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Abstract

Landmark localization is an important step in quantifying craniomaxillofacial (CMF) deformities 

and designing treatment plans of reconstructive surgery. However, due to the severity of 

deformities and defects (partially missing anatomy), it is difficult to automatically and accurately 

localize a large set of landmarks simultaneously. In this work, we propose two cascaded networks 

for digitizing 60 anatomical CMF landmarks in cone-beam computed tomography (CBCT) 

images. The first network is a U-Net that outputs heatmaps for landmark locations and landmark 

features extracted with a local attention mechanism. The second network is a graph convolution 

network that takes the features extracted by the first network as input and determines whether each 

landmark exists via binary classification. We evaluated our approach on 50 sets of CBCT scans 

of patients with CMF deformities and compared them with state-of-the-art methods. The results 

indicate that our approach can achieve an average detection error of 1.47mm with a false positive 

rate of 19%, outperforming related methods.
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1 Introduction

Craniomaxillofacial (CMF) surgeries aim to correct congenital or acquired deformities of 

the head and face [10]. Due to the complexity of CMF anatomy, detailed surgical planning is 
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often carried out with the help of cone-beam computed tomography (CBCT) images. CMF 

landmark localization, also called “landmark digitization”, is an important step to quantify 

deformities for surgical planning. An automated landmark digitization method is highly 

valuable for effective and efficient surgical planning.

Deep learning-based methods, such as convolutional neural networks have been proposed 

to learn task-specific features for anatomical landmark localization in medical images. For 

example, Payer et al. [6] applied fully convolutional network (FCN) [4,5,7] to predict a 

non-linear mapping from input image patches to the respective heatmap patches. Zhang 

et al. [13] employed a cascade of two FCNs to detect multiple anatomical landmarks 

simultaneously, where the 3D displacements generated by the first FCN are used in 

combination with the image patches in the second FCN to regress the respective landmark 

heatmaps. Wang et al. [8] developed a multi-task network for segmentation and landmark 

localization in prenatal ultrasound volumes.

Although yielding promising prediction results in landmark localization, the above methods 

suffer from a number of limitations. First, for patients with facial trauma or post-ablative 

surgery, some anatomical landmarks might be missing due to deformities. Failure to 

consider this will lead to false-positive detections, affect deformity quantification, and 

mislead surgical planning. Second, these methods localize each landmark independently 

without considering the inter-dependency between landmarks. Most CMF landmarks are 

located on bony boundaries and are related via a relatively fixed geometrical structure. 

Explicitly modeling this kind of inter-dependency can reduce misdetections.

In this paper, we focus on localizing CMF landmarks and at the same time determine 

their existence. We propose a coarse-to-fine two-stage approach to gradually detect CMF 

landmarks in CBCT images. In the first stage, a cascade of two networks is employed for 

coarse but reliable landmark localization. The first network is derived from U-Net, which 

takes a down-sampled 3D image as input, and outputs a set of attention maps. To model 

the dependence between landmarks, we first group all landmarks according to 7 pre-defined 

anatomical regions and encode their spatial relationships in an adjacency matrix. We then 

employ a second network based on a graph convolution network (GCN) with the adjacency 

matrix and features extracted from the attention maps as inputs to determine the existence of 

each landmark. In the second stage, image patches with a higher resolution are sampled in 

the vicinity of the landmark locations estimated in the first stage. These patches are used to 

train a high-accuracy network [3] to further refine landmark localization.

The contribution of our paper is two-fold. First, we introduce a new attention feature 

extraction mechanism for feature learning. Second, we encode the dependency of all 

landmarks in the form of a graph to be adopted in a GCN to predict the existence of each 

landmark. The accuracy of this method will be demonstrated via quantitative evaluation.

2 Method

To improve the accuracy of CMF landmark localization on CBCT images, we use a 

coarse-to-fine framework that adopts a proposed network to gradually and jointly refine 
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the predicted locations of all landmarks. Specifically, we adopt GCN to solve the problem 

of landmark existence determination. The proposed network is shown in Fig.1 (a), (b). 

Different from other GCN networks in [2], we use a feature extraction network to 

automatically learn the features used as inputs for GCN. Moreover, we design an adjacent 

matrix to model the dependencies of landmarks in the same anatomic region. Details of our 

proposed network is introduced in the following sections.

2.1 Attention Feature Extraction Network

The purpose of Attention Feature Extraction Network (AFEN) is to generate N numbers 

of feature vectors for the subsequent GCN, and to predict landmark locations by heatmap 

regression. Each landmark is represented by a heatmap, where the landmark location has 

the highest intensity. As shown in Fig. 1(a), AFEN is constructed as a U-Net, with a 

contraction path consisting of four residual blocks [1], and an expansion consisting of three 

expansive blocks. Each residual block consists of two 3 × 3 × 3 convolutional (conv) layers, 

and each conv layer is followed by Rectified Linear Units (ReLU) activation and Group 

Normalization (GN) [9]. Between two subsequent residual blocks, a max pooling layer is 

used to down-sample feature maps and increase receptive field. In the expansive path, each 

expansive block consists of two 3 × 3 × 3 conv layers, each followed by a ReLU activation. 

N numbers of heatmaps are generated after a 1 × 1 × 1 convolutional layer. The training loss 

of AFEN is:

LAFEN Hi, Hi = 1
N ∑

i = 1

N
Hi − Hi

2
(1)

where Hi is the regressed heatmap for landmark i, and Hi is the corresponding ground-truth 

heatmap. N is the number of landmarks.

The generated heatmap should be a probability distribution map with large probability value 

around the location of each landmark. Meanwhile, probability values are close to zero at 

other locations far away from the landmark. Therefore, in this work, we use the regressed 

heatmap as attention map rather than activating the features maps by Softmax or Sigmoid 

functions as introduced in the conventional attention mechanisms [14,15]. Each element of 

the attention feature Fi
att for the i-th landmark is calculated by:

Fij
att = Hi * FMj (2)

where * is the dot product. FMj is the j-th feature map in the last layer of U-Net as shown in 

Fig.1(a). Hi is the i-th regressed heatmap. Fi
att gathers all the information from each feature 

map near the landmark locations.

2.2 Graph Convolution Network

Due to the fact that the locations of CMF landmarks follow a stable structure, a graph is 

formed by all landmarks, where each node represents one landmark. The edge between 

each pair of landmarks is determined by whether the two landmarks are in the same 
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anatomical regions. All 60 landmarks are pre-defined to be located in 7 non-overlapped 

regions: Midface-left (MF-L), Midface-Central (MF-C), Midface-Right (MF-R), Maxilla 

(MAX), Mandible-Left (MD-L), Mandible-Right (MD-R), and Mandible-Central (MD-C), 

as shown in Fig.2(a)–(d) using different colors. The landmark dependency is represented by 

an adjacent matrix defined as:

A =
a11 ⋯ a1N
⋮ aij ⋮

aN1 ⋯ aNN

(3)

where aij is the value of the edge between landmark i and j defined as:

aij =
1, if i = j,  or i, j ∈ Rk
0, otherwise

(4)

where Rk is the k-th anatomical region.

Our GCN consists of three graph convolutional layers as shown in Fig.1(b). Each layer 

takes feature Fi ∈ RN × Mi and the adjacent matrix A as input, and outputs a high level 

feature Fi′ ∈ RN × Mi′, where Mi and Mi′ is the numbers of input and output feature channels, 

respectively. The output of each layer Fi′ is calculated by the definition in [2]. Specially, the 

number of output feature channels Mi′ is set to be 32, 16 and 2 for each layer. The first layer 

takes F1 = Fatt ∈ RN×M and A as input, and the output of the last layer is F3′ = Fo ∈ RN × 2, 

followed by a softmax activation layer. The training loss of GCN is defined as:

LGCN = − ∑
i = 1

N
c ilog σ Fi

o + 1 − c i log 1 − σ Fi
o

(5)

where ci ∈ 0, 1  is the ground truth of the existence of the i-th landmark, σ is the softmax 

activation. The total training loss of our network is:

L = λALAFEN + λGLGCN (6)

where λA and λG are the training weights.

2.3 Implementation and Inference Procedure

At each stage, our detection network was trained by back-propagation and stochastic 

gradient descend (SGD) in an end-to-end manner. The initial learning rate was set to 0.001, 

decaying by 20% after every 5 epochs. The total number of training epochs was 20, and each 

epoch contained 12,000 iterations. For the first stage, to simplify the training, at the first 

5 epochs, a large weight (λA = 1.0,λG = 0.3) was assigned for heatmap regression losses 

(i.e., (1)) to produce reliable attention maps. After that, we reduced the heatmap regression 

weights and increased the landmark existence classification weights, such as λA = 0.3,λG 

= 1.0. We first pre-trained our models using randomly selected 50 sets of normal spiral 

CT images (scanning matrix: 0.488×0.488 mm2; and slice thickness: 1.25mm) provided by 
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clinic. After the pre-training, we subsequently trained our network using CBCT images of 

patient subjects. For training the network in the second stage, the training parameters were 

set exactly same as described in [3] with the size of input image patch as 64 × 64 × 64.

During the inference procedure, all landmarks on a testing CBCT image were jointly 

detected using the trained two-stage coarse-to-fine framework. From the second stage, we 

only sampled image patches centered at the algorithm-localized landmark positions from the 

previous stage (with the size of 64×64×64), that is, totally 60 image patches for each testing 

image, which can significantly reduce the time for testing. The trained model only takes 

around 1–3 min to process a CBCT volume (size: 536 × 536 × 440) for the joint prediction 

of 60 landmarks.

3 Experiments

3.1 Experimental Data and Methods

Our method was evaluated quantitatively using randomly selected 50 sets of CBCT 

images (resolution: 0.3 or 0.4 mm3 isotropically) from patients with non-syndromic jaw 

deformities from our digital archive of Oral and Maxillofacial Surgery Department at 

Houston Methodist Hospital. IRB approval was obtained prior to the study (Pro00013802). 

Each volume was larger than 536×536×440. Figure 3 shows an example. For each dataset, 

the midface and the mandible were manually segmented and 60 landmarks, with 33 on 

the midface and 27 on the mandible, were digitized and verified by two experienced CMF 

surgeons using the AnatomicAligner system [11]. 40% of our CBCT dataset are patients 

with defect due to imcompleted scaning or trauma. Using 5-fold cross-validation, we orderly 

selected 35 sets of data for training, 5 for validation, and the remaining 10 for testing. Prior 

to the training, the resolution of each dataset was resampled to 0.4 mm3 isotropically, and 

the intensity was normalized to the same distribution by histogram matching and Gaussian 

normalization constant (GNC). For training in the first stage, each image was down-sampled 

to a resolution of 1.6 mm3 and then padded to the size of 128×128×128. Resolution and 

size of image patch in the second stage is 0.4 mm3 and 64×64×64, respectively. Data 

augmentation (e.g. rotation, flipping) was also used to increase the training set and the 

robustness of our models. The landmark localization was completed under an environment 

of Intel Core i7–8700K CPU with a 12GB GeForce GTX 1080Ti graphics processing unit 

(GPU).

We quantitatively compared our method to three baseline deep-learning methods: 1) a basic 

U-Net proposed in [7]; 2) an extended Mask R-CNN proposed in [3]; and 3) a joint bone 

segmentation and landmark digitization (JSD) network proposed in [13]. The details of each 

method are described below.

1. U-Net: We used the same two-stage training strategy to train this network. The 

networks in the first and the second stages were trained with 128 × 128 × 128 

images (resolution: 1.6 mm3 isotropically) and 96 × 96 × 96 image patches 

(resolution: 0.4 mm3 isotropically), respectively. Each landmark position was 

decided by the coordinates of the highest-value voxel in the predicted heatmap. 

All 60 landmarks were compared.
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2. Extended Mask R-CNN: We used the same parameters and the three-stage 

coarse-to-fine training strategy introduced in [3] to train this network. The size 

of image (or image patches) in the three stages is 128×128×128 (resolution: 

1.6 mm3 isotropically), 64 × 64 × 64 (resolution: 0.8 mm3 isotropically) and 

64×64×64 (resolution: 0.4 mm3 isotropically), respectively. We also used the 

same predefined anatomical regions to model landmark dependencies. All 60 

landmarks were compared.

3. JSD. We trained the network for landmark localization by using 96×96×96 

image patches (resolution: 0.4 mm3 isotropically) as inputs. Network architecture 

and training parameters were set as those described in [13]. However, JSD 

method required a large amount of GPU memories for restoring displacement 

maps, which made it infeasible for detecting all 60 landmarks. Therefore, in 

JSD comparison, we only detected and compared 15 most clinically relevant 

landmarks, which were evenly located in 7 regions.

Root mean squared errors (RMSEs) and 95% of confidence intervals (95% Cis) were 

calculated. The false positive rate was also calculated by FP/(FP + TN), where FP and TN is 

the numbers of false positives and true negatives, respectively.

3.2 Results

Table 1 shows the comparison of the RMSEs and their 95% CIs between the algorithm-

localized and ground-truth landmarks, where negative landmarks (the landmarks not 

existing) were also taken part into calculation (the ground truth of missing landmark location 

is set to be [0.0, 0.0, 0.0]). RMSE of using our proposed method was 1.47 mm, which was 

well within the clinical tolerance of 2 mm [12]. It also had the lowest FP rate of 19%, 

which showed the effectiveness of the proposed mechanism in determining the existence of 

negative landmarks by using GCN with the explicit modeling of local dependencies between 

landmarks and the attention features extraction.

In contrast, the results achieved with the U-Net had the largest RMSE of 2.67 mm, and 

reached the highest FP rate of 100% since this network was not capable of determining the 

landmark existence. The extended Mask R-CNN had a better accuracy than U-Net. However, 

the false positive rate was still very high (95%). For both methods, RMSEs in MF-L, MF-R, 

MD-L and MD-R were relatively higher than those in other regions due to the high FP. The 

results achieved with JSD method reached the accuracy of 1.69mm, and in some regions 

(MAX, MD-C) the accuracy is higher than those obtained by our approach. However, FP 

in MD-L and MD-R is still high (100%). Meanwhile, the high GPU memory cost made it 

difficult to be used for large-scale landmark detection. Nonetheless, this network was also 

not able to determine the missing landmarks.

Our approach took 1–3 min to jointly localize 60 landmarks from a large CBCT volume 

with the size of 536 × 536 × 440, while U-Net took 1–2 min, and the extended Mask R-CNN 

took 2–6 min. It took less than 1 min for JSD to detect 15 landmarks.
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Figure 4 illustrates the results of three different subjects whose condition severity ranged 

from slight deformity, severe deformity, to discontinuity defects (partial anatomy was 

missing) using our method. No missing landmark was miss-detected.

4 Discussion and Conclusion

In this work, we have proposed a two-cascade-network for digitizing 60 anatomical 

craniomaxillofacial landmarks on CBCT images. Specially, the first network, the U-Net, 

outputs the regressed heatmaps for localizing the landmark locations, as well as attention 

features extracted by a proposed extraction mechanism. The second network, Graph 

Convolution Network, takes the attention features with a designed adjacent matrix as 

input and outputs the existence of each landmark as a binary classification. The results of 

quantitative evaluation have proven the location accuracy and also the reduced false positive 

rate when our method was used. The proposed network can be trained in an end-to-end 

manner and output large-scale landmarks simultaneously.
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Fig. 1. 
The proposed network for CMF landmarks detection. (a) Attention feature extraction 

network for localizing landmarks and generating attention features. (b) GCN for determining 

landmark existence (0 for negative and 1 for positive).
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Fig. 2. 
The illustrations of landmarks in 7 predefined anatomical regions shown in (a)–(d).
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Fig. 3. 
The illustrations of (a)–(c) the original image and (d) 60 landmarks on bony structure from a 

random subject in our dataset.
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Fig. 4. 
The results of landmark localization using our method. Condition severity of patients ranged 

from mild deformity, severe deformity, to discontinuity defect (partially missing anatomy). 

The detected landmarks are shown as red points, with the ground-truth landmarks shown as 

green points.
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Table 1.

Root mean squared error (mm) of landmark detection (on top) and the corresponding confidence intervals (on 

bottom) in the predefined 7 regions.

MF-L MF-C MF-R MAX MD-L MD-R MD-C Overall

U-Net in [7] 2.05 [1.66, 
2.44]

1.54 [1.16,1.92] 3.83 [3.42, 
4.24]

1.42 [1.08, 
1.76]

3.85 [3.48, 
3.92]

3.91 [3.53, 
4.22]

2.04 [1.67, 
2.41]

2.67 [2.33, 
3.01]

M R-CNN in 
[3]

1.86 [1.73, 
1.99]

1.58 [1.31, 
1.85]

1.61 [1.45, 
1.77]

1.57 [1.34, 
1.79]

2.05 [1.74, 
2.36]

2.41 [2.11, 
2.71]

1.67 [1.34, 
1.99]

1.82 [1.57, 
2.17]

JSD in [13] 1.42 [1.32, 
1.52]

1.38 [1.20, 
1.56]

1.61 [1.50, 
1.72]

1.32 [1.17, 
1.47]

2.43 [2.15, 
2.71]

2.37 [2.16, 
2.58]

1.31 [1.23, 
1.39]

1.69 [1.46, 
1.92]

Our approach 1.63 [1.51, 
1.74]

1.36 [1.16, 
1.56]

1.58 [1.49, 
1.67]

1.37 [1.19, 
1.56]

1.41 [1.30, 
1.52]

1.37 [1.24, 
1.50]

1.35 [1.28, 
1.42]

1.47 [1.26, 
1.68]
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