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ABSTRACT The world is grappling with the COVID-19 pandemic caused by the 2019 novel SARS-CoV-2.
To better understand this novel virus and its relationship with other pathogens, new methods for analyz-
ing the genome are required. In this study, intrinsic dinucleotide genomic signatures were analyzed for
whole genome sequence data of eight pathogenic species, including SARS-CoV-2. The genome sequences
were transformed into dinucleotide relative frequencies and classified using the extreme gradient boost-
ing (XGBoost) model. The classification models were trained to a) distinguish between the sequences of all
eight species and b) distinguish between sequences of SARS-CoV-2 that originate from different geographic
regions. Our method attained 100% in all performance metrics and for all tasks in the eight-species
classification problem. Moreover, the models achieved 67% balanced accuracy for the task of classifying
the SARS-CoV-2 sequences into the six continental regions and achieved 86% balanced accuracy for the
task of classifying SARS-CoV-2 samples as either originating from Asia or not. Analysis of the dinucleotide
genomic profiles of the eight species revealed a similarity between the SARS-CoV-2 and MERS-CoV viral
sequences. Further analysis of SARS-CoV-2 viral sequences from the six continents revealed that samples
from Oceania had the highest frequency of TT dinucleotides as well as the lowest CG frequency compared
to the other continents. The dinucleotide signatures of AC, AG,CA, CT, GA, GT, TC, and TG were well
conserved across most genomes, while the frequencies of other dinucleotide signatures varied considerably.
Altogether, the results from this study demonstrate the utility of dinucleotide relative frequencies for
discriminating and identifying similar species.

INDEX TERMS Alignment-free sequence analysis, COVID-19, dinucleotide frequencies, feature

representations, genomic signatures, human pathogens, machine learning, XGBoost.

I. INTRODUCTION

Coronaviruses (CoVs) are enveloped, linear, positive-sense,
single-stranded ribonucleic acid (RNA) viruses approximately
30kb in length [1]. Belonging to the family Coronaviridae
and the subfamily Orthocoronavirinae, members of the Beta-
coronavirus genus have been shown to cause infection in
humans [2]. Three coronavirus outbreaks have caused mod-
erate to severe respiratory diseases in the last two decades:
the 2002 Severe Acute Respiratory Syndrome (SARS)
outbreak [3], the 2012 Middle East Respiratory Syn-
drome (MERS) outbreak [4], and the current Coronavirus
Disease 2019 (COVID-19) pandemic. In December 2019,
the first cases of infection with the novel SARS-related CoV-2
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(SARS-CoV-2) were reported in Wuhan, China with subse-
quent spread to more than 180 countries resulting in nearly
15 million COVID-19 cases and more than 600 000 deaths
worldwide [5].

During a virus outbreak, the taxonomic classification of
a pathogenic species and understanding its relatedness to
other pathogens may aid in the development of appropriate
mitigation strategies. For example, global efforts to design
and develop a vaccine for SARS-CoV-2 and therapeutic drugs
may benefit greatly from the early identification of SARS-
CoV-2 as a close relative to MERS-CoV and SARS [6],
through improved understanding of possible disease pro-
gression, host pathogen interactions and potential treatment
strategies.

Several alignment-based methods have been used to
determine species relatedness [7], [8], but as sequencing
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technologies improve and available datasets become sig-
nificantly larger, application of these methods for mul-
tiple sequences become computationally inefficient [9],
[10]. Alignment-based methods rely on the availability of
well-characterized reference sequences, thereby limiting the
discovery of novel characteristics embedded within a species’
genome [8]. Thus, several alignment-free methods have been
proposed for rapid sequence analyses [11].

This work establishes the usefulness of an alignment-free
and machine learning-based taxonomic classification
approach using the dinucleotide genomic signatures of sev-
eral pathogenic species. Specifically, this study examines the
relative frequencies of 16 dinucleotide pairs derived from
fully assembled whole genome sequences (WGS) of eight
human infecting species, including SARS-CoV-2. The same
examination was implemented on SARS-CoV-2 sequences
only, with an aim to evaluate the usefulness of this approach
in an effort to understand a novel pathogen. Understand-
ing the variability of dinucleotide genomic profiles among
viruses and other related species is of particular importance
during a pandemic. Currently, it is unclear to what extent
host species or virus family influence dinucleotide frequen-
cies and whether dinucleotide genomic signatures can be
used to accurately predict species using machine learning
approaches.

The significance of dinucleotide patterns was first reported
in the 1960s when biochemical experiments performed on
genomic DNA unraveled remarkable species-specific dinu-
cleotide genomic patterns [12]. However, detailed exploration
of dinucleotide patterns was hampered by the limited avail-
ability of complete genomes, rendering most earlier infer-
ences speculative [13]. As the field of genomics continues
to evolve, more WGS are being made available, providing
tremendous opportunities for detailed exploration of din-
ucleotide genomic signatures. In the aforementioned bio-
chemical experiments, dinucleotide genomic signatures were
found to be associated with repair-based enzymes, structural
features and replication mechanisms [14], and dinucleotide
frequencies were found to be more homogeneous in GC-rich
genomes than in AT-rich genomes [15]. Although the main
reason for this difference is not clearly understood, genomes
with an abundance of the AT genomic signature have often
been associated with smaller genomes consisting of fewer
genes [16]. In addition, these genomes appear to be prone
to mutational bias possibly due to a loss of repair genes
[17] or relaxed selective pressures [18]. These early exper-
iments served as motivation for the continued exploration of
underlying dinucleotide patterns.

Il. RELATED WORK

To date, numerous alignment-free numerical DNA charac-
terization or representation schemes have been proposed
[11]. One such widely-used class of representation schemes
produces fixed-length numerical representations based on
frequency mappings, and these fixed-length vectors are con-
venient as they facilitate an efficient comparison between
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DNA sequences. The rationale for using frequency-based
mappings is that the occurrence of nucleotides differs in
the different regions of the genome both within a species
and between species [19]. As a result of these differences,
nucleotides can be encoded by their frequency of occurrence.
For instance, mononucleotide frequencies are known to dif-
fer in the coding and non-coding regions of the genome
[20], and have been effectively used in detecting these
regions. Besides the use of mononucleotide frequencies,
frequencies of dinucleotides, trinucleotides [21]-[25] and
tetranucleotides [26], [27] have also been used to numerically
represent DNA data. One shortcoming of these methods is
the potential loss of valuable genomic information arising
when condensing a possibly lengthy DNA sequence into a
small fixed set of statistical descriptors [21]. Another popular
class of alignment-free representation schemes is one that
is based on information theory principles such as entropy,
although numerous other representations do not fall in
either of these two categories [11]. A comprehensive review
of the recent numerical encoding schemes can be found
in [28].

The conversion of DNA sequences from nucleotides to
numerical representation is a critical component of pipelines
in many computational genomics applications. One such
application area is taxonomy classification where species
are classified into groups based purely on their genomic
sequences. For this task, alignment-free approaches have
been implemented such as in [29]-[31], where in [29] a deep
learning approach was taken to distinguish viral sequences
from non-viral sequences in a pool of diverse genomic
human samples. Whilst [30] proposed a model to classify
subtypes of HIV-1 genomes based on varying sub-sequence
lengths (lengths ranging from one through ten), [31] used
sub-sequences of length seven in conjunction with chaos
game numerical representations to build machine learning
models for the purposes of classifying COVID-19 genomic
sequences. Specifically, different machine learning models
were trained to classify viral genomes at different levels
of taxonomy, and these models were utilized to predict the
correct classification of the COVID-19 samples within the
different taxonomic levels.

lll. MATERIALS AND METHODS

A. DATA COLLECTION

Fully assembled, WGS data in FASTA format were retrieved
for eight pathogenic species namely, SARS-CoV-2, MERS-
CoV, Dengue Virus (DENV), Zaire Ebolavirus (EBOV), Hep-
atitis B virus (HBV), Hepacivirus C (HCV), Human Immun-
odeficiency Virus 1 (HIV-1) and Mycobacterium tuberculosis
(M. tb). The rationale for including these datasets are firstly
because SARS-CoV-2, MERS-CoV, and M. tb all cause
diseases affecting the human respiratory system. Secondly,
M. tb and HIV-1 are well-established co-infections in low-
and middle-income countries such as South Africa [32].
Lastly, EBOV [33], DENV [34], HBV [35], and HCV [36]
are responsible for epidemics in the tropical regions, causing
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FIGURE 1. Generalized flow diagram showing the methodology.

similar vascular symptoms to those seen in COVID-19
patients [37].

Complete, high coverage sequences for SARS-CoV-2 from
Africa, Asia, Europe, Oceania, North America and South
America were downloaded from the GISAID database [38].
In addition, viral and bacterial sequences were sourced
from several publicly accessible databases. HCV and HIV-1
sequences were downloaded from the Los Alamos National
Laboratory (LANL) database [39], while MERS-CoV,
DENV, EBOV, HBV, and M. tb sequences were down-
loaded from the National Center for Biotechnology Informa-
tion (NCBI) database [40]. Ethical approval was not required
for this study as the samples used were sourced from publicly
accessible websites and contain no personally identifiable
information. Hereafter, any analyses using the eight species’
sequences are referred to as between species. In addition,
any analysis using only the SARS-CoV-2 sequences will
be referred to as within species. Analyses were conducted
using the Python programming language [41] and R statistical
language [42].

B. DATA PREPROCESSING

To ensure that only high quality WGS data was included
in this analysis, several preprocessing steps were followed
(Fig. 1). To remove duplicate sequences, an in-house Python
script was used to identify any sequences that had the same
accession number and genomic sequence. Where duplicates
were found, only one sequence from each duplicate set
was retained for further analysis. An additional in-house
Python script was used to detect and identify ambiguous
nucleotides. For each species, sequences having any other
nucleotides besides A, T, C, and G were excluded, as the
presence of ambiguous nucleotides may potentially mask the
genomic signature encoded within dinucleotide frequencies.
Additionally, samples from Georgia were removed from the
dataset due to its transcontinental location between Europe
and Asia [43].

C. DINUCLEOTIDE FREQUENCY REPRESENTATION

Given the four nucleotides A, T, C, G, there are 42 =
16 unique dinucleotide pairs that can be constructed from
them, namely: Q2 = {AT, AA, AC, AG, TT, TA, TC, TG,
GT, GA, GC, GG, CT, CA, CC, CG}. If we denote by d; the
frequency of the i’ dinucleotide, then a genomic sequence
can be represented by a 16-dimensional feature vector:

f = (dar, daa, dac, ..., dcc).

Due to the varying sequence lengths of the different
species’ genomes, the relative frequencies of the dinu-
cleotides are computed by dividing each frequency by the
total number of dinucleotide pairs, m, extracted from the
entire genome sequence. Letting n be the length of a genome
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sequence, and assuming a sliding window of length 1, then
there are m = n — 1 dinucleotide pairs. The refined feature
vector is then defined as:

[

m
where the fraction bar depicts element-wise vector division
and each component is the relative frequency of each
dinucleotide pair in that sequence.

Relative dinucleotide frequency feature vectors were
computed for all genome sequences used in this study and
they were used as a numerical representation for all sequence
analyses.

D. DINUCLEOTIDE FREQUENCY ANALYSIS

1) EXPLORATORY DATA ANALYSIS

Two approaches were used to investigate the patterns of
the genomic sequences as represented by the dinucleotide
features. Firstly, dimensionality reduction techniques were
employed to embed the 16-dimensional feature space in two
dimensions for visualization. Specifically, principal compo-
nent analysis (PCA) and t-distributed Stochastic Neighbor
Embedding (t-SNE) were used. In the second approach,
an unsupervised learning approach using agglomerative hier-
archical clustering was utilized to uncover any underlying
group structures of genomic sequences. This hierarchical
approach was chosen because unlike other clustering algo-
rithms such as k-means [44], this method does not require the
number of clusters to be specified. To enable visualization of
clustering results, only ten sequences were randomly sampled
from each class in both within and between species analy-
sis, resulting in 60 and 80 sequences for the two analyses,
respectively. The dinucleotide relative frequency vectors of
these sampled sequences were used to construct dendrograms
through average linkage of the Euclidean distance matrix
of the feature vectors. Validation of the clustering results,
which is usually not an easy task, was performed in this study
through the known class labels of the samples.

2) STATISTICAL INFERENCE

The Kruskal-Wallis test was used to compare the distribution
of the relative frequencies across the different species and
continents of SARS-CoV-2 sequences. Pairwise comparisons
were conducted using the Wilcoxon Rank Sum test, with
adjustment for multiple comparisons using the Bonferroni
correction. A p-value of less than 0.05 was considered
statistically significant.

3) CLASSIFICATION

For the supervised learning task, two classification problems
were investigated for each of the between species and within
species analyses. Firstly, the problem was framed directly as
a multi-class classification problem where the goal was to
classify each sequence into k different classes, where k = 8
for the different species in the between species analysis and
k = 6 for the different continents in the within species anal-
ysis. Secondly, to discriminate SARS-CoV-2 from the other
species and to investigate differences between SARS-CoV-2
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sampled from different continents, the multi-class clas-
sification problem was binarized through the one-vs-all
approach. Specifically, one classification model was built
to distinguish SARS-CoV-2 from all the other species and
another to distinguish SARS-CoV-2 samples originating in
Asia from those originating from all the other continents.

In the one-vs-all approach, the number of sequences in the
class of interest (SARS-CoV-2 and Asia for the two analyses)
were greatly outnumbered by the sequences in the respective
complement classes (i.e. the complement classes are a com-
bination of all the classes other than the classes of interest).
Thus, the complement classes were under sampled to match
the classes of interest, thus producing balanced classes.

Two resampling techniques were utilized in this classifi-
cation system: k-fold cross-validation for hyper parameter
tuning and bootstrap for final model evaluation. For both the
within and between species analyses, the data was randomly
split, in a stratified manner, into 70% for training and hyper
parameter tuning and the remaining 30% was used for final
model testing of the fully specified classifier. Randomized
hyper parameter search was implemented through stratified
10-fold cross-validation on the 70% of the data reserved for
training. Stratification was utilized to maintain the proportion
of samples for each class in the train and test sets, as well
as in the folds during the 10-fold cross validation proce-
dure. Stratification is especially important when dealing with
imbalanced data (such as in the multi-class classification set-
tings). Ten folds were chosen for the cross-validation because
they provide a good compromise between model bias and
computational efficiency [45]. A smaller number of folds,
such as two or three, have a high bias but are computationally
efficient. On the other hand, a large number of folds (the
extreme case being leave-one-out cross-validation) have a
low bias, but are computationally inefficient [45]. Moreover,
[46] showed that leave-one-out and 10-fold cross-validation
yielded similar results, indicating that using ten folds is more
appealing from a computational efficiency perspective.

The randomized hyper parameter tuning through stratified
10-fold cross validation yielded the best model configuration
which was then used to train the model on the entirety of
the training data, where “‘best” was determined through the
balanced accuracy metric [47], [48] before being evaluated
on the held out 30% testing data. Balanced accuracy is an
alternative to the standard accuracy measure that is especially
useful when working with imbalanced data. It is defined as
the average of recall scores obtained in each class whereas
standard accuracy is simply the proportion of all correctly
predicted class labels. For evaluation of the final model,
20000 bootstrap resamples from the unseen test data were
evaluated on the trained model. In each bootstrap iteration,
balanced accuracy, precision, recall and the F1 score per-
formance metrics were computed. The average values of
these metrics as well as 95% confidence intervals for uncer-
tainty were computed and reported. The methods performed
for hyper parameter optimization and model evaluation are
described in greater detail in Fig. S3 and Fig. S4.
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TABLE 1. Number of sequences downloaded and selected for analysis.

Species Total number of  Selected
sequences down-  sequences
loaded (ATCG only)

SARS-CoV-2 28 067 8252 (29.4%)

MERS-CoV 256 198 (77.3%)

DENV 5448 4749 (87.2%)

EBOV 1547 1222 (79.0%)

HBV 8 627 6990 (81.0%)

HCV 3288 2453 (74.6%)

HIV-1 12538 8 890 (70.9%)

M. tb 292 145 (49.7%)

Total 60 063 32899 (54.78%)

IV. RESULTS

A. DATA COLLECTION AND PREPROCESSING

A total of 60 063 WGS were downloaded from publicly
accessible databases including GISAID, NCBI, and the
LANL (Table 1). Of these, 54.8% of the sequences contained
only A, T, C, and G nucleotides (Table 1), which were used for
the between species dinucleotide frequency analysis. Of the
eight species, the SARS-CoV-2 retained the least number
of sequences for the berween species dinucleotide frequency
analysis (Table 1). Most of the SARS-CoV-2 sequences used
in this study were sampled in Europe, while South Amer-
ica, Oceania, and Africa had the least number of sequences
(Table S1).

B. DINUCLEOTIDE FREQUENCY ANALYSIS

1) EXPLORATORY DATA ANALYSIS

Summaries of the relative dinucleotide frequencies for all the
species analyzed, and of SARS-CoV-2 samples from the dif-
ferent regions are shown in Fig. S1 and Fig. S2, respectively.
The thickness of the lines in each class is a proxy for the num-
ber of samples belonging to that class. Substantial diversity is
observed in the distribution of the relative frequencies across
the dinucleotides of all the species in the study. In contrast,
little variation across the dinucleotides was observed among
the SARS-CoV-2 samples from the different regions because
the lines are superimposed on each other (Fig. S2).

The median relative frequencies of the 16 dinucleotide
genomic signatures were calculated for each of the eight
pathogens (Table S2) and for the SARS-CoV-2 data sampled
in six continental regions (Table S3). Results showed that for
SARS-CoV-2 and MERS-CoV, the median relative frequen-
cies for the TT and CG dinucleotides were the most, and least
abundant dinucleotides, respectively (Table S2). The median
relative frequency for the CG dinucleotide signature was
consistently the least abundant across all the species, except
for M. tb where it was the most abundant (Table S2). Inves-
tigation of the relative dinucleotide frequencies within the
SARS-CoV-2 sequences revealed very similar frequencies
across the data from the different continents (Table S3). Inter-
estingly, samples from Oceania had the highest frequency of
TT dinucleotides as well as the lowest CG frequency across
all the continents (Table S3).

Dimensionality Reduction: For the between species
analysis, both the PCA and t-SNE visualizations of the rel-
ative dinucleotide frequencies revealed a clear separation of
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FIGURE 2. a) PCA and b) t-SNE visualizations of the eight pathogenic
species.
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FIGURE 3. a) PCA and b) t-SNE visualizations of the seven continents of
origin for the SARS-CoV-2 dataset.

the different species (Fig. 2). While the t-SNE is optimized
to capture relative distances between the input observations
(in this case, genomic sequences that are neighbors in the
16-dimensional space are expected to also be neighbors
in the 2-dimensional space), inferences about the observed
inter-cluster distances and cluster sizes can seldom be made.
In contrast, given that the PCA components are optimized to
maximise variability in the original 16-dimensional features,
inferences about cluster sizes and inter-cluster distances may
be made. In particular, it may be noted that M. b, the only
bacterial genome included in this study, separated the fur-
thest from the other data points. Moreover, SARS-CoV-2 and
MERS-CoV clustered together, and this is substantiated by
the fact that these two viruses are more closely related to each
other than to the other species included in this study.

For the within species analysis on the other hand,
the sequences collected from the Oceania region were the
only group that largely separated from the rest of the
sequences, as can be seen in both PCA and t-SNE (Fig. 3).
The general lack of separation demonstrated how similar the
globally circulating sequences are.

Hierarchical Clustering: Two dendrograms were constructed
for the between and within species analyses. The dendrogram
constructed from the subset of 80 species in the between
species analysis is characterized by an excellent grouping
(Fig. 4), with all species belonging to the same group being
placed in the same cluster. For this subset of the data,
both intra-cluster and inter-cluster similarities are at their
best (Fig. 4). In this analysis, the first branching occurred
between M. tb and all the viruses, which likely indicates
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FIGURE 4. Dendrogram created from 10 randomly sampled sequences
from all classes in the between species analysis.
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FIGURE 5. Dendrogram created from 10 randomly sampled sequences
from all classes in the within species analysis.

the biggest dissimilarity in their sequences (Fig. 4). Among
the viruses, SARS-CoV-2 and MERS-CoV clustered close
together, possibly owing to their relatedness as they are
part of the same family (Coronaviridae) and same genus,
namely Betacoronavirus. Although HCV and DENV are
members of the same Flaviviridae family, their sequences
do not form neighbouring clusters. This could mean that at a
family level, either the dinucleotide relative frequency feature
vectors are not able to capture the similarity well enough or
that membership in this family does not guarantee sufficient
genome similarity. The dendrogram of the within species
analysis was based on 60 sampled SARS-CoV-2 genomes
(Fig. 5). In this clustering, the samples were poorly grouped
across the continental regions, which may be interpreted as
the absence of geography-related markers of the globally
circulating SARS-CoV-2 virus genome.

Although the results of the hierarchical clustering are only
based on a small subset of the complete dataset, they are
consistent with the visualizations of the relative dinucleotide
frequencies of the full dataset (Fig. S1. and Fig. S2.) as well
as the results obtained through PCA and t-SNE (Fig. 2 and
Fig. 3).

2) STATISTICAL INFERENCE

To statistically compare the relative frequency distributions
of the 16 dinucleotides across the different continents, pair-
wise comparisons were performed using the Wilcoxon Rank
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TABLE 2. P-values for the dinucleotide “TT” compared across the
different continents.

Continent ~ Africa Asia Europe North Oceania
America
Asia 1.7 X
1071()
Europe 0.0033 < 2 X
10—16
North 0.1301 < 2 x 62 X
America 10—16 10—15
Oceania 23 X < 2 X < 2 x < 2 x
10714 10716 10716 10716
South 1.0000 < 2 x 40 x 33 X < 2 X
America 1016 1016 1016 1016

Sum test. A subset of the results, which focuses on dinu-
cleotide TT, is presented in Table 2 and the full set of results
are given in Table S4. Dinucleotide TT was chosen for discus-
sion as it is one of the pairs that exhibited noticeable patterns
in the initial exploratory analysis (Table S2).

Most of the continental pairwise comparisons for the TT
dinucleotides were statistically significant (p-value < 0.05)
which meant that the relative frequency of TT across these
continents differed (Table 2 ). However, pairwise relative
frequency comparison of the TT dinucleotide was not sta-
tistically significant for Africa and North America (p-value
0.1301), and Africa and South America (p-value 1.000)
(Table 2 ). This means that the relative frequency distributions
of the TT dinucleotide across these continents do not differ.

The statistical significance of the TT dinucleotide in most
of the continents provides support that this dinucleotide
feature is capable of stratifying the SARS-CoV-2 genome
sequences according to geographic region of origin.

3) CLASSIFICATION

All classification models in this work were fitted on the
dinucleotide relative frequencies using the extreme gradient
boosting (XGBoost) [49] model through its Python imple-
mentation. The dinucleotide feature vectors were concate-
nated to form data frames with ¢ rows and 16 columns in the
order {AA, AT, AC, AG, TA, TT, TC, TG, CA, CT, CC, CG,
GA, GT, GC, GG} where ¢ is the number of samples in the
different partitions of the data used for training and testing
(Table S1 and Table S5).

The XGBoost model belongs to the decision tree-based
family of models. Tree-based models are rule-based systems
that are built upon a hierarchy of branching Boolean state-
ments, rendering this class of models highly interpretable
[50] and making them suitable in many fields of application.
The first tree that was constructed during the training of the
XGBoost model for the multi-class classification in the within
species analysis is shown in Fig. S5. Default hyper parameter
values for the XGBoost models were used except for the
parameters noted in Table S6, which were selected through
randomized parameter search via 10-fold cross-validation.
The final data set sizes are shown in Table S1 and Table S5 for
within and between species analysis, respectively.

The performance metrics of the classification models on
the test set are shown in Table 3, where the average balanced
accuracy, micro-averaged F1, and macro-averaged F1 scores
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TABLE 3. Balanced accuracy, Micro F1 and Macro F1 scores of the various
XGBoost models.

Model k Bal. Acc. Micro F1 Macro F1

Between 2 1.00 1.00 1.00
(1.00,1.00) (1.00,1.00) (1.00,1.00)

Between 8 1.00 1.00 1.00
(1.00,1.00) (1.00,1.00) (1.00,1.00)

Within 2 0.869 (0.846, 0.869 (0.845, 0.869 (0.845,
0.892) 0.892) 0.892)

Within 6 0.675 (0.641, 0.824 (0.809, 0.686 (0.643,
0.713) 0.838) 0.733)

of the learned model are given. These metrics include a 95%
confidence interval derived through 20000 iterations of boot-
strapping. The distributions of the bootstrapped F-score met-
rics are shown in Fig. S6 and Fig. S7 and the full performance
metrics results are noted in Table S7.

The results indicate that the between species
classification task was a simple one (Table 3 and Fig. S8),
both for the multi-class classification and the binary classi-
fication, despite facing class imbalances in the multi-class
classification task. These results are corroborated by the clear
separation of classes that were observed in both the PCA and
t-SNE (Fig. 2), and the perfect clustering results from the
random subset of the data that was analyzed (Fig. 4).

Feature importance plots for both multi-class and binary
classification models are shown in Fig. S9. Dinucleotide pair
TC led to the largest average gain in performance in the
multi-class model whilst it ranked amongst the lowest in
importance in the binary classifier. Similarly, the TG dinu-
cleotide dominated the ranks in the binary model while rank-
ing poorly in the multi-class model. Both GG and CC pairs
appeared in the top three for both models. This observation
warrants further research and is beyond the scope of this
work. The importance of the features diminished exponen-
tially, with some features not contributing to the models at all.

For the within species classification, the models clas-
sified SARS-CoV-2 sequences into six continents using a
multi-class system and into two classes using a binary
approach. The binary classifier produced a 0.869 score across
all metrics with very similar confidence (Table 3 ). Classifica-
tion of SARS-CoV-2 cases by continent recorded a decrease
in performance. Scores of 0.675, 0.824 and 0.686 were
achieved for balanced accuracy, micro-averaged F1 and
macro-averaged F1 scores, respectively.

With respect to feature importance (Fig. S10), all the
dinucleotides contributed to the models, contrary to the
observation made in the between species models. Moreover,
the reduction in the importance of the dinucleotides was
steady, even more so in the multi-class classification setting.
This was likely due to the level of difficulty of the problem
where the choice of which dinucleotide to base the next
split on was not trivial. In decreasing order of importance,
dinucleotide pairs TG, CC and GG were the most important
for the binary model whilst GT, TG and CC were the most
important for the multi-class classification model.

Confusion matrices for the within species binary and
multi-class classification tasks are shown in Fig. 6. For the
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FIGURE 6. Within species XGBoost confusion matrix for a) binary
problem b) multi-class classification problem.

binary classification task, the “Not Asia” class had a slightly
higher rate of misclassification (14.32%) compared to the
Asia class (11.81%) (Fig. 6). This may be due to the com-
positionality of the “Not Asia” class where all the diverse
samples from the other continents were grouped into one
class. For the multi-class classification task, the largest rate
of misclassifications (87.5%) was related to the “Africa”
class and this was to be expected as this class had the lowest
number samples. The “South America’ class had the second
highest misclassification rate at 45.21%, noting that its sam-
ple size was also very low. Asia, Europe, North America, and
Oceania recorded misclassification rates of 12.81%, 12.94%,
23.10% and 13.54%, respectively. The highest F1 scores were
related to the Oceania and Europe classes with 92.22% and
86.90%, respectively. The strong individual performance of
the Oceania class despite a small sample size could also be
predicted from the exploratory data analyses.

V. DISCUSSION

A. CLASSIFICATION RESULTS

For the between species analysis, the classification results
show that the XGBoost model is not only able to learn a
highly accurate model for distinguishing SARS-CoV-2 sam-
ples from non-SARS-CoV-2 samples (based on the species
included in this study), but it is also able to learn an accu-
rate model for discriminating between all eight species in a
multi-class classification setting.

For the within species analysis, the XGBoost models
developed for both the binary and multi-class classification
tasks were not as reliable as the classifiers developed in the
between species analysis because some incorrect predictions
were made, as can be seen from the off-diagonal elements
in Fig. 6. These inferior results could be attributed to the
identical sequences of the globally circulating SARS-CoV-2
genomes, which a few studies have already confirmed.
We hypothesize that this high level of sequence similar-
ity hampers the sensitivity of frequency-based approaches
employed here in detecting the very subtle differences in
the genomes. Reference [51] analyzed thirteen complete
genome sequences of SARS-CoV-2 and found that they had
a more than 99% similarity. In addition, [52] analyzed more
than 1100 SARS-CoV-2 genome sequences and provided
evidence for the absence of distinct evolutionary patterns
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in the genomes of the currently known major clades of
SARS-CoV-2. For the multi-class classification task specifi-
cally, these inferior classification results can also be attributed
to the poor performance in the classes with small sample
sizes, in addition to the limitations brought about by the
highly similar genome sequences.

B. DINUCLEOTIDE HOMOGENEITY AND CONSERVATION
Several dinucleotides are known to be conserved within 50 kb
regions across genomes. For instance, the CA dinucleotide is
conserved in all retroviruses, including HIV [53]. In a study
investigating the frequency conservation or variation of the
16 dinucleotide pairs across bacterial genomes, the frequency
of several dinucleotides such as AC, AG, CA, CT, GA, GT,
TC, and TG were well-conserved, whereas the frequency
of the other dinucleotides varied substantially [54]. Genome
inhomogeneity is mostly driven by the AA, TT, AT, TA, GG,
CC, GC, and CG dinucleotides (i.e. the combination of two
strong (SS) or two weak (WW) nucleotides, where the two
strong nucleotides are C and G and the two weak nucleotides
are A and T) [55], while homogeneity is driven by the other
eight dinucleotides consisting of combinations of the strong
and weak nucleotides (SW/WS).

The observation for genome homogeneity held true for
most of the SW/WS dinucleotides in our study, namely that
of AC, TC, TG, CA, and GT. Deviations from this trend were
seen for the AG and GA dinucleotides where HIV-1 had a
much higher relative frequency than the other species for AG
and DENV had a much higher relative frequency for GA
(Table S2). While two of the conserved dinucleotides, AG and
CA, were underrepresented in this study’s M. tb sequences,
half of the varied dinucleotides, AA, AT, TT, TA, were also
underrepresented.

C. CG SIGNATURE IN RNA VIRUSES

Several studies exploring the evolution of various human
infecting RNA viruses and their interactions with the human
host indicate that there is a general strong selection pressure
for an underrepresentation of the CG dinucleotides within
these viruses [56], [57]. It has been suggested that since
human genes eliminate CG dinucleotide motifs, the under-
representation of this dinucleotide is crucial for the viral
genome’s expression and replication, enabling it to shield
itself from the host’s immune response [56], [58], [59],
[60], [61]. While these studies computed dinucleotide rel-
ative abundance values, the present study reports dinu-
cleotide relative frequencies. Here, the CG dinucleotide was
largely underrepresented across all the viruses, confirming
the existence of this relative frequency conservation.

It is unclear whether taxonomically similar viruses infect-
ing the same host species exhibit similar dinucleotide
genomic profiles. Generally, the profiles of dinucleotide
genomic signature in viruses are thought to reflect back-
ground mutation pressures [62], [63]. Given that all
SARS-COV-2 sequences utilized in this study were obtained
from human hosts, it may be interesting to investigate how
its dinucleotide signature is associated with the human host
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and if this has any implication on the virus’s pathogenicity
and evolution over time. However, this is beyond the scope
of this work and is left for future studies.

D. COMPARISON OF M. TB TO VIRAL SPECIES

Several studies have shown that dinucleotide relative frequen-
cies can be used to adequately discriminate between viral
and bacterial species. One study showed that the underrep-
resentation of the CG dinucleotide may be associated with
cytosine methylation, although it may be affected by other
aspects of DNA conformation, such as secondary structure
and dinucleotide stacking energies, thus demonstrating its
potential to differentiate between viral and bacterial species
[13], [19]. In our study, when comparing M. tb to the viral
species, an underrepresentation of the WW dinucleotide fre-
quencies (AA, AT, TA, TT) and overrepresentation of the
SS dinucleotide frequencies (CC, CG, GC, GG) was con-
sistently observed (Table S2). Thus, these dinucleotides may
potentially be used to differentiate between M. tb and viral
species.

E. RELATEDNESS OF SARS-COV-2 AND MERS-COV
Dinucleotide biases were observed across most of the WW
and SS dinucleotides, alluding to the potential of these dinu-
cleotides to differentiate between species. Even though vari-
ation could be observed for the WW/SS relative dinucleotide
frequencies, SARS-CoV-2 and MERS-CoV consistently had
similar dinucleotide frequencies. Specifically, TT and CG
dinucleotides were over and underrepresented, respectively,
in both these species, possibly owing to their 50% sequence
similarity as indicated by [6], [64], [65]. This demonstrates
their phylogenetic relatedness and difference from the other
species included in this study. This was further observed in
their clustering closer to each other than to other species
(Fig. 2 and Fig. 4).

F. OCEANIA SAMPLES ARE DISTINCT

As expected, dinucleotide frequencies within the SARS-CoV-2
were largely conserved, with the TT and CG dinucleotides
having the highest, and lowest frequencies, respectively.
However, when assessing the SARS-CoV-2 sequences sam-
pled from several continental regions, it was interesting to
note that samples from Oceania consistently had an over-
representation for six of the 16 dinucleotides (AT, AC, TA,
TT, TG, and CA) and an underrepresentation for seven of
the 16 dinucleotides (AG, TC, CC, CG, GA, GT and GG).
This genomic signature for Oceania samples likely led to its
distinction from the samples of other continents (Fig. 3b).
This further demonstrates the potential use for dinucleotide
frequencies to illustrate underlying environmental drivers of
evolution within a species where genomes with similar phy-
logenetic compositions had vastly different GC dinucleotide
frequencies [66].

G. LIMITATIONS OF THE STUDY
Several confounders exist which may have influenced the out-
come of the within species classification. Batch effects, or the
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influence of pooling data sourced from different experiments
and locations, is one such confounder [67]. For this study,
access to experimental, sequencing, and sample preparation
from the source was limited and thus could not be corrected
for in the statistical analysis. Furthermore, host pathogen
interaction is still largely understudied and investigating its
influence on the classification of the SARS-CoV-2 sequences
was beyond the scope of this study. It is unclear how the
immune response of the host affects the pathogen’s genome.
While some of the biological data such as virus clade is
available in the GISAID database, inclusion of this informa-
tion would have further stratified the dataset by seven levels,
resulting in a further reduction in the statistical power of
analyzing each subgroup against the rest. Furthermore, at the
time of this study, no host genotype data was available to
enable a paired analysis of the host and pathogen genomes.

VI. CONCLUSION

Dinucleotide profiles differ between species, providing a
genome signature that is characteristic of the bulk properties
of an organism’s DNA. Differences in dinucleotide genomic
profiles can be considered as a distinguishing genomic signa-
ture for specific taxonomic groups providing important infor-
mation on molecular evolution mechanisms [68]. This study
confirms the utility of alignment-free and machine learning
approaches using dinucleotide relative frequencies to dis-
criminate between distantly related species such as viruses
and bacteria, closely related species such as SARS-CoV-2
and MERS-CoV, as well as samples of the same species
that originate from different regions. This approach may be
used for the taxonomic classification of pathogens which
are of particular importance during a pandemic such as
COVID-19.
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