

with cell differentiation. Enhancers, owing to their lower transcription factor occupancy 

as compared to promoters77, may be less resistant to DNMTs and thus more prone 

to hypermethylation, which is canonically balanced by the action of TET enzymes 

in physiological contexts61. In IDH-MUT malignant cells, defects in TET-mediated 

demethylation caused by 2HG may thus lead to preferential enhancer hypermethylation60. 

In addition, enhancers have been shown to exhibit highly dynamic DNA methylation during 

differentiation78–80, in line with our data showing increased enhancer DNA methylation 

with glioma differentiation. While the relatively modest magnitude of DNA methylation 

changes observed in our study may be partly due to the sparsity of the single-cell RRBS 

data, our work also suggests that small increases in DNA methylation in otherwise typically 

unmethylated regions are sufficient to impact gene expression and can be associated 

with gene silencing (Fig. 3d), as previously reported across cancer types33,63,81–84, 

including in glioma85. Indeed, our multimodality sequencing technology that couples 

single-cell DNA methylomes with whole-transcriptome sequencing allowed the exploration 

of methylation–transcription relationships at the single-cell level, revealing that aberrant 

epigenetic patterning is at play in IDH-MUT gliomas. This included decoupling of promoter 

methylation–expression relationships, whereby expression of genes central to the oncogenic 

IDH-MUT phenotype persists despite high promoter DNA methylation, as well as disruption 

of CTCF-mediated insulation.

In GBM, direct comparison of epigenetic profiles across cell states suggests that the 

interaction between DNA methylation and PRC2 is an important contributor to GBM cell 

differentiation. The main role of PRC2 is to catalyze H3K27me3 deposition to repress 

lineage-specific developmental genes in both normal and neoplastic stem cells86,87. At these 
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genes, H3K27me3 is largely enriched at promoters along with H3K4me3, an activating 

histone mark88. These bivalent poised promoters in stem cells largely resolve to either an 

active (H3K4me3-only) or repressed (H3K27me3-only) state during differentiation. While 

PRC2 target hypermethylation has previously been extensively reported in cancer52, we 

observed that stem-like GBM cells are protected from this phenomenon, likely owing 

to PRC2 binding protecting these sites from DNA methylation, in line with data from 

neurodevelopment89,90. This may also underlie the enhanced chromatin accessibility signal 

that we observed at hypomethylated PRC2 targets in GBM stem-like cells91. By contrast, 

differentiated-like GBM cells may reinforce gene silencing by increasing the length of 

H3K27me3 domains or through complementary silencing mechanisms involving DNA 

methylation87,92. In line with this model, we observed more than twofold-higher expression 

of PRC2 targets in stem-like cell states in comparison to more robust silencing involving 

DNA methylation in more differentiated cell states. Thus, our multimodal single-cell 

analyses support a critical role for PRC2 in maintaining GBM cellular states, suggesting 

a model in which PRC2 targets are maintained in a hypomethylated state in glioma stem-like 

cells, allowing their reactivation in response to stimuli, thereby ultimately providing a key 

mechanism for stemness maintenance90 and tumor progression93.

The observed parallels between glioma differentiation and neural development invoke 

the question of whether gliomas follow unidirectional differentiation hierarchies or more 

reversible bidirectional cell state transitions21,55. As we seek to therapeutically target 

defined glioma cell states, such as stem-like cells94, it is critical to dissect the relative 

rates at which other cells revert to assume the role of stem cells. To address this question, 

we integrated lineage histories derived from heritable stochastic DNA methylation changes 

with scRNA-seq-derived cell states in single-cell multiomics data. We demonstrated that 

in IDH-MUT glioma differentiation far outpaces dedifferentiation, in line with a model in 

which stem-like cells are self-renewing and reside at the apex of the cellular hierarchy7. 

By contrast, in GBM, cells demonstrated the capacity to dedifferentiate into stem-like 

states, providing evidence for plastic bidirectional cell state transitions, as also observed in 

other cancer types95,96. Such plastic differentiation topologies may result from relaxation of 

epigenetic identity barriers28,63,80 and in turn may empower positive selection97 to enhance 

the evolutionary capacity of gliomas.

Our work has several limitations. The MscRRBS platform only captures approximately 

10% of the targeted methylome for a single cell owing to the sparsity of single-cell 

data33. We have thus implemented several analytical approaches to mitigate the sparsity 

of the single-cell methylomes, including averaging DNA methylation levels across defined 

genomic windows and regions or aggregating DNA methylation signal over multiple 

single cells within a sample. We further note that, while DNA methylation is one of the 

central mechanisms for propagating stable epigenetic information across cell division54 and 

accumulating data suggest that malignant cell states are propagated epigenetically4,27–29, 

the nature of the causal relationship between DNA methylation and the establishment of 

stable cellular identity is still under debate98. Nonetheless, we envision that future advances 

in both experimental technologies and data analysis methods99 will enable more accurate 

measurement of DNA methylation across the genome in single cells, as well as a better 
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understanding of the causal relationship between DNA methylation and transcriptional cell 

states.

In conclusion, cell state diversity and tumor evolution are often studied independently. The 

data presented herein show that single-cell multiomics analysis of clinical samples can help 

draw together these disparate frameworks, through the unique lens of a high-resolution 

phylogenetic tree coupled with leaf annotation for current phenotypic states. This new 

perspective allows transcriptional cell state diversity to be connected with fundamental 

evolutionary properties such as heritability and cell state transition dynamics, opening up 

new horizons for the study of human somatic evolution in both malignant and healthy 

tissues.

Methods

Study participants.

Adult patients included in this work provided preoperative informed consent to take part 

in the study according to institutional review board protocol Dana-Farber/Harvard Cancer 

Center 10-417. Patients were male and female. Clinical characteristics are summarized in 

Supplementary Table 2.

Tumor acquisition and single-cell sorting.

Fresh tumor specimens were collected on PBS (Gibco) and mechanically dissociated into 

small pieces of 0.5–1 mm with a disposable sterile scalpel. They were further dissociated 

into single-cell suspensions using the enzymatic brain tumor dissociation kit (P) from 

Miltenyi Biotec, following the manufacturer’s protocol. Viable single cells were sorted 

into individual wells of a 96-well twin.tec PCR plate (Eppendorf) that contained 10 μl per 

well of TCL buffer (Qiagen) with 1% β-mercaptoethanol (see the Supplementary Note and 

Supplementary Fig. 1 for details). Plates were frozen on dry ice immediately after sorting 

and stored at −80 °C before joint MscRRBS and whole-transcriptome library preparation 

and sequencing.

Joint MscRRBS and scRNA-seq library construction.

MscRRBS and whole-transcriptome library preparation and sequencing were performed as 

previously described33 (see the Supplementary Note for details). To obtain higher-coverage 

single-cell DNA methylomes, dual-restriction enzyme digestion of cells from two IDH-

MUT samples (MGH201 and MGH208) was performed. This allowed us to increase 

coverage to 325,492 ± 21,118 unique CpGs per cell (~2-fold increase) as compared to 

IDH-MUT cells digested with a single restriction enzyme, thus enabling more accurate 

measurement of DNA methylation in regions that are captured less efficiently with standard 

RRBS, such as enhancers and CTCF-binding sites (Extended Data Fig. 8a).

MscRRBS read alignment.

Each pool of 96 cells was first demultiplexed by Illumina i7 barcodes (Supplementary Table 

1), resulting in four pools of 24 cells. Each pool of 24 cells was further demultiplexed by 

unique cell barcodes (Supplementary Table 1). Quality control, trimming and alignment of 
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MscRRBS data were then performed33 (see the Supplementary Note for details). Cells with 

coverage of at least 50,000 unique CpGs and a bisulfite conversion rate of at least 99% were 

retained for downstream analyses (Supplementary Tables 2 and 3).

scRNA-seq and differential gene expression analysis.

Sequenced read fragments were mapped against the GRCh38 (hg38 Ensembl version 94) 

genome assembly using the 2pass default mode of STAR100 (v2.5.2a). The number of read 

counts overlapping annotated genes was determined using RSEM101 v1.3.1 (rsem-calculate-

expression). Cells with mitochondrial and ribosomal read counts of less than 20% and a 

minimum of 2,000 detected genes were retained for downstream analyses (Supplementary 

Tables 2 and 3). Differential gene expression analyses were performed using a negative 

binomial model with observational weights to account for zero inflation102. Specifically, we 

used ZINB-WaVE103 (v1.6) to estimate a set of observational weights and edgeR (v3.26.8) 

to test for differential expression using a weighted F-statistic approach104. We defined 

differentially expressed genes by adjusting nominal P values using a BH FDR procedure 

(cutoff of adjusted P value < 0.05), with an additional criterion of an absolute log2(fold 

change) value of >1 (Extended Data Figs. 4b and 5f).

Identification of non-malignant cell types.

To classify all cells passing scRNA-seq quality control (Supplementary Table 3) into 

malignant or non-malignant cells (Fig. 1b), we normalized gene count matrices, performed 

dimensionality reduction and corrected for patient batch effects using the ZINB-WaVE 

method103 (v1.6; parameters: K = 30, X = “~ patient sample”). To classify all cells passing 

scDNAme quality control (Supplementary Table 3) into malignant or non-malignant cells 

(Fig. 1b), we focused on 1,300 CpG sites that were identified as glioma related by a previous 

TCGA bulk DNA methylation study39. We generated a window of 1,000 bp around each 

CpG (resulting in 996 windows) and averaged the DNA methylation within each window. 

We then imputed the missing values in the windows using KNN with N = 5. We used the 

scanpy package105 (v1.4.4) to cluster cells. For visualization, we generated a UMAP cell 

embedding using the umap function (v0.2.3.1) with default settings.

Single-cell differential methylation analysis.

For each cell, Bismark methylation extractor output files (containing information on the 

methylation state of each individual CpG) were intersected with different genomic regions 

investigated (for example, promoters and enhancers) using BEDTools106 (v2.27.1). A 

generalized linear model was then built to predict the DNA methylation for a given genomic 

region between groups of cells on the basis of transcriptionally defined malignant cellular 

states (see the Supplementary Note for details). We defined regions with a Student’s t-test 

P value < 0.05 and an absolute DNA methylation difference of ≥5% as differentially 

methylated to nominate candidate genes for subsequent gene set enrichment analysis.

CNA inference from single-cell DNA methylation data.

To estimate CNAs using scDNAme data, we first split the genome of each cell into windows 

of equal length (20 Mb) and obtained the number of CpGs per window with a sliding 
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window of 5 Mb. We subsequently normalized the number of CpGs per window by the 

total number of CpGs for each cell. Cells classified to each of the non-malignant cell types 

(see “Identification of non-malignant cell types”) were used to define a baseline normal 

karyotype. We then divided the number of normalized CpGs per window in each malignant 

cell by the median normalized number of CpGs in the set of non-malignant cells. The 

resulting copy number estimates were log2 transformed. Missing values were replaced by 

the value zero (Extended Data Figs. 1a and 2a). For CNA analysis of the EGFR locus, we 

applied the above-described approach using a 0.1-Mb window (with a sliding window of 

0.02 Mb) centered on the EGFR locus on chromosome 7 (Fig. 1e and Extended Data Fig. 

3d,f). We further localized the start and end points of aberrant copy number regions of the 

pseudo-bulk averages (mean of CNAs across individual malignant cells) using the circular 

binary segmentation algorithm implemented in the R package DNAcopy107 (v1.60.0). See 

the Supplementary Note for further details.

Glioma DNA methylation subtype (LGm1-LGm6) single-cell projection.

To bridge the 450K methylation array and MscRRBS technologies, we created a window 

of 1,000 bp around each 450K probe obtained for 932 glioma samples from TCGA40,41, 

averaging the DNA methylation within each window (450K probes for the TCGA samples 

and single CpGs for MscRRBS), resulting in 996 windows. We further filtered the data by 

retaining (1) 450K probes that were detected in at least 20 bulk TCGA samples; (2) single 

cells with at least 50,000 detected CpG sites; (3) windows containing more than 5 CpGs per 

cell; and (4) windows for which more than 10 single cells had at least 1 CpG in them. After 

filtering, we retained 979 windows and imputed missing values in the windows using KNN 

with N = 5. We then trained a logistic regression multiclass classifier on the 932 TCGA 

glioma samples, achieving 0.94 accuracy, and applied it to pseudo-bulk DNA methylation 

profiles for malignant cells in our samples (Fig. 1h) to assign each glioma single cell to one 

of the six bulk DNA methylation subtypes (Fig. 1i).

Definition of single-cell gene signature scores.

Single-cell gene signature scores were defined as previously described1,7,21 (see the 

Supplementary Note for details).

Assignment of glioma cells to expression cell states.

We classified glioma cells by expression cell state on the basis of gene modules and cell 

cycle programs as previously described7,21 (see the Supplementary Note for details).

Analysis of TCGA patient samples.

To examine the association between GBM stem-like states and PRC2 target activity in 

a larger sample cohort, we leveraged 67 GBM samples from the TCGA collection with 

matched bulk RNA-seq and 450K methylation profiles (Fig. 2i,j and Extended Data Fig. 

5j). We computed differentiation scores (defined as the difference in gene module scores 

between AC/MES-like and NPC/OPC-like cellular states) where the gene signatures for each 

of the four states were taken from the previously described gene module signatures21. We 
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calculated the mean DNA methylation at PRC2 target promoters by averaging the DNA 

methylation for the 450K probes mapping within PRC2 target genes46.

Chromatin state analysis.

To explore the link between differentially methylated promoters (see “Single-cell differential 

methylation analysis”) and histone marks, we interrogated differentially methylated 

promoters for enrichment of histone marks with non-overlapping regulatory functions 

(H3K4me3, H3K27ac, H3K4me1, H3K36me3 and H3K27me3) using previously published 

ChIP–seq maps47 of GBM cancer stem cells (n = 4 lines derived from different human 

gliomas (MGG23CSC, MGGG4CSC, MGG6CSC and MGG8CSC)). In Extended Data Figs. 

5c–e and 7k,l, chromatin states across the genome were defined using ChromHMM108 

(v1.20), which is based on a multivariate hidden Markov model (HMM), using H3K4me3, 

H3K27ac, H3K27me3, H3K36me3 and H3K4me1 from the above-described previously 

published datasets47 as input (the MGG8CSC sample was used as it was the only one where 

all five main histone marks were profiled). See the Supplementary Note for further details.

Single-cell DNA methylation–gene expression correlation analysis.

Single-cell DNA methylation–gene expression correlation analysis was performed as 

previously described33 (see the Supplementary Note for details).

Lineage tree inference.

We generated DNA methylation-based lineage trees by applying a tree searching maximum-

likelihood algorithm based on binary DNA methylation values as previously described33 

(see the Supplementary Note for details). Projection of information on subclonal CNAs 

(for example, on chromosome 6 in GBM (MGH105) and chromosome 11 in IDH-MUT 

glioma (MGH107)) and SNVs (for example, in RPL5) onto the lineage trees revealed 

that genetically defined subclones mapped accurately to distinct clades inferred solely 

on the basis of DNA methylation information, providing orthogonal validation to lineage 

tree inferences (Fig. 4a,b and Extended Data Fig. 10a). We further validated that lineage 

tree topologies were driven by heritable stochastic passenger DNA methylation changes 

by excluding CpGs belonging to DMRs and PRC2 targets from lineage tree inference 

(Extended Data Fig. 10c). To compare inferred lineage trees, we computed the pairwise 

Robinson–Foulds (RF) distance—a measure of tree structure similarity between two given 

trees109. RF distances were normalized by the total number of internal edges in respective 

pairs of trees (normalized RF distance).

Phylogenetic association.

To quantify the association of different cell states and transcriptional patterns on the 

DNA methylation-based lineage trees, we used Moran’s I (ref. 74), a classic measure of 

spatial association (that is, autocorrelation) used to detect phylogenetic signal110, as well as 

its multivariate generalization, a measure of spatial cross-correlation111,112. Conceptually, 

Moran’s I is a weighted correlation metric, as its calculation is similar to that of Pearson’s 

correlation coefficient but with measurements weighted by proximity. To compute Moran’s 

I for an n-cell lineage tree, we first organize single-cell measurements into a column-
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standardized matrix X (centered with mean 0 and population standard deviation of 1), 

consisting of n rows corresponding to cells and m columns corresponding to single-cell 

measurements. Then, the data matrix X and its transpose (notated with superscript T) is right 

and left multiplied with the proximity matrix W,

I = XTW X .

Each element of the n×n proximity matrix Wij records the inverse node distance between 

cells i and j, with diagonal elements set to 0, and normalized such that i, jW ij = 1. 

Measurements contained in matrix X could correspond to gene expression (as in Fig. 4g), 

gene module scores (for example, in Fig. 4h) or cell states (for example, in Fig. 5a). When 

m = 1, this metric becomes the classic univariate Moran’s I. When m = 1, each element of 

the m×m matrix Iyx measures the phylogenetic cross-correlation between measurements y 
and x. High values within I indicate phylogenetic co-clustering, whereas low values indicate 

phylogenetic dispersion.

To assess the heritability of glioma cell states, we measured the phylogenetic autocorrelation 

of each cell state gene module (using univariate Moran’s I) and assessed significance with a 

one-sided permutation test (with 106 leaf permutations) for each tree replicate. To improve 

resolution, we first recomputed GBM module scores, pooling the NPC1-like and NPC2-like 

gene sets and the MES1-like and MES2-like gene sets, and removed cells without matching 

scRNA-seq information. As both GBM and IDH-MUT samples contained multiple cell 

states at different frequencies, to summarize a sample’s transcriptional heritability, we used 

the most heritable gene module for each tree, as represented by its permutation test −log10(P 
value). As we had multiple lineage tree replicates per sample plate, we arrived at a plate 

heritability score by averaging the tree replicate −log10(P values). For patient samples with 

multiple plates, scores for only the least variable plate (measured by RF distance; see 

“Lineage tree inference”) are shown (Fig. 4h). Heritability scores for all plates are shown in 

Extended Data Fig. 10g and included in Supplementary Table 9.

To further understand how cell states were co-distributed/dispersed across lineage trees, we 

also measured gene module cross-correlation (multivariate Moran’s I). Cross-correlations 

for each tree replicate were transformed into z scores using moments of the statistic derived 

by Czaplewski and Reich112 and were then averaged for each sample. Analytical z scores 

were used to increase computational efficiency and closely matched leaf-permutation-based 

z score estimates. Moran’s I z score heat maps for representative lineages are shown in 

Fig. 4i. These heat maps illustrate which cell states form clusters and how pairs of different 

cell states cluster together on lineage trees. Close and distant phylogenetic associations are 

shown in warmer and cooler colors, respectively.

Finally, to study the phylogenetic distribution of transcription at the single-gene level, we 

compared cross-correlations and correlations for all available (2,000 most variable genes 

selected with Seurat), stem-like (that is, NPC-like and OPC-like) and cell cycle genes in 

glioma samples with high gene module transcriptional heritability (MGH115 and MGH122) 

(Fig. 4g and Extended Data Fig. 10f). For each available gene, all pairwise Pearson’s 
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correlations and cross-correlations (mean tree replicate analytical z scores) were plotted, 

with self-correlations and autocorrelations omitted. Densities are shown for all gene pairs 

(gray) and for genes from the selected module (red) in plot margins.

Mathematical model of glioma evolutionary dynamics.

To model glioma evolutionary dynamics, we adapted a mathematical model of binary state 

speciation and extinction (BiSSE) from comparative phylogenetics75. The BiSSE approach 

models speciation, extinction and character transition rates as a dynamical system, where 

species in character state k (either 0 or 1) speciate at rate λk. Species transition from state 0 

(1) to state 1 (0) at rate q01 (q10). This mathematical framework can be translated to tumor 

dynamics, where λ and q measure cell-state-specific growth (self-renewal) and transition 

(that is, differentiation and dedifferentiation) rates. In this application, we set the binary 

character trait to be the tumor cell state, either stem-like (k = 0) or mature-like (k = 1). 

As we are interested in net cell state growth rates, we use a Yule (pure birth) version of 

the model. The change in the number of cells nk(t) in state k at time t is described by the 

following dynamical system (Extended Data Fig. 10j,k):

d
dtn0(t) = λ0 − q01 n0(t) + q10n1(t)

d
dtn1(t) = λ1 − q10 n1(t) + q01n0(t) .

To apply this method to samples from patients with GBM, we binned cells with a maximum 

gene module score of NPC- or OPC-like as ‘stem-like’ and those with a score of AC- or 

MES-like as ‘mature-like’. For IDH-MUT samples, cells with a maximum gene module 

score of AC- or OC-like were binned to the mature-like cell state and cells with a maximum 

module score of stem-like remained classified as stem-like. Before assigning cell states, cells 

without scRNA-seq data were removed and gene module scores for GBM samples were 

recomputed by first pooling NPC1/NPC2-like and MES1/MES2-like genes into one module 

each.

Maximum-likelihood estimation of evolutionary dynamics.

To infer the tumor growth and transition rates that generated the observed phylogenies, 

we used maximum-likelihood estimation. We generated a likelihood function using make. 

bisse() from diversitree v0.9.15 (ref.113), using a Yule version of the model and a sampling 

fraction of 10−6, as our lineages represent a tumor sampling. We assumed that the root 

of each tree was in the stem-like state and otherwise used default settings. As the BiSSE 

method requires ultrametric trees, we converted our trees using force.ultrametric() with the 

‘extend’ method in the R package phytools (v0.7.70)114.

To minimize the chances of reaching a local, instead of a global, maximum estimate, we 

initiated the maximum-likelihood searches from 100 randomly generated starting points 

(initial BiSSE parameter values) using simulated annealing with the R package GenSA 

(v1.1.7)115, searching parameter values bounded by 10−4 and 500, and allowed for a 

maximum of 1,000 iterations with a stop threshold of 10−8. After these initial searches, we 

used mle2() from the bbmle R package (v1.0.23.1)116, initializing each maximum-likelihood 
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search with a simulated annealing estimate, using the L-BFGS-B optimization method, 

lower and upper bounds of 10−4 and 500, and a maximum of 1,000 iterations.

After 100 maximum-likelihood searches per tree replicate, the BiSSE parameter scheme 

with the highest likelihood among the individual runs that converged without error was 

selected. To arrive at a final parameter set estimate for each biological sample, we used 

the weighted median of the maximum-likelihood estimates (Supplementary Table 11), 

weighting each plate for a sample equally Outlier tree replicates estimated from the 

same cells with an estimated dedifferentiation/stem-like cell self-renewal (q10/λ0) ratio 

greater than 5 MAD above the median were removed. Maximum-likelihood estimates for 

GBM and IDH-MUT dynamics (Extended Data Fig. 10j) represent the median of patient-

sample-weighted median estimates. The ratio of median replicate estimates of q10/λ0 was 

significantly larger in GBM than in IDH-MUT samples (Fig. 5f). For patient samples with 

multiple plates, q10/λ0 for only the least variable plate (measured by RF distance; see 

“Lineage tree inference”) is shown (Fig. 5d), and the weighted median of q10/λ0 for all 

plates is shown in Extended Data Fig. 10m and included in Supplementary Table 11. The P 
value in Fig. 5d was calculated by Mann–Whitney U test by comparing the weighted median 

of q10/λ0 between GBM and IDH-MUT samples using all plates. Lastly, we validated the 

maximum-likelihood estimates by excluding DMRs and PRC2 targets from lineage tree 

inference (Extended Data Fig. 10l), confirming that DNA methylation-derived tree topology 

reflects stochastic passenger DNA methylation changes rather than marking cell states.

Statistical methods.

Statistical analysis was performed with Python 3.0 and R version 3.6.1. Categorical 

variables were compared using the hypergeometric test or Fisher’s exact test. Continuous 

variables were compared using the Mann–Whitney U test, Student’s t test, nonparametric 

permutation test or Kolmogorov–Smirnov test, as appropriate. P values were adjusted for 

multiple comparisons using the BH FDR adjustment procedure. All P values are two sided 

and were considered significant at the 0.05 level unless otherwise noted.
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Extended Data

Extended Data Fig. 1 |. Multi-omics single-cell sequencing of GBM reveals intra-tumoral DNAme 
heterogeneity.
a, CNA inference based on coverage depth imbalance in the scDNAme data in windows 

of 20 Mb (sliding window of 5 Mb). Rows correspond to cells, clustered by overall 

CNA pattern. b, Proportion of single cells belonging to GBM cellular states (left) and 

two-dimensional representation of GBM cellular states (middle) or cycling cells based on 

the relative expression of gene-sets associated with G1.S and G2.M (right) for each GBM 
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patient sample (including MGH105 biological replicates and MGH121 technical replicates). 

Each quadrant corresponds to one cellular state and the exact position of malignant 

cells (dots) reflect their relative scores for pairs of gene modules previously defined in 

scRNAseq data21. Light grey dots in the background represent all GBM samples (n = 844 

malignant-only cells that passed quality control based on scRNAseq). c, Two-dimensional 

representation of single cells assigned to previously described LGm classes39, visualized 

as triangle plots (where each vertex corresponds to one LGm class) across all 7 GBM 

samples (n = 867 cells [malignant and non-malignant] that passed quality control based 

on scDNAme, top), and the two samples harboring the highest number of cells: MGH105 

(n = 339, middle) and MGH121 (n = 275, bottom). RNA differentiation score (defined 

as the difference in gene module scores between AC-/MES-like and NPC-/OPC-like cells) 

is overlaid. d, Proportion of GBM cells (n = 867 cells [malignant and non-malignant]) 

with high or low DNAme (defined as above or below the median of mean DNAme across 

windows of 1,000 bp around 450K array probes from TCGA glioma samples used in the 

analysis, respectively; Methods) assigned to previously described LGm classes39. P value 

was determined by two-sided Fisher’s exact test (d).
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Extended Data Fig. 2 |. Multi-omics single-cell sequencing of IDH-MUT reveals intra-tumoral 
DNAme heterogeneity.
a, CNA inference based on coverage depth imbalance in the scDNAme data in windows 

of 20 Mb. Rows correspond to cells, clustered by overall CNA pattern. b, Proportion 

of single cells belonging to IDH-MUT cellular states (left) and developmental hierarchy 

representation of IDH-MUT cellular states (middle) or cycling cells based on the relative 

expression of gene-sets associated with G1.S and G2.M (right) for each IDH-MUT patient 

sample. Lineage and stemness scores define the exact position of malignant cells (dots) as 
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computed from scRNAseq data. Light grey dots in the background represent all IDH-MUT 

samples (n = 739 malignant-only cells that passed quality control based on scRNAseq). 

c, UMAP of all single cells that passed quality control based on scRNAseq (GBM n = 

937, IDH-MUT n = 809) or scDNAme (GBM n = 867, IDH-MUT n = 718). Each patient 

sample is indicated. See also Fig. 1b. d, Two-dimensional representation of single cells 

assigned to previously described LGm classes39, visualized as triangle plots (where each 

vertex corresponds to one LGm class) across all 7 IDH-MUT samples (n = 718 cells 

[malignant and non-malignant] that passed quality control based on scDNAme, left), and 

three representative samples: MGH107 (n = 76), MGH135 (n = 96), and MGH208 (n = 

177). DNAme value is overlaid. e, Same as (d) for the 7 GBM and 7 IDH-MUT samples 

(n = 867 cells [malignant and non-malignant]; IDH-MUT, n = 718 cells [malignant and non-

malignant] that passed quality control based on scDNAme). Number of reads per cell (left), 
number of CpGs per cell (middle), and CpG conversion rate per cell (right) are overlaid. 

f, Proportion of IDH-MUT cellular states or cycling cells (n = 718 cells [malignant and 

non-malignant]) assigned to previously described LGm classes39. P values were determined 

by two-sided Fisher’s exact test (f).
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Extended Data Fig. 3 |. High-resolution copy number alteration mapping enabled by single-cell 
multi-omics.
a, UMAP of single cells that passed quality control based on scRNAseq (GBM n = 

937, IDH-MUT n = 809). b, CNA inference based on bulk WES for GBM samples 

MGH105A/B/C, MGH122, and MGH124. EGFR locus is highlighted. c, CNA inference 

by scDNAme (red line) and scRNAseq (grey line) performance in correctly classifying 

chr. loss vs. neutral, as assessed by the AUC of ROC curve at different genomic window 

resolutions. ROC curve at 20 Mb resolution is shown (inset). 95% confidence intervals were 
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generated using bootstrapping. d, CNA inferred by scDNAme (left) and scRNAseq (right) 
at a 50 Mb region centered at EGFR locus. Mean CNA profile per sample is shown in 

black. Red lines represent CNA segments identified by circular binary segmentation (CBS) 

analysis. e, EGFR expression as assessed by scRNAseq for each GBM patient sample (n = 

844 malignant-only cells that passed quality control based on scRNAseq). f, Same as (d) 
for CNA inference by scDNAme at a 2 Mb region centered at EGFR locus. Individual cell 

CNA profiles are shown in grey. g, UMAP of single cells as defined in (a). Clonal chr. 7 

gain (left) and chr. 10 loss (middle), as inferred by scDNAme, along with sub-clonal loss 

of chr. 6 (right), are indicated. h, Percentage of CpG methylation change at copy number 

gain, loss, and neutral chromosomal regions when comparing DNAme level of individual 

malignant cells to baseline for GBM (n = 7) and IDH-MUT (n = 3) samples. i, Same 

as (h) across all GBM and IDH-MUT samples for different thresholds adopted to define 

copy number gain vs. loss genomic window resolutions. P values were determined by 

two-sided Mann-Whitney U-test (d-f, h-i), comparing the EGFR expression median values 

across samples (e). Boxplots represent the median, bottom and upper quartiles, whiskers 

correspond to 1.5 times the interquartile range.
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Extended Data Fig. 4 |. GBM stem-like states exhibit PRC2 target hypomethylation compared 
with more differentiated-like cell states.
a, Differentially methylated TSS (±1Kb) between stem-like (NPC-like, n = 175 vs. OPC-

like, n = 51; left) and differentiated GBM cellular states (MES-like, n = 201; AC-like, n = 

168; right). b, Differential gene expression between AC-like (n = 205) and MES-like cells 

(n = 232). Genes with an absolute log2(fold-change) > 1 and BH-FDR < 0.05 were defined 

as differentially expressed (DE). DE genes belonging to immune response pathways are 

highlighted. c, Q-Q plot comparing the observed −log10P values of all genes used in the 

differential methylation analysis between GBM cellular states (Fig. 2c) to expected −log10P 
values. d, Distribution of mean promoter DNAme values in stem-like and differentiated 

cells for representative differentially methylated PRC2 target genes (Fig. 2c). e, Normalized 

enrichment scores for gene sets (MSigDB C2) enriched at hypomethylated promoters in 

NPC/OPC-like (turquoise) or MES-/AC-like (orange) cells (Fig. 2c; n = 15,218 genes). f, 
Enrichment score plot for SUZ12 targets46 gene set enriched at hypomethylated promoters 

in NPC-/OPC-like cells (Fig. 2c; n = 15,218 genes). g, Same as (a) for a representative 

GBM sample (MGH105; NPC-/OPC-like, n = 50 cells; MES-/AC-like, n = 138 cells). Genes 
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belonging to PRC2 targets46 are labelled. h, Mean CpG methylation at promoters of PRC2 

targets46 between cell states for each of the 7 GBM samples. Difference in median promoter 

DNAme at PRC2 targets46 between cell states is indicated. i, Median promoter DNAme at 

PRC2 targets46 of MES-/AC-like and NPC-/OPC-like cells for each of the 7 GBM samples. 

j, Mean CpG methylation at ChIP-seq maps50 of EZH2 and SUZ12 between GBM cell 

states (n = 706 cells). P values were determined by generalized linear model (a, c, g), 

weighted F-test (b), permutation test (f), two-sided Mann-Whitney U test (i, j). Boxplots 

represent the median, bottom and upper quartiles, whiskers correspond to 1.5 times the 

interquartile range.

Extended Data Fig. 5 |. Validation of PRC2 hypomethylation in GBM stem-like states using 
histone marks, single-cell ATACseq and TCGA bulk data.
a, Proportion of chromatin states at randomly sampled promoters (1,000 random samplings) 

and hypomethylated promoters in GBM stem-like (top) vs. AC/MES-like (bottom) cells. 

b, Proportion of ChIP-seq peaks47 at hypomethylated promoters in GBM stem-like vs. AC/

MES-like cells. c, Heatmap of emission parameters for a HMM 18-state model derived from 
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GBM ChIP-seq maps47. Chromatin states of interest are highlighted in red. d, Proportion 

of chromatin states (see (c)) at hypomethylated promoters in GBM stem-like and AC/

MES-like cells (Fig. 2c), all genes used in differential methylation promoter analysis (n = 

15,218 genes), and randomly sampled promoters. e, Fold-change (log2) of chromatin states 

(see (c)) between hypomethylated promoters in GBM stem-like vs. AC/MES-like cells. 

Chromatin states of interest are highlighted in red. f, Differential gene expression between 

NPC/OPC-like (n = 270) and AC-/MES-like cells (n = 437). PRC2 target46 genes are 

highlighted. g, EZH2 expression (scRNAseq) between NPC-/OPC-like and MES-/AC-like 

cells across GBM samples. h, Gene expression activity derived from scATAC-seq open 

chromatin for GBM cellular states, cell cycle-related genes, and PRC2 targets46 at distinct 

NPC-/OPC-like and AC-/MES-like clusters identified based on scATACseq GBM data55. i, 
UMAP of scATACseq GBM data55 (sample SF11956) overlaid with density plot of peaks 

frequency (top) and chromatin accessibility of housekeeping genes1 (bottom). j, Spearman’s 

rank-order correlation between mean DNAme at promoters of PRC2 targets46 and RNA 

differentiation score and bulk sample purity for 67 TCGA GBM samples40,41. k, Mean 

gene expression of hypomethylated PRC2 targets in stem-like cells (n = 60; Fig. 2c) and 

randomly selected non-PRC2 targets (n = 60) in TCGA GBM samples40,41 enriched for 

NPC-/OPC-like vs. AC-/MES-like signature. P values were determined by permutation test 

(a), two-sided Fisher’s exact test (b), weighted F-test (f), two-sided Mann-Whitney U test (g, 
k). Boxplots represent the median, bottom and upper quartiles, whiskers correspond to 1.5 

times the interquartile range.

Extended Data Fig. 6 |. PRC2 target DNAme underlies the classification of GBM tumors by bulk 
DNAme.
a, Two-dimensional representation of single cells assigned to previously described LGm 

classes39, visualized as triangle plots (where each vertex corresponds to one LGm class) 

across 7 GBM samples (n = 867 cells [malignant and non-malignant] that passed quality 

control based on scDNAme). Mean DNAme at promoters of PRC2 targets46 (top), mean 

DNAme at promoters of housekeeping genes1, and number of tiles per cell (bottom) are 

overlaid for each triangle plot. b, Comparison between mean genome wide DNAme (defined 

as the mean DNAme across windows of 1,000 bp around 450K array probes, Methods) 

and mean DNAme at promoters (TSS ± 1Kb) of PRC2 targets46 for the 478 TCGA GBM 

samples that were classified as LGm4-6 by Ceccarelli et al.39. LGm classes assignment for 

each sample is shown. c, Left: mean genome wide DNAme for TCGA GBM samples (n = 
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478) previously classified as either LGm4, LGm5, or LGm6 by Ceccarelli et al.39 Right: 
mean DNAme at promoters (TSS ± 1Kb) of PRC2 targets46 for TCGA GBM samples (n = 

478) previously classified as either LGm4, LGm5, or LGm6 by Ceccarelli et al.39. P values 

were determined by two-sided Mann-Whitney U test (c). Boxplots represent the median, 

bottom and upper quartiles, whiskers correspond to 1.5 times the interquartile range.

Extended Data Fig. 7 |. Comparison of DNA methylation and chromatin state patterns between 
transcriptional cell states in IDH-MUT.
a, Q-Q plot comparing the observed −log10P values of genes used in the differential 

methylation analysis of promoters (n = 14,808 genes) between undiff/stem-like and 

AC-/OC-like IDH-MUT cellular states (defined in (b)) to expected −log10P values. b, 
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Differentially methylated promoters between undiff/stem-like (n = 251) and AC-/OC-like 

(n = 133) cells with matched scRNAseq and scDNAme data across IDH-MUT samples. 

Promoters with absolute mean DNAme difference > 5% and P values < 0.05 were defined 

as differentially methylated (red). c, Enrichment score plots (n = 14,808 genes, as in 

(b)) for PRC2 and SUZ12 targets46 between stem-like/undifferentiated cells and AC-/OC-

like cells in IDH-MUT samples. d-f, Same as (a-c), for single-cell DNA methylomes 

obtained performing double digestion with HaeIII+MspI on cells from two IDH-MUT 

samples (MGH201 and MGH208). g, Mean (±s.e.m.) CpG methylation at ChIP-seq 

maps50 of EZH2 and SUZ12 between undiff/stem-like and AC-/OC-like cells in each 

IDH-MUT sample. h, Proportion of chromatin states at hypomethylated promoters in IDH-

MUT AC-/OC-like cells (defined in (b)), randomly sampled promoters (1,000 random 

samplings), and hypomethylated promoters in IDH-MUT undiff/stem-like (defined in (b)). 
i, Proportion of chromatin states at randomly sampled promoters (1,000 random samplings) 

and hypomethylated promoters in IDH-MUT undiff/stem-like (top) vs. AC-/OC-like cells 

(bottom.) j, Proportion of ChIP-seq peaks47 at hypomethylated promoters in IDH-MUT 

undiff/stem-like vs. AC-/OC-like cells. k, Proportion of each of the chromatin states (defined 

in Extended Data Fig. 5c) at hypomethylated promoters in IDH-MUT undiff/stem-like 

(defined in (b)), hypomethylated promoters in IDH-MUT AC-/OC-like cells (defined in 

(b)), all genes used in differential methylation promoter analysis (n = 14,808 genes), 

and randomly sampled promoters, respectively. l, Fold-change (log2) of chromatin states 

between hypomethylated promoters in IDH-MUT undiff/stem-like vs. AC-/OC-like cells. 

P values were determined by generalized linear model (a-b, d-e), Fisher’s combined 

probability test (g), permutation test (c, f, h-i), two-sided Fisher’s exact test (j).
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Extended Data Fig. 8 |. IDH-MUT cells exhibit preferential enhancer hypermethylation, 
decoupling of the promoter methylation-expression relationship and disruption of CTCF 
insulation.
a, Number of aligned reads and unique CpGs for MspI (n=476) and HaeIII+MspI 

digested IDH-MUT cells (n=242; MGH201 and MGH208). b, Mean CpG methylation at 

FANTOM5 enhancers vs. H3K27ac ChIP-seq peaks47,70 between GBM (n=765) and IDH-

MUT (n=670) cells. c, Mean CpG methylation at TSS (±1Kb) vs. FANTOM5 enhancers 

between GBM (n=765) and IDH-MUT (n=670) cells (G-CIMP-low [MGH107, MGH135, 

MGH45, MGH64]; G-CIMP-high [MGH142, MGH201, MGH208]). d, Mean (±SEM) 

CpG methylation at FANTOM5 enhancers for stem-like/undifferentiated and AC-/OC-like 

IDH-MUT cells. e, Epimutation rate across non-malignant (n=148), GBM (n=765) and 

IDH-MUT (n=670) cells. f, Proportion of cells with gene expression (read count >0) and 

above-threshold DNAme at 500 base-pairs regions upstream (left) or downstream (right) of 

TSS. Data are mean (±s.e.m.) across all genes (expression seen in > 5 cells, DNAme >5 

CpGs per region) for non-malignant cells (n=148), GBM (n=765) and IDH-MUT (n=670) 

cells. ’*’ P-value < 0.05. g, Left: Distribution of Spearman’s rho of expression and promoter 

DNAme correlation (n=1,523 genes expressed >5 cells, DNAme >5 CpGs per promoter); 
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GBM (n=765) and IDH-MUT (n=670) cells. Right: Median values of Spearman’s rho of 

expression and promoter DNAme correlation. h, Percentage of genes pairs across CTCF 

sites70 being co-expressed (both RNA read count >0); GBM (n=765) and IDH-MUT 

(n=670) cells. Scrambled represents randomly permuted cell labels for the expression 

values. Inset: Increase in percentage of genes pairs across CTCF sites70 being co-expressed 

when comparing matched vs. scrambled groups. Error bars represent 95% CIs. i, Gene 

expression correlation (Spearman’s rho) of genes pairs across CTCF sites70 per tile of mean 

CpG methylation at CTCF binding sites (low-to-high); IDH-MUT (n=670) cells. P values 

are two-sided Mann-Whitney U test (a-c, e-f, h-i), Fisher’s combined probability test (d), 

two-sided Kolmogorov-Smirnov test (g). Boxplots represent the median, bottom and upper 

quartiles, whiskers correspond to 1.5 times the interquartile range.
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Extended Data Fig. 9 |. High-resolution DNAme-based lineage trees coupled with leaf annotation 
of cellular states.
a, Representative (random cell subsampling) DNAme-based lineage tree for each GBM 

patient sample (including MGH105 biological replicates and MGH121 technical replicates), 

with projection of GBM cellular states. b, Representative (random cell subsampling) 

DNAme-based lineage tree for each IDH-MUT patient sample (including MGH142 and 

MGH208 technical replicates), with projection of IDH-MUT cellular states. Throughout the 

figure, scale represents DNAme changes per site.
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Extended Data Fig. 10 |. Cell state transition dynamics inference from lineage tree architectures 
revealed higher cellular plasticity in GBM compared to a more stable differentiation hierarchy 
in IDH-MUT.
a, Top: GBM DNAme-based lineage tree (MGH105) with RPL5 c.621 C>G genotyping. 

Bottom: GBM gene module scores. b, IDH-MUT DNAme-based lineage tree (MGH107) 

with IDH-MUT gene module scores. c, Normalized Robinson-Foulds between GBM tree 

replicates (from same sample; full dataset or removing CpGs from DMRs (Fig. 2c) or 

PRC2 targets46) reconstructed by maximum-likelihood (ML) vs. maximum parsimony. d, 

Transcriptional distances as function of lineage distance between unique cell pairs for 
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MGH115, MGH122 and MGH107. e, As (d), for DNAme-based lineage tree of MGH115 

and MGH122 (n=47 and 46 cells, respectively) reconstructed removing CpGs from DMRs 

(Fig. 2c) or PRC2 targets46. f, Pairwise gene expression correlation (Pearson’s) and 

cross-correlation (heritability). Grey points=all gene pair relationships; red points=gene 

pair relationships within selected gene module (top: stem-like; bottom: cell cycle). g, 

Phylogenetic association of cell states on GBM (n=7 patients; n=10 samples with 

MGH105A-D) and IDH-MUT (n=7 patients). Barplots=weighted mean±s.e.m. Moran’s I 
permutation-based one-sided P values (106 permutations) across replicates. Dashed line: 

P=0.025. h, As (g), comparing DNAme-based lineage tree reconstruction of MGH115 and 

MGH122, using replicates from same sample with full dataset or removing CpGs from 

DMRs (Fig. 2c) or PRC2 targets46. Barplots=mean±s.e.m. i, Heat maps of pairwise cell 

state phylogenetic associations. Close phylogenetic associations are shown in warmer colors. 

j, ML estimate (median±MAD across tree replicates; samples as in (g)) rates of cell state 

growth and transition. k, Mathematical model of glioma evolutionary dynamics. l, ML 

estimate (mean±s.e.m. across tree replicates of MGH115 and MGH122) rates of cell state 

self-renewal and transition, using replicates from same sample (full dataset or removing 

CpGs from DMRs analysis (Fig. 2c) or PRC2 targets46). m, Weighted median±weighted 

MAD rates of dedifferentiation compared to stem-like cell self-renewal across lineage 

tree replicates (sample as in (g)). P values: two-sided Mann-Whitney U test (d-e, j, l-m). 
Boxplots: median, bottom and upper quartiles, whiskers: 1.5 times the interquartile range.
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Data availability

Processed data generated for this study are available through the NCBI Gene Expression 

Omnibus (GEO) under accession number GSE151506. Raw data access can be requested 

through the Data Use Oversight System (DUOS) Dataset Catalog with dataset ID 

DUOS-000133 as well as the European Genome–phenome Archive (EGA) with dataset 
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ID EGAS00001005472. The data can be visualized and interrogated through the 

Broad Institute’s Single-Cell Portal at https://singlecell.broadinstitute.org/single_cell/study/

SCP936. scATAC-seq data are available at the EGA repository under EGAS00001002185, 

EGAS00001001900 and EGAS00001003845 and at NCBI GEO under accession number 

GSE138794. TCGA data (DNA methylation, gene expression and clinical profiles) are 

available from the TCGA database (https://cancergenome.nih.gov/). ChIP–seq data are 

available at NCBI GEO under accession number GSE46016.
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Fig. 1 |. Multiomics single-cell sequencing of primary human gliomas reveals intratumoral DNA 
methylation heterogeneity.
a, Joint methylomics and transcriptomics analysis applied to seven GBM and seven IDH-

MUT glioma samples. b, UMAP plots of single cells that passed quality control based on 

data from scRNA-seq (left; GBM, n = 937; IDH-MUT, n = 809) or scDNAme (right; GBM, 

n = 867; IDH-MUT, n = 718). c, CNA inference by scDNAme (y axis) versus scRNA-seq 

(x axis) in 20-Mb windows. Pearson’s correlation coefficient is indicated. d, Performance of 

CNA inference by scDNAme (red line) and scRNA-seq (gray line) in correctly classifying 

regions of chromosome gain versus neutral regions, as assessed by the AUC of the receiver 

operating characteristic (ROC) curve at different genomic window resolutions. Inset, ROC 

curves at 20-Mb resolution. 95% confidence intervals were generated using bootstrapping. e, 

Top, representative example (MGH105) of CNA inference by scRNA-seq and scDNAme. 

Rows correspond to cells, clustered by overall CNA pattern. Bottom, CNA inference 

by scDNAme centered at the EGFR locus. CNA profiles for individual cells are shown 

in gray, with the mean per sample shown in black. Red lines represent CNA segments 

identified by circular binary segmentation analysis. f, Top, CNA inference by scDNAme 

at chromosome 6 showing distinct genetic subclones within the same tumor (MGH105). 

Color legend as in e. Bottom, CpG methylation changes at four regions of chromosome 

6 when comparing the DNA methylation level of individual cells in each subclone to 

baseline. *P < 0.05. g, Percentage of CpG methylation change at regions with copy 

number gain (chromosome 7) or loss (chromosome 10) and neutral regions (chromosome 
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1) when comparing DNA methylation levels for individual GBM cells to baseline across all 

GBM samples. h, Heat map of probability assignment for pseudo-bulk DNA methylation 

profiles (based on MscRRBS) of malignant cells across all GBM and IDH-MUT glioma 

samples and non-malignant cells (defined in b) to previously described LGm classes39 

based on a multinomial logistic regression classifier (Methods). Amp, amplification; co-del, 

co-deletion. i, Proportion of all single cells (defined in b) assigned to previously described 

DNA methylation LGm classes39. P values were determined by two-sided Mann–Whitney 

U test (e–g) or Fisher’s exact test (i). Boxplots represent the median and bottom and upper 

quartiles; whiskers correspond to 1.5 times the interquartile range.
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Fig. 2 |. PRC2 target DNA methylation is a key switch in the differentiation of malignant GBM 
cells.
a, Two-dimensional representation of cellular states across seven GBM samples (n = 844 

malignant-only cells that passed scRNA-seq quality control). b, Heat map of P values 

obtained when comparing mean CpG methylation at promoters (TSS ± 1 kb) between 

GBM cellular states (n = 706, cells in a with matched scDNAme data). c, Volcano plot 

of differentially methylated promoters between the NPC/OPC-like and AC/MES-like GBM 

cellular states. Promoters (n = 459) with an absolute mean DNA methylation difference 
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of greater than 5% and a P value below 0.05 were defined as differentially methylated. 

Genes correlated with the classical TCGA GBM subtype45 (blue) and genes corresponding 

to PRC2 targets46 (red) are highlighted (BH FDR-adjusted permutation-based P < 0.05). 

d, Enrichment score plots (reflecting whether a gene set is over-represented at the top or 

bottom of the ranked list of genes used in c; n = 15, 218 genes) for gene sets enriched 

at hypomethylated promoters in NPC/OPC-like (top) or AC/MES-like (bottom) cells. e, 

Volcano plot of differentially methylated enhancers in comparison of NPC/OPC-like and 

AC/MES-like GBM cellular states. Putative gene targets51 of hypomethylated enhancers 

in stem-like cells that are PRC2 targets46 are labeled in red. Key neurodevelopmental 

genes are highlighted in orange. f, Proportion of chromatin states at hypomethylated 

promoters in GBM AC/MES-like cells (defined in c), randomly sampled promoters (1,000 

promoters sampled) and hypomethylated promoters in GBM stem-like cells (defined in 

c). g, UMAP plots of scATAC-seq GBM data55 (sample SF11956) overlaid with density 

plots showing chromatin accessibility of genes belonging to NPC/OPC-like gene modules 

(top) and PRC2 targets46 (bottom). h, Comparison of rank (by P value) in the enrichment 

of open chromatin at transcription factor-binding sites (n = 188) between NPC/OPC-like 

(top) and AC/MES-like (bottom) cells. PRC2 subunits are highlighted in red. i, Spearman’s 

rank-order correlation between mean DNA methylation at the promoters of PRC2 targets46 

and RNA differentiation score (defined as the difference in gene module scores between 

AC/MES-like and NPC/OPC-like cellular states) for 67 TCGA GBM samples40,41. A linear 

regression line (red) with its 95% confidence interval is shown. j, Same as in i, for PRC2 

target46 gene expression and RNA differentiation score. k, Comparison of performance, as 

assessed by ROC curve, in correctly classifying bulk TCGA GBM samples40,41 to DNA 

methylation glioma subtypes (LGm4 or LGm5)39 using 1,300 previously defined CpG 

sites39, mean global DNA methylation and mean PRC2 target46 DNA methylation. P values 

were determined by two-sided Mann-Whitney U test (b), generalized linear model (c,e), 

permutation test (f), BH FDR-adjusted hypergeometric test (h) or Spearman’s rank-order 

correlation (i,j).
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Fig. 3 |. Increased enhancer DNA methylation, decoupling of promoter methylation-expression 
relationship and disruption of CTCF insulation define the IDH-MUT epigenome.
a, Mean CpG methylation at promoters (TSS±1 kb) comparing non-malignant cells (n 
= 148) with GBM (n = 765) and IDH-MUT (n = 670) malignant cells. b, Mean CpG 

methylation at promoters versus FANTOM5 enhancers for GBM (n = 765) and IDH-

MUT (n = 670) malignant cells. c, Mean CpG methylation at FANTOM5 enhancers for 

undifferentiated/stem-like and AC/OC-like IDH-MUT cells (MGH208; n = 123 cells with 

matched scRNA-seq and scDNAme data). d, Proportion of cells with gene expression 

(RNA read count > 0) and exhibiting above-threshold DNA methylation. Data are shown 

as mean±s.e.m. across all genes with sufficient RNA (expression seen in >5 cells) and 

DNA methylation (>5 CpGs per promoter) information across non-malignant cells (n = 148) 

and GBM (n = 765) and IDH-MUT (n = 670) malignant cells. *P < 0.05. e, Left plot, 

distribution of Spearman’s rho for correlation of expression with promoter DNA methylation 

(n = 1,523 genes expressed in >5 cells, DNA methylation at >5 CpGs per promoter) across 

GBM (n = 765) and IDH-MUT (n = 670) malignant cells. The distribution of Spearman’s 

rho values was compared to the distribution of values obtained with randomly permuted 

cell labels. Right plot, median values of Spearman’s rho for correlation of expression with 

promoter DNA methylation. See also Extended Data Fig. 8g. f, Mean CpG methylation at 

CTCF-binding sites comparing non-malignant cells (n = 148) with GBM (n = 765) and 
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IDH-MUT (n = 670) malignant cells. g, Mean CpG methylation at CTCF-binding sites per 

quartile of gene expression correlation (Spearman’s rho) for previously defined pairs of 

neighboring genes separated by CTCF-binding sites70 in GBM (n = 765) and IDH-MUT (n 
= 670) malignant cells. h, The log odds ratio of PDGFRA-FIP1L1 gene pair coexpression 

(for both genes, RNA read count > 0) in IDH-MUT and GBM malignant cells. Error 

bar represents the 95% confidence interval (CI). P values were determined by two-sided 

Mann-Whitney U test (a–d,f,g; by comparing the proportion of cells with gene expression 

and exhibiting above-threshold DNA methylation in IDH-MUT and GBM cells at each DNA 

methylation threshold in d), two-sided Kolmogorov-Smirnov test (e) and Fisher’s exact test 

(h). Boxplots represent the median and bottom and upper quartiles; whiskers correspond to 

1.5 times the interquartile range.
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Fig. 4 |. Heritability of glioma malignant cell states inferred from lineage tree architectures.
a, Representative (random cell subsampling within each of the four spatial locations 

sampled) DNA methylation-based lineage tree of GBM (MGH105) cells, with projection of 

chromosome 6 inferred CNAs (as defined in Fig. 1f). b, Representative DNA methylation-

based lineage tree of IDH-MUT (MGH107) cells, with projection of chromosome 11 

inferred CNAs. c, Projection onto the DNA methylation-based lineage tree of GBM 

MGH105 (see a) of cellular states (top) and sample collection location (bottom). Right, 

the magnetic resonance imaging (MRI) image from MGH105 indicates the four spatially 

distinct regions sampled. d, Projection onto the DNA methylation-based lineage tree 

of IDH-MUT MGH107 (see b) of cellular states. e, Proportion of cells belonging to 

GBM (MGH105; left) or IDH-MUT (MGH107; right) cellular states in distinct genetic 

subclones as identified by scDNAme-based CNA inference at chromosome 6 (left) or 

chromosome 11 (right). f, Comparison of transcriptional distances (measured as Euclidean 

distances between gene module scores) as a function of lineage distance (defined as <5, 

between 5 and 15, and >15 nodes away) for unique cell pairs from GBM (left; n = 7 

patients) and IDH-MUT (right; n = 7 patients) lineage trees. g, Pairwise gene expression 

correlation (Pearson’s) and cross-correlation (heritability). Gray points represent all gene 

pair relationships, and red points represent gene pair relationships within the same selected 

gene module (top, stem-like; bottom, cell cycle). Correlation and cross-correlation densities 

are shown in the plot margins. h, Phylogenetic association of cell states on GBM (n = 

7 patients; n = 10 biological replicates if considering the four spatially distinct regions 

sampled from MGH105) and IDH-MUT (n = 7 patients) lineage trees, as measured by cell 

state gene module expression autocorrelation with Moran’s I (ref. 74). Barplots represent 

mean±s.e.m. Moran’s I permutation-based one-sided P values (106 permutations) were 

calculated across lineage tree replicates. The dashed line corresponds to a P value of 0.025. 

i, Heat maps of pairwise cell state phylogenetic associations (gene module cross-correlation 

analytical z scores). Close phylogenetic associations are shown in warmer colors, and distant 

Chaligne et al. Page 47

Nat Genet. Author manuscript; available in PMC 2021 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associations are shown in cooler colors. P values were determined by two-sided Fisher’s 

exact test (e) or two-sided Mann-Whitney U test (f). Boxplots represent the median and 

bottom and upper quartiles; whiskers correspond to 1.5 times the interquartile range.
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Fig. 5 |. GBMs exhibit higher cellular plasticity while IDH-MUT gliomas have a more stable 
differentiation hierarchy.
a, Simulated lineage trees (n = 1,000) with varying rates of dedifferentiation compared to 

stem-like cell self-renewal (x axis) as a function of phylogenetic association of cellular 

states (as measured by z scores from Moran’s I; y axis). The LOESS regression line (black) 

with its 95% confidence interval (gray) is shown. b, Comparison of the mathematical 

model’s estimates (MLE, maximum-likelihood estimation; weighted median across lineage 

tree replicates for each GBM (pink) and IDH-MUT (purple) sample) of cell state self-

renewal in differentiated-like versus stem-like states with cycling rates derived from the 

scRNA-seq expression profiles. Spearman’s rho is indicated. Only samples with at least two 

cycling stem-like and two cycling differentiated-like cells were used (Methods). The linear 

regression line (black) with its 95% confidence interval (gray) is shown. c, Same as in b for 

comparison of the mathematical model’s estimates of dedifferentiation with dedifferentiation 

rates provided by RNA velocity estimation31 (Methods). The linear regression line (black) 

with its 95% confidence interval (gray) is shown. d, Rates of dedifferentiation compared to 

stem-like cell self-renewal (as estimated by mathematical modeling) in GBM (n = 7 patients; 

n = 10 if considering the four spatially distinct regions sampled from MGH105) and IDH-

MUT (n = 7 patients) tumors across lineage tree replicates (Methods). Barplots represent 

median ± median absolute deviation (MAD) across lineage tree replicates. Medians are 

weighted to balance plates with a disparate number of lineage tree replicates within samples. 

e, Dedifferentiation/stem-like cell self-renewal ratio (weighted median across lineage tree 

replicates for each GBM (pink) and IDH-MUT (purple) sample; x axis) compared to 

cell state clustering on the lineage tree as measured by transcriptional similarity (mean 

across tree replicates of a gene module by lineage distance Pearson’s correlation z score; 

1,000 permutations). The linear regression line (black) with its 95% confidence interval 

(gray) is shown. f, Data-driven model of cell state transition dynamics inferred from 

DNA methylation-based lineage trees. The median± MAD dedifferentiation/stem-like cell 

self-renewal ratios across GBM (n = 7 patients) and IDH-MUT (n = 7 patients) samples 

are shown. P values were determined by two-sided Mann–Whitney U test (d), comparing 

the weighted median dedifferentiation/stem-like cell self-renewal ratio of GBM samples 
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with the weighted median dedifferentiation/stem-like cell self-renewal ratio of IDH-MUT 

samples.
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