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Abstract

Here we review the motivation for creating the enhancing neuroimaging genetics

through meta-analysis (ENIGMA) Consortium and the genetic analyses undertaken by

the consortium so far. We discuss the methodological challenges, findings, and future

directions of the genetics working group. A major goal of the working group is tack-

ling the reproducibility crisis affecting “candidate gene” and genome-wide association

analyses in neuroimaging. To address this, we developed harmonized analytic

methods, and support their use in coordinated analyses across sites worldwide, which

also makes it possible to understand heterogeneity in results across sites. These

efforts have resulted in the identification of hundreds of common genomic loci

robustly associated with brain structure. We have found both pleiotropic and specific

genetic effects associated with brain structures, as well as genetic correlations with

psychiatric and neurological diseases.
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1 | WHY DID WE BUILD THE ENIGMA
CONSORTIUM?

The consortium was formed in 2009, largely in response to the grow-

ing evidence of a lack of reproducibility dubbed “the replication crisis”
in imaging genetics. At this time, the first major works of the Psychiat-

ric Genomics Consortium were being presented at conferences (Neale

et al., 2010; The Schizophrenia Psychiatric Genome-Wide Association

Study [GWAS] Consortium, 2011a,b), and we had observed the

improvement in statistical power and increase in reproducibility that

could be achieved through large-scale meta-analysis. In late 2009, we

were beginning to see a series of GWAS publications using pheno-

types derived from magnetic resonance imaging (MRI) attempting to

answer complex and important questions in psychiatry and neurology.

At that time, it was common to see GWAS papers reporting not only

main effect analyses but also interactions with diagnosis or putative

risk variables in sample sizes of less than 1,000 people. Insufficient

power and sample size remain ongoing issues within the field, as

recently highlighted by Szucs and Ioannidis (2019) who examined the

sample size of clinical and experimental MRI studies published in

2017 and 2018 in four prominent neuro-imaging journals and found

that still less than 5% of these studies had sample sizes larger than

100 (Szucs & Ioannidis, 2019).

In response to these issues, Thompson and Martin sent an email

to neuro-imaging groups around the world asking for interest in being

part of a collaborative meta-analysis consortium focusing on imaging

genetics. The key points in this email were that, although every group

would understandably want to publish its own paper reporting their

own findings, (a) the power calculations do not change just because

the phenotype acquisition is expensive, (b) it was likely that the indi-

vidual studies would not be large enough to find significant genetic

effects, and (c) even if they did, it would still be necessary to replicate

these findings in independent samples. From these beginnings, the

ENIGMA consortium now involves more than 2,000 scientists from

over 400 institutions in more than 40 countries (Thompson

et al., 2020). While our initial focus was on GWAS and genetic analy-

sis of imaging data, this quickly broadened, with the development of a

series of clinical and methods working groups focusing on answering

important questions around the impact of disorders and diseases on

brain structure and function for which more power was also required

to obtain more robust results.

2 | WHAT WERE OUR MAJOR
METHODOLOGICAL CHALLENGES?

We knew one of the first methodological challenges we would face

would be addressing heterogeneity and the perceived insurmountable

problems arising from heterogeneity in scanner performance and

imaging protocols across groups. We addressed these issues by mak-

ing a conscious decision to conduct meta—rather than mega-analyses,

which allowed the site level analyses to be run by those who knew

the phenotypic data best. This also ensured that the analyses con-

trolled for scanner and protocol effects where necessary and enabled

an evaluation of heterogeneity across sites at the individual genetic

variant level. By conducting analyses at the collection sites rather than

bringing all imaging data to one central location for analysis, we were

able not only to address site-level heterogeneity but also ensure that

contributing groups were able to quality control, process, impute, and

analyse their own genotypic data, with technical and scientific support

provided where necessary. This helped to disseminate these skills

within the imaging community and at the same time maximized partic-

ipation by avoiding challenges related to data sharing.

To reduce heterogeneity, both imaging and genetic protocols

were created and made freely available from the ENIGMA webpage.

The protocols specified the software versions used for data

processing and analyses. For example, the imaging protocols included

detailed instructions for the segmentation, extraction of volumes/

areas/thicknesses and quality control procedures which included

visual inspection. Following image processing, phenotypic summary

statistics and histograms were shared centrally and inspected prior to

running the genetic analyses. The genetic protocols included detailed

instructions for genotypic quality control, estimation of ancestry com-

ponents, imputation to a specific reference panel and analysis allowing

for both samples of unrelated individuals and samples that included

relatives. As is customary in the field, ENIGMA used fixed effect

inverse SE or sample-size weighted meta-analyses; however, random

effects meta-analyses were also used to obtain convergent evidence

and check for violations of the assumptions of fixed effects meta-

analysis. Within each meta-analysis we further examined evidence for

heterogeneity at the individual variant level using the Cochran's Q-

test (Cochran, 1954) implemented in METAL (Willer, Li, &

Abecasis, 2010) and examined significant results graphically using for-

est plots. Recently, we have also used estimates of genetic correla-

tions calculated using LDscore (Willer et al., 2010) to further check for

evidence of heterogeneity across the genome between the ENIGMA,

CHARGE and UK Biobank cohorts.

The second major methodological issue we encountered was the

treatment of multiple testing and decisions regarding phenotype selec-

tion. Working in imaging genetics, we not only had to consider the mul-

tiple testing correction related to the number and the correlation

structure of phenotypes being tested, but also those relating to the

number of genetic variants being analyzed, while accounting for the

autocorrelation patterns within the genome due to linkage disequilib-

rium. Moreover, we had to consider how to reconcile the two different

approaches to multiple testing adopted within the fields of imaging
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(which typically adopts a false discovery rate approach) and genetics

(which typically uses Bonferroni corrections). GWAS analyses currently

analyse around 10,000,000 variants across the genome, and these ana-

lyses are often conducted for many phenotypes. As the downstream

interpretation of GWAS results often uses the P values from the GWAS

as input, we elected to adopt a Bonferroni approach to multiple testing

correction, and used spectral decomposition analysis to determine the

effective number of independent traits being analyzed (Nyholt, 2004).

3 | WHAT HAVE WE DONE?

Our first major ENIGMA project was published in 2012 and focused

on identifying common genetic variants associated with hippocampal

and intracranial volumes. These analyses brought together data from

22 cohorts and led to a combined sample size of 21,000 individuals

(Stein et al., 2012). In addition to identifying genome-wide significant

loci influencing hippocampal volume and intracranial volume, these

analyses confirmed that—except for a signal relating to APOE in a

cohort that included individuals with Alzheimer's disease—there were

no other significant results at the individual cohort level; there were

also no cohort-level significant results when the analyses were

restricted to individuals without a neurological or psychiatric diagno-

sis. Thus, by bringing together the data from these 22 cohorts, the

206 coauthors on this paper worked together to ensure that the

resulting analysis would be well powered and robust, rather than

22 underpowered “null result” analyses. Another important finding

from this paper was that the distribution of effect sizes seen on these

imaging phenotypes was very similar to that which had been observed

for other physiological traits in humans; with individual common

genetic variants typically explaining less than 1% of the variance in

the trait. As shown in Figure 1, large sample sizes are needed to

robustly detect genetic variants with realistic effect sizes using con-

ventional genome-wide significance thresholds; however, due largely

to budgetary constraints, many individual studies have been designed

to detect effects in the >5% range (similar to the effect sizes seen for

APOE in Alzheimer's disease). Ongoing work by multiple groups is

focusing on increasing power using multivariate tests (e.g., van der

Meer et al., 2020), Bayesian priors, and other conditional analyses

(e.g., Smeland et al., 2018). However, as the central hypothesis of

most GWAS and the bioinformatic and functional follow up of find-

ings are essentially univariate in nature, well-powered univariate ana-

lyses supported by replication and meta-analyses remain crucial.

The second major ENIGMA GWAS paper focused on a wider

range of subcortical volumes as well as intracranial volume (Hibar

et al., 2015). These analyses included contributions from 30,717 indi-

viduals from 50 different cohorts and identified numerous common

genetic variants influencing subcortical structures. Most variants iden-

tified in these analyses influenced specific structures; however, this

may to some extent be due to the way in which imaging data are ana-

lyzed and the corrections for total or intracranial volume when analyz-

ing substructures. Despite this, at a genomic level, the results for the

individual substructures clustered by developmental and functional

subdivisions.

F IGURE 1 Power to detect a genome-wide significant locus (at / = 5 × 10−8) for variants explaining 0.1 to 1.0% of the variance in a
quantitative trait, for sample sizes of 100 to 50,000 individuals. These analyses assume that the data come from unrelated individuals, and that
additional covariates in the GWAS are not associated with the variant. See https://github.com/kaustubhad/gwas-power for R code and a tutorial
on calculating power analyses for GWAS; see also Smith and Nichols (2018), who discuss power in the context of testing multiple traits
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In addition, we were able to demonstrate that subcortical vol-

umes were significantly influenced by common variants with SNP

based heritabilities derived from the GWAS results explaining 7 to

15% of the phenotypic variance. Since the publication of these ana-

lyses in 2015, we have worked with our collaborators in the CHARGE

consortium to publish a series of updates with increased sample sizes

on common genetic variants influencing hippocampal, intracranial, and

other subcortical volumes; these results now account for 15 to 30%

of the phenotypic variance in these structures (Adams et al., 2016;

Hibar et al., 2017; Satizabal et al., 2019). Similarly, as shown in

Figure 2, even when predicting into pediatric samples (aged 9–11),

the performance of polygenic risk scores (PRS), derived from meta-

analyses of participants across the lifespan, has increased as the

power of the GWAS have increased. However, most work in this field

has focused on analysis of data from participants of European

ancestry—which dramatically reduces the accuracy of polygenic pre-

diction in non-European samples because of differing patterns of LD

and allelic effects across ancestries. Notably, as shown in Figure 3 this

reduction is somewhat ameliorated through the use of unweighted

polygenic scores. Focusing on increasing sample size of non-European

ancestry samples to improve the weights used in polygenic risk score

calculation is likely to be the best method of increasing the predictive

power in these populations.

Our most recent work focused on identifying common genetic

variants influencing the surface area and thickness of the cerebral cor-

tex, across 34 commonly used regions of interest (Grasby et al., 2020).

These analyses brought together a discovery sample of over 33,000

individuals from 50 cohorts with a replication sample of around

15,000 individuals. We found enrichment of loci influencing total sur-

face area within regulatory elements active during prenatal cortical

development, which supports the radial unit hypothesis (Rakic, 1988).

We also found loci impacting regional surface area clustered near

genes in Wnt signaling pathways known to influence progenitor cell

proliferation, surface expansion and areal identity (Harrison-Uy &

Pleasure, 2012). Common variants explained 34% (SE = 3%) of the

variation in total surface area and 26% (SE = 2%) of variation in aver-

age thickness across the cortex, while PRS derived from these GWAS

analysis explained 2 to 3% of the variance in these traits. We also

found genetic correlations (i.e., overlap in genetic effects across traits)

between total cortical surface area and cognitive function, Parkinson's

disease, insomnia, depression, and ADHD. The degree of genetic

overlap with disease risk loci could be visualized for each cortical

region, helping to map the relationships between brain structures and

these disorders.

To aid in the interpretation of the meta-analytic results we have

undertaken bioinformatic follow-up including gene and pathway ana-

lyses, fine-mapping and Mendelian randomization analyses. These

findings along with the meta-analytic summary statistics are made

freely available to provide a resource that can be used to help

researchers in the field prioritize the selection of genomic targets for

future follow-up analyses which may clarify the causal variants and

mechanisms underlying these effects.

Collectively, the work from the ENIGMA Genetics Working

Group has identified over 460 genome-wide significant variants
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F IGURE 2 Improvement in the polygenic score prediction of hippocampal volume, as power in the discovery GWAS increases. PRS may be
thought of as weighted-sum scores that summarize the results of the GWAS to a given level of significance. PRS analyses were conducted using
4,000 randomly selected unrelated participants of European ancestry from the ABCD study, which was not included in the discovery meta-
analyses (Casey et al., 2018) (relatedness <.025; ancestry defined as <6 SD from the European reference centroid in a multidimensional scaling
analysis). PRS were calculated using the traditional clumping and thresholding approach (--clump-r2 0.1 --clump-kb 1,000). Weights for these
polygenic scores were derived from GWAS for hippocampal volume controlling for ICV from Stein et al., 2012, Hibar et al., 2015 and Hibar
et al., 2017, a GWAS of 20,112 UK Biobank participants of European Ancestry, and a meta-analysis of the results from Hibar et al., 2015 and the
UK Biobank GWAS of 20,111 individuals. Analyses included Age, Sex, ancestry corrections (components 1–4) and ICV as covariates
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influencing the structure of the human brain. As shown in Figure 4

these variants are located across the genome. In addition to the work

of the ENIGMA consortium, the progress in neuroimaging genetics

has also been greatly enhanced through meta-analyses conducted by

the CHARGE consortium (Adams et al., 2016; Bis et al., 2012; Hibar

et al., 2017; Satizabal et al., 2019; Shin et al., 2020; van der Lee

et al., 2019; Vojinovic et al., 2018). Similarly, recent analyses from the

UK Biobank have allowed further advances in the field to be made

(Elliott et al., 2018; Smith et al., 2020; Smith & Nichols, 2018; Zhao

et al., 2020) and have facilitated a growing body of work in this area.

As the strong SNP-based heritability of MRI-based phenotypes dem-

onstrates, there are still substantially more common variants influenc-

ing brain structure yet to be found. As the power of neuroimaging

GWAS analyses continues to grow through collaboration and meta-

analyses, we can expect to see the number of known loci and the

accuracy of polygenic prediction increase markedly.

4 | WHERE TO FROM HERE?

As with the vast majority of GWAS, the analytic focus has been

strongly centered on single nucleotide polymorphisms located on the

autosomes. However, it is important to consider other classes of

genetic variants: the ENIGMA CNV working group (see Sonderby

et al., 2020, this issue) is making important progress in this area. There

is also a need to consider the genetic content of the allosomes or sex

chromosomes. Historically, these chromosomes were excluded from

GWAS meta-analyses due to a lack of imputation reference data and

complications surrounding the modeling of X-chromosome inactiva-

tion in females, which is not necessarily complete and may be tissue

and timing specific (Tukiainen et al., 2017).

As is the case for many other domains, neuroimaging genetics as

a field has typically focused on genotyping cohorts in which MRI data

had already been collected. This has led to the majority of analyses

focusing on participants of European ancestry. There is a pressing

need to address the issue of diversity. Large studies, such as the UK

Biobank (Littlejohns et al., 2020) and ABCD (Casey et al., 2018), which

have been designed to be more representative of the communities in

which the research is being conducted are an important advance in

this area. However, more work is needed, and disparities in prediction

accuracy cannot be addressed until large-scale genetic studies are

undertaken in other ancestral populations.

To provide results with the widest generalizability, our work to

date has focused on commonly studied imaging phenotypes derived

from cortical and subcortical structures using the most commonly

used atlases and parcellation tools. Moving forward, there are obvious

avenues for further work comparing results from other atlases and

image processing methodologies. Work has also begun on image-wide

GWAS (Medland, Jahanshad, Neale, & Thompson, 2014), also known

as voxelwise GWAS or vGWAS (Hibar et al., 2011; Stein et al., 2010).

This approach combines the spatial resolution of brain-wide statistical

parametric mapping with the genome-wide search afforded by GWAS.

Until recently power was insufficient for simultaneous genome-wide

screening of very high dimensional phenotypes, leading to novel strat-

egies for phenotype prioritization and sorting (Jahanshad et al., 2019;

Thompson, Ge, Glahn, Jahanshad, & Nichols, 2013) Similarly, there is
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F IGURE 4 Ideogram summarizing the cortical, subcortical and ICV findings from the ENIGMA (Grasby et al., 2020; Hibar et al., 2015; Stein
et al., 2012) and ENIGMA-CHARGE (Adams et al., 2016; Hibar et al., 2017; Satizabal et al., 2019) papers

F IGURE 5 Coauthorship network diagrams for imaging genetics publications indexed in PubMed: (a) from 2000 to 2010, and (b) from 2010 to 2020.
Network analyses were conducted using VOS viewer (van Eck &Waltman, 2010) using the default clustering methods, normalized by association strength,
using a repulsion strength of 0 in the layout. Data extracted August 14, 2020, using the following search syntax (a) (((("2000/01/01"[Date- Publication]:
"2010/01/01" [Date - Publication])) AND (((linkage) OR GWAS) AND imaging genetics)) ANDMRI) AND English[Language] (b) (((("2010/01/01"[Date -
Publication]: "2021/01/01" [Date -Publication])) AND ((linkage) OR GWAS) AND imaging genetics)) ANDMRI) AND English[Language]
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a need to study other important structural phenotypes such as frac-

tional anisotropy measures derived from diffusion tensor imaging;

there is work underway on this within the ENIGMA DTI Working

Group (Jahanshad et al., 2013). Beyond brain structure, the genetics

of brain activity remains a subject of interest within ENIGMA. This

involves ongoing work on (resting state) functional MRI as well as use

of other imaging modalities, such as electroencephalography (EEG),

where the ENIGMA EEG Working Group has already provided first

results (Smit et al., 2018). At the same time, there is also interest in

new methods for the analysis of imaging genomics data. Some

of these attempt to bring in other sources of bioinformatics data

to constrain and guide the search for mechanisms (Shen &

Thompson, 2020). A key lesson learned in all these efforts, which will

no doubt apply to future machine learning and deep learning efforts

in imaging genomics, has been the need for multi-cohort replication in

diverse data sets. Multi-site replication can also help address the need

to safeguard against false positives arising from too many “researcher
degrees of freedom” when many methods and parameters are tried

on the same data sets.

Finally, in addition to raising awareness of the importance of

conducting well-powered analysis in imaging genetics, ENIGMA

has greatly increased the awareness of the need for collaborations

among researchers in the field. As shown in Figure 5a, from 2000

to 2010, the coauthorship network for published research being

conducted in imaging genetics was perhaps best characterized as a

sparse network with relatively few connections. However, as

shown in Figure 5b, since this time, the overall characteristics of

the network have largely evolved, and there is now much tighter

collaboration among researchers. We look forward to seeing this

trend continue as the field of imaging genetics continues to

advance.
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