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Abstract

Dental landmark localization is a fundamental step to analyzing dental models in the planning 

of orthodontic or orthognathic surgery. However, current clinical practices require clinicians 

to manually digitize more than 60 landmarks on 3D dental models. Automatic methods to 

detect landmarks can release clinicians from the tedious labor of manual annotation and 

improve localization accuracy. Most existing landmark detection methods fail to capture local 

geometric contexts, causing large errors and misdetections. We propose an end-to-end learning 

framework to automatically localize 68 landmarks on high-resolution dental surfaces. Our 

network hierarchically extracts multi-scale local contextual features along two paths: a landmark 

localization path and a landmark area-of-interest segmentation path. Higher-level features are 

learned by combining local-to-global features from the two paths by feature fusion to predict 

the landmark heatmap and the landmark area segmentation map. An attention mechanism is 

then applied to the two maps to refine the landmark position. We evaluated our framework on 

a real-patient dataset consisting of 77 high-resolution dental surfaces. Our approach achieves an 

average localization error of 0.42 mm, significantly outperforming related start-of-the-art methods.
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1 Introduction

Digitalization (a.k.a. Localization) of dental landmarks is a necessary step in dental model 

analysis during treatment planning for patients with jaw and teeth deformities. In the 

modern era of digital dentistry, high-resolution digital dental surface mesh models are 
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either generated by a three-dimensional (3D) intraoral surface scanner or constructed from 

cone-beam computed tomography (CBCT) images. In the current standard of care, over 60 

commonly used dental landmarks are digitized manually for each patient by orthodontists, 

surgeons, or trained technicians, which is time-consuming and labor-intense.

Automatic localization of dental landmarks on a 3D surface mesh model is challenging. 

A high degree of accuracy (less than 0.5 mm error) is required. The shapes of dental 

landmark areas (cusps and fossa) vary dramatically across patients due to normal wear or 

tooth restoration. Processing these high-resolution models is computationally intensive since 

they usually contain more than 100,000 mesh cells. Over the years, deep neural networks 

have been shown to be effective in the localization of anatomical landmarks [7, 11, 13, 

14]. However, these networks are developed mainly for medical images and can not be 

directly used on 3D mesh models. A potential solution, as described in [4, 6], is to map 

the 3D mesh to a 2D planar flat-torus, which is then fed to a fully convolutional network 

[5] to annotate the landmarks. This approach is susceptible to transformation artifacts 

and information loss. More recently, PointNet++ [9] was proposed to learn group-wise 

geometric features by applying PointNet [8] hierarchically on grouped points. PointConv 

[12] learns translation-invariant and permutation-invariant convolution kernels via multi-

layer perceptrons (MLP). Lian et al. [3] introduced MeshSegNet to hierarchically extract 

multi-scale local contextual features with dynamic graph-constrained learning modules by 

using multiple features extracted from each cell.

Although yielding promising results in classification and segmentation tasks, the methods 

described above suffer from several limitations when applied to detecting dental landmarks. 

First, they are agnostic to curvature features and are not necessarily catered to learning edge 

features inside the landmark areas. Second, the high-resolution model is usually significantly 

down-sampled to meet GPU limitations. Essential structural information is hence lost and 

localization accuracy might not be able to meet the clinical requirements.

In this paper, we propose an end-to-end deep learning method, DLLNet, to automatically 

localize 68 commonly used dental landmarks on 3D high-resolution dental models. All 

landmarks are detected with a coarse-to-fine two-stage strategy (Fig. 1). In the first stage, a 

segmentation network [3] is applied on a down-sampled mesh model for tooth segmentation. 

The teeth are grouped into four partitions. The proposed network takes each partition 

as input, and outputs a coarse localization result of each landmark. In the second stage, 

DLLNet is applied to mesh patches sampled in the vicinity of the coarse localization results 

to refine landmark locations.

The main technical contribution of our paper is three-fold. First, DLLNet hierarchically 

extracts multi-scale local contextual features along two collaborative task-driven paths (i.e., 

landmark localization and landmark area segmentation). It captures the global context 

of each tooth and the local contexts of landmark areas. Second, in addition to features 

described in [3] (i.e., vertex coordinates, cell normal vectors, and cell centroids), curvature 

features are included for more comprehensive structural description of landmark areas. 

Third, an attention mechanism is applied to improve detection accuracy and to reduce 

misdetections.
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2 Methods

As shown in Fig. 2, DLLNet extracts multi-scale local context features along two task-

driven paths. The extracted global-to-local features are concatenated to output heatmaps and 

segmentation probability maps. Additionally, an attention mechanism is adopted for the two 

outputs, yielding refined heatmaps for landmark localization.

2.1 High-Level Feature Extraction

DLLNet takes a matrix F0 ∈ RN × 24 as input. N is the number of cells in the down-sampled 

mesh models. Each cell is described by a 24-dimensional feature vector. Following [3], 

the first 15 elements of the feature vector include the coordinates of the three vertices 

(9 elements), normal vectors (3 elements) and cell centroid (3 elements). Since dental 

landmarks are located on the tips or valleys of the tooth surface with typically large 

curvatures (e.g., cusp landmarks or fossa landmarks), Gaussian curvatures (3 elements), 

maximum curvatures (3 elements) and minimum curvatures (3 elements) are included to 

capture edge information.

Given an input feature matrix F0, the first MLP block consisting of two successive MLP 

layers is applied to extract high-level geometric features. A feature-transformer module 

(FTM) [8] follows by aligning the input to a canonical space to learn transformation-

invariant features F1 ∈ RN × 64. After FTM, F1 is fed to two first-level graph-constrained 

learning modules (GLMs) [3], i.e., GLM_S1 and GLM_L1 in the segmentation path and 

the localization path, respectively. Specifically, the segmentation path detects areas where 

landmarks may exist (landmark RoI). With the same modules but different receptive fields, 

the localization path detects landmarks from these areas. In each path, symmetric average 

pooling (SAP) operates on the input feature matrix F and an N × N adjacent matrix A to 

generate a local contextual feature matrix F, which is calculated by

fSAP(F ∣ A) = D− 1
2(A + I)D− 1

2 F, (1)

where D− 1
2  is the diagonal degree matrix. Adjacent matrix A controls the receptive field in 

a sphere with the geodesic radius r. We empirically set rL1 = 0.25 and rS1 = 0.1 to construct 

AL1 and AS1 since localizing landmark requires a larger receptive field. The output of the 

first-level GLM is calculated by

F = σ(σ(F) ⊕ σ(F)), (2)

where σ(·) is the MLP layer and ⊕ is a concatenation operator. The outputs of GLM_S1 and 

GLM_L1, i.e., FS1 and FL1, are concatenated across channels and are then consumed by the 

second MLP block to generate a feature matrix F2 ∈ RN × 512.

The second-level GLMs (GLM_S2 and GLM_L2) adopt an addition SAP operation on 

AL2/AS2 with F2 to output multi-scale contextual features FS2 and FL2. Specifically, AL2
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and AS2 are constructed by setting rL1 = 0.3 and rS1 = 0.2 to enlarge the receptive fields. 

FS2 and FL2 are then concatenated and squeezed by a MLP layer to output F3. Global max 

pooling (GMP) is then applied to embed global structural features into a feature vector F4.

2.2 Feature Fusion and Attention Heatmap

A fusion strategy is employed to concatenate the local-to-global contextual features (F1, F2, 

F3 and F4). Followed by the third MLP block, F5 ∈ RN × 128 is obtained as the feature matrix 

that is shared by two tasks: 1) landmark regression, where a MLP layer is used to predict 

a Gaussian heatmap matrix H with size N × C; and 2) landmark area segmentation, where 

another MLP layer with softmax activation is used to predict a probability map S with size N 
×(C + 1). C is the number of landmarks.

The result of landmark localization is sensitive to the accuracy of H on the foreground mesh 

cells (mesh cells that are close to the target landmark). Misdetection even happens when 

background mesh cells are assigned with a high probability due to feature similarity. To 

eliminate these effects, we use S as an attention map on H to generate an attention heatmap 

H:

H = H ⊙ S, (3)

where S ∈ RN × C consists of the last C columns of S. ⊙ is the Hadamard-product. Learning 

H forces the network to focus on the regression on landmark areas. This procedure also 

constrains the training of S and H by each other. Finally, the landmark localization results 

are determined by H as the coordinates of the mesh cell with the largest probability value. 

Additionally, computing H can be regarded as local coarse-to-fine processing since S can be 

viewed as a coarse landmark detection result. The total training loss of our network is

L = λℎLH H, H* + λsLS S, S* + λaLA H, H* , (4)

where λh, λs and λa are training weights. H*, S* and H* are the corresponding ground 

truths. We employ Adaptive Wing Loss [10] for LH, MSE loss for LA, and generalized Dice 

loss [1] for LS.

2.3 Implementation and Inference

In the first stage, we use tooth surfaces as the ground truth to train the segmentation 

network, i.e., MeshSegNet, following the parameter setting in [3]. Each tooth surface is 

formed by combining all corresponding landmark areas cropped within a non-overlapping 

geodesic ball (r = 1.5 mm). The segmented teeth are grouped into four partitions: anterior 

teeth (incisors + canines), premolars, first molars and second molars. Before training 

the DLLNet, we crop teeth partitions that have the same topology as the corresponding 

segmentation results from the original data, then down-sampled them to 3,000 mesh cells.

DLLNet is trained by ADAM optimizer with an initial rate of 0.01 for 30 epochs (2000 

iterations/epoch) in total. The batch size is set to 20. H* is created with a Gaussian 
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distribution with variance of 1 mm on each landmark. The geodesic radius of landmark 

areas for S* is set to 0.8 mm. H* is generated by performing Hadamard-product on H* with 

S* (last C columns). In the second stage, 150 mesh cells around each predicted landmark 

(≤0.5 mm) are sampled to train another DLLNet to refine the results. We empirically set λh 

= 0.5, λs = 0.5, and λa = 1.

In the inference phase, all landmarks are localized by directly using the coarse-to-fine 

strategy with the trained networks. In the second stage, only 150 mesh cells centered at 

the estimated landmark location are sampled. Our approach takes about 1 min to process 

a dental model (maxilla or mandible) using an Intel Core i7-8700K CPU with a 12 GB 

GeForce GTX 1080Ti GPU. All the procedures are implemented by Python based on Keras.

3 Experiments

3.1 Data

Our approach was evaluated quantitatively using 77 sets of high-resolution digital dental 

models randomly selected from our clinical digital archive, in which 15 sets were partially 

edentulous (missing tooth/teeth). All personal information were deidentified prior to the 

study. For each set of the dental models, 32 maxillary and 36 mandibular dental landmarks 

were digitized by experienced oral surgeons (Fig. 3). Each dental surface has roughly 

100,000 ~ 300,000 mesh cells, with a resolution of 0.2 ~ 0.4 mm (the average length of 

cell edges). Using 5-fold cross-validation, we randomly selected 57 sets for training, 10 sets 

for validation and the rest for testing. Prior to training, data augmentation (30 times) was 

performed by random rotation ( − π
20 , π

20 ), translation ([−20, 20]) and re-scaling ([0.8, 1.2]) 

along the three orthogonal direction. The input feature matrix was normalized by Gaussian 

normalization constant (GNC).

3.2 Comparison Methods

DLLNet was compared with PointNet++ [9], PointConv [12] and the state-of-the-art 

MeshSegNet [3] with the same network architectures that were described in the original 

papers. To evaluate the effectiveness of the curvature features, two-task driven paths, 

and the attention mechanism, which are the main differences between our DLLNet and 

MeshSegNet, we performed an ablation study by comparing DLLNet with three variants: 

1) DLL-SA with input features identical to MeshSegNet; 2) DLL-C with GLM_S1, 

GLM_S2 and output S removed and thus only focuses on heatmap regression; and 3) 

DLL-CS with the attention module removed. The results of landmark localization were 

quantitatively evaluated with root mean squared error (RMSE). Finally, the misdetection rate 

(MDR) was calculated. All compared methods were trained using the same coarse-to-fine 

strategy, augmented dataset, and training loss for heatmap regression and landmark area 

segmentation.

3.3 Results

Table 1 summarizes the landmark localization results in RMSE based on anatomical regions, 

including anterior teeth (AT), central and lateral incisors, canines, premolars (PM), first 

Lang et al. Page 5

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



molars (FM), and second molars (SM). The central dental midline points of maxillary and 

mandibular dental arches are extremely important during planning and treatment, as they 

are derived from the right and left of the central incisors as the midpoint [2]. Therefore, 

we single out the accuracy evaluation of the four central incisor (CI) landmarks from the 

anterior teeth and present them separately in the fifth column. The results show that DLLNet 

achieves the highest accuracy among the four methods. MeshSegNet outperforms Point++ 

and PointConv in all 4 dental regions, indicating that using GLM and the combined features 

is effective in capturing the local-to-global contextual features. However, the errors are still 

considerably large in all regions because consideration of structural information captured 

in landmark areas is inadequate. Furthermore, all three competing methods have a large 

MDR due to surface similarity, hindering them from being used in real clinical applications. 

Finally, the accuracy in molar regions are slightly lower than the others due to normal wear 

of the molars. Nonetheless, the accuracy achieved by DLLNet is still within the clinical 

standard of 0.5 mm. Figure 4 shows the qualitative results of a set of randomly selected 

dental models, clearly demonstrating that our approach yields in overall better performance 

than the completing methods. Notably, the localization accuracy on the central and lateral 

incisors has been significantly improved.

The ablation results compared with the three variants are summarized in Table 1. DLL-C 

outperforms MeshSegNet and other methods partly due to the curvature features, which 

are added into the input matrix by considering that landmarks are located on cusps or 

fossa. However, DLL-C still yields a large MDR (10%). DLL-CS further improves the 

accuracy by collaboratively performing multi-scale landmark detection via the landmark 

area segmentation path. The overall performance of DLL-SA is slightly worse than the 

other two variants because curvature information is not considered. However, DLL-SA still 

outperforms the other compared methods via local coarse-to-fine processing, where the 

landmark area segmentation results are used as attention maps, forcing each landmark to 

be localized within the landmark area, thus reducing misdetections. By integrating all these 

strategies into our framework, DLLNet ultimately achieves the highest accuracy and the 

lowest misdetection rate when compared with related methods.

Finally, Fig. 5 shows the localization results on randomly selected partial edentulous 

subjects, where tooth absence can be directly detected from the pre-segmentation results. 

All available landmarks are correctly and accurately localized without false detection. This 

strongly suggests that our approach is capable of handling imperfections.

4 Conclusion

In this paper, we have proposed an attention-based deep learning method, called DLLNet, 

to accurately localize 68 commonly used tooth landmarks on 3D dental surface models. 

DLLNet applies curvature features and learns multi-scale local contextual features along two 

task-driven paths. By using an attention mechanism, the network further refine localization 

accuracy and reduces misdetections. Experimental results based on a clinical dataset show 

that DLLNet significantly outperforms related state-of-the-art methods. Future work will 

focus on validation on more patients with various tooth conditions.
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Fig. 1. 
Coarse-to-fine framework for dental landmark localization on a 3D surface.
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Fig. 2. 
The architecture of DLLNet and the details of the modules.
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Fig. 3. 
Names of landmarks annotated on the maxillary (left) and mandibular (right) dental models.
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Fig. 4. 
Results of maxillary and mandibular landmark localization of a set of randomly selected 

dental models using the four methods (Red: Algorithm-localized landmarks; Green: Ground 

truth).
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Fig. 5. 
Localization and pre-segmentation results for partially edentulous patients.
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Table 1.

RMSE (mean ± SD, unit: mm) of landmark localization.

Method AT PM FM SM CI MDR

Point++ 0.71 ± 0.49 1.02 ± 0.58 1.40 ± 0.53 1.44 ± 0.64 0.95 ± 0.61 17%

PointConv 0.66 ± 0.41 1.40 ± 0.54 1.39 ± 0.48 1.41 ± 0.58 0.82 ± 0.52 15%

MeshSegNet 0.64 ± 0.49 0.52 ± 0.41 0.59 ± 0.47 0.78 ± 0.43 0.78 ± 0.43 10%

DLL-SA 0.48 ± 0.27 0.51 ± 0.42 0.57 ± 0.48 0.69 ± 0.58 0.49 ± 0.38 3%

DLL-C 0.49 ± 0.29 0.48 ± 0.34 0.56 ± 0.41 0.60 ± 0.42 0.48 ± 0.34 10%

DLL-CS 0.40 ± 0.21 0.45 ± 0.32 0.51 ± 0.36 0.58 ± 0.39 0.42 ± 0.29 8%

DLLNet 0.30 ± 0.11 0.39 ± 0.26 0.47 ± 0.28 0.49 ± 0.37 0.28 ± 0.15 0%
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