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ABSTRACT Chest radiographs (X-rays) combined with Deep Convolutional Neural Network (CNN)
methods have been demonstrated to detect and diagnose the onset of COVID-19, the disease caused by the
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). However, questions remain regarding
the accuracy of those methods as they are often challenged by limited datasets, performance legitimacy on
imbalanced data, and have their results typically reported without proper confidence intervals. Considering
the opportunity to address these issues, in this study, we propose and test six modified deep learning models,
including VGG16, InceptionResNetV2, ResNet50, MobileNetV2, ResNet101, and VGG19 to detect SARS-
CoV-2 infection from chest X-ray images. Results are evaluated in terms of accuracy, precision, recall,
and f- score using a small and balanced dataset (Study One), and a larger and imbalanced dataset (Study
Two). With 95% confidence interval, VGG16 and MobileNetV2 show that, on both datasets, the model
could identify patients with COVID-19 symptoms with an accuracy of up to 100%. We also present
a pilot test of VGG16 models on a multi-class dataset, showing promising results by achieving 91%
accuracy in detecting COVID-19, normal, and Pneumonia patients. Furthermore, we demonstrated that
poorly performingmodels in StudyOne (ResNet50 and ResNet101) had their accuracy rise from 70% to 93%
once trained with the comparatively larger dataset of Study Two. Still, models like InceptionResNetV2 and
VGG19’s demonstrated an accuracy of 97% on both datasets, which posits the effectiveness of our proposed
methods, ultimately presenting a reasonable and accessible alternative to identify patients with COVID-19.

INDEX TERMS Artificial intelligence, COVID-19, coronavirus, SARS-CoV-2, deep learning, chest X-ray,
imbalanced data, small data.

I. INTRODUCTION
The Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2), previously known as the Novel Coronavirus,
was first reported inWuhan, China and rapidly spread around
the world, pushing the World Health Organization (WHO) to
declare the outbreak of the virus as a global pandemic and
health emergency on March 11, 2020. According to official
data, 19 million people have been infected worldwide, with
the number of deaths surpassing 700, 000, and 12 million
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recovery cases reported by August 6, 2020 [1]. In the United
States, the first case was reported on January 20, 2020, which
evolved into a current number of confirmed cases, deaths, and
recovered patients reaching more than 5 million, 162, 000,
and 2.5 million, respectively (August 6, 2020 data) [1].

COVID-19 can be transmitted in several ways. The virus
can spread quickly among humans via community trans-
mission, such as close contact between individuals, and
the transfer of respiratory droplets produced via coughing,
sneezing, and talking. Several symptoms have been reported
so far, including fever, tiredness, and dry cough as the most
common. Additionally, aches, pain, nasal congestion, runny
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nose, sore throat, and diarrhea have also been associated with
the disease [2], [3]. Several methods can be followed to detect
SARS-CoV-2 infection [4], including:

• Real-time reverse transcription polymerase chain reac-
tion (RT-PCR)-based methods

• Isothermal nucleic acid amplification-based methods
• Microarray-based methods.

Health authorities in most countries have chosen to adopt the
RT-PCRmethod, as it is regarded as the gold-standard in diag-
nosing viral and bacterial infections at themolecular level [5].
However, due to the rapidly increasing number of new cases
and limited healthcare infrastructure, rapid detection or mass
testing is required to lower the curve of infection. Recent
studies claimed that chest Computed Tomography (CT) has
the capability to detect the disease promptly. Therefore,
in China, to deal with many new cases, CT scans were used
for the initial screening of patients with COVID-19 symptoms
[6]–[9]. Similarly, chest radiograph (X-ray) image-based
diagnosis may be a more attractive and readily available
method for detecting the onset of the disease due to its
low cost and fast image acquisition procedure. In our study,
we investigate recent literature on the topic and tackle
the opportunity to present an effective deep learning-based
screening method to detect patients with COVID-19 from
chest X-ray images. Developing deep learning models using
small image datasets often results in the incorrect identifi-
cation of regions of interest in those images, an issue not
often addressed in the existing literature. Therefore, in the
present work, we have analyzed our models’ performance
layer by layer and chose to select only the best-performing
ones, based on the correct identification of the infectious
regions present on the X-ray images. Also, previous works
often do not demonstrate how their proposed models perform
with imbalanced datasets which is often challenging. Here,
we diversify the analysis and consider small, imbalanced, and
large datasets while presenting a comprehensive description
of our results with statistical measures, including 95% con-
fidence intervals, p-values, and t-values. A summary of our
technical contributions is presented below:
• Modification and evaluation of six different deep
CNN models (VGG16, InceptionResNetV2, ResNet50,
MobilenetV2, ResNet101, VGG19) for detection of
COVID-19 patients using X-ray image data on both
balanced and imbalanced datasets; and

• Verify the possibility to locate affected regions on
chest X-rays incorporated with heatmaps, including a
cross-check with a medical doctor’s opinion.

II. LITERATURE REVIEW
In the recent past, the adoption of Artificial Intelligence (AI)
in the field of infectious disease diagnosis has gained a
notable prominence, which led to the investigation of its
potential in the fight against the novel coronavirus [10]–[12].
Current AI-related research efforts on COVID-19 detection
using chest CT and X-ray images are discussed below to

provide a brief insight on the topic and highlight our moti-
vations to research it further.

A. CT SCAN BASED SCREENING
To date, several efforts in detecting COVID-19 from
CT images have been reported. A recent study by
Chua et al. (2020) suggested that the pathological pathway
observed from the pneumonic injury leading to respiratory
death can be detected early via chest CT, especially when
the patient is scanned two or more days after the devel-
opment of symptoms [13]. Related studies proposed that
deep learning techniques could be beneficial for identifying
COVID-19 disease from chest CT [12], [14]. For instance,
Shi et al. (2020) introduced amachine learning-basedmethod
for the COVID-19 screening from an online COVID-19 CT
dataset [15]. Similarly, Gozes et al. (2020) developed an
automated system using artificial intelligence to monitor and
detect patients from chest CT [16]. Chua et al. (2020) focused
on the role of Chest CT in the detection and management
of COVID-19 disease from a high incidence region (United
Kingdom) [13]. Ai et al. (2020) also supported CT-based
diagnosis as an efficient approach compared to RT-PCR
testing for COVID-19 patients detection with a 97% sensi-
tivity [17], [18].

Due to data scarcity, most preliminary studies considered
minimal datasets [19]–[21]. For example, Chen et al. (2020)
used a UNet++ deep learning model and identified 51
COVID-19 patients with a 98.5% accuracy [19]. However,
the authors did not mention the number of healthy patients
used in the study. Ardakani et al. (2020) used 194 CT images
(108 COVID-19 and 86 other patients) and implemented
ten deep learning methods to observe COVID-19 related
infections and acquired 99.02% accuracy [20]. Moreover,
a study conducted by Wang et al. (2020) considered 453
CT images of confirmed COVID-19 cases, from which 217
images were used as the training set, and obtained 73.1%
accuracy, using the inception-basedmodel. The authors, how-
ever, did not explain the model network and did not show
the mark region of interest of the infections [22]. Similarly,
Zheng et al. (2020) introduced a deep learning-based model
with 90% accuracy to screen patients using 499 3D CT
images [21]. Despite promising results, a very high perfor-
mance on small datasets often raises questions about the
model’s practical accuracy and reliability. Therefore, a better
way to represent model accuracy is to present it with an
associated confidence interval [23]. However, none of the
work herein referenced expressed their results with confi-
dence intervals, which should be addressed in future studies.

As larger datasets become available, deep-learning-based
studies taking advantage of their potential have been
proposed to detect and diagnose COVID-19. Xu et al.
(2020) investigated a dataset of 618 medical images to
detect COVID-19 patients and acquired 86.7% accuracy
using ResNet23 [24]. Li et al. (2020) utilized an even
larger dataset (a combination of 1296 COVID-19 and
3060 Non-COVID-19 patients CT images) and achieved
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96% accuracy using ResNet50 [25]. With larger datasets,
it is no surprise that deep learning-based models predict
patients with COVID-19 symptoms with accuracies ranging
from 85% to 96%. However, obtaining a chest CT scan is
a notably time consuming, costly, and complex procedure.
Despite allowing for comparatively better image quality, its
associated challenges inspired many researchers to propose
X-ray-based COVID-19 screeningmethods as a reliable alter-
native way [26], [27].

B. CHEST X-RAY BASED SCREENING
Preliminary studies have used transfer learning techniques
to evaluate COVID-19 and pneumonia cases in the early
stages of the COVID-19 pandemic [28]–[31]. However,
data insufficiency also hinders the ability of such pro-
posed models to provide reliable COVID-19 screening tools
based on chest X-ray [12], [32], [33]. For instance, Hem-
dan et al. (2020) proposed a CNN-based model adapted from
VGG19 and achieved 90% accuracy using 50 images [32].
Ahsan et al. (2020) developed a COVID-19 diagnosis model
using Multilayer Perceptron and Convolutional Neural Net-
work (MLP-CNN) for mixed-data (numerical/categorical and
image data). The model predicts and differentiates between
112 COVID-19 and 30 non-COVID-19 patients, with a higher
accuracy of 95.4% [34]. Sethy & Behera (2020) also con-
sidered only 50 images and used ResNet50 for COVID-19
patients classification, and ultimately reached 95% accu-
racy [33]. Also, Narin et al. (2020) used 100 images and
achieved 86% accuracy using InceptionResNetV 2 [12].
As noted, these studies use relatively small datasets, which
does not guarantee whether their proposed models would per-
form equally well on larger datasets. Also, the possibility of
a model overfitting is another concern for larger CNN-based
networks when trained with a small datasets.

In view of these issues, recent studies proposed
model training with larger datasets and reported a bet-
ter performance compared to smaller ones [35]–[38].
Chandra et al. (2020) developed an automatic COVID screen-
ing system to detect infected patients using 2088 (696 normal,
696 pneumonia, and 696 COVID-19) and 258 (86 images
of each category) chest X-ray images, and achieved 98%
accuracy [39]. Sekeroglu et al. (2020) developed a deep
learning-based method to detect COVID-19 using publicly
available X-ray images (1583 healthy, 4292 pneumonia, and
225 confirmed COVID-19), which involved the training of
deep learning and machine learning classifiers [40]. Pan-
dit et al. (2020) explored pre-trained VGG-16 using 1428
chest X-rays with a mix of confirmed COVID-19, common
bacterial pneumonia, and healthy cases (no infection). Their
results showed an accuracy of 96% and 92.5% in two and
three output class cases [41]. Ghosal & Tucker (2020) used
5941 chest X-ray images and obtained 92.9% accuracy [11].
Brunese et al. (2020) proposed a modified VGG16 model
and achieved 99% accuracy with a dataset of 6505 images.
However, they have used fairly balanced data with a
1 : 1.17 ratio; 3003 COVID-19 and 3520 other patients.

TABLE 1. Assignment of Data Used for Training and Testing of Deep
Learning Models.

It is not immediately clear how their model would per-
form on an imbalanced dataset [42]. On the other hand,
Khan et al. (2020) developed a model based on Xception
CNN techniques considering 284 COVID-19 patients and
967 other patients (data ratio 1 : 3.4). Partially as an effect
of a more imbalanced dataset, their reported accuracy was
comparatively low, reaching 89.6% [38]. On imbalanced
datasets, there is a higher chance that the model may be
biased on significant classes and might affect the overall
performance of the model.

III. RESEARCH METHODOLOGY
We propose three separate studies, wherein three distinct
datasets were used, as detailed below:

1) Study One – smaller, balanced dataset: chest X-ray
images of 25 patients with COVID-19 symptoms,
and 25 images of patients with diagnosed pneumonia,
obtained from the open-source repository shared by
Dr. Joseph Cohen [43].

2) Study Two – larger, imbalanced dataset: chest X-ray
images of 262 patients with COVID-19 symptoms,
and 1583 images of patients with diagnosed pneumo-
nia, obtained from the Kaggle COVID-19 chest X-ray
dataset [44].

3) Study Three –multiclass dataset: chest X-ray images of
219 patients with COVID-19 symptoms, 1345 images
of patients with diagnosed pneumonia and 1073 images
of normal patients, also obtained from the Kaggle
COVID-19 chest X-ray dataset [45].

Figure 1 presents a set of representative chest X-ray images
of both COVID-19 and pneumonia patients from the afore-
mentioned datasets. Table 1 details the overall assignment
of data for training and testing of each investigated CNN
model. In both studies, six different deep learning approaches
were investigated: VGG16 [46], InceptionResNetV2 [47],
ResNet50 [48], MobileNetV2 [49], ResNet101 [50] and
VGG19 [46].

A. USING PRE-TRAINED CONVET
A pre-trained network is a network that was previously
trained on a larger dataset which, in most cases, is enough
to learn a unique hierarchy to extract features from. It works
more effectively on small datasets. A prime example is the
VGG16 architecture, developed by Simoyan and Zisserman
(2014) [51]. Figure 2 shows a sample architecture of the
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FIGURE 1. Representative samples of chest X-ray images from the open
source data repositories [43] used in our proposed studies.

FIGURE 2. Modified architecture with new classifier [51].

pre-trained model procedure. All models implemented in this
study are available as a pre-package within Keras [51].

Figure 3 demonstrates a fine-tuning sequence on the
VGG16 network. The modified architecture follows the steps
below:

1) Firstly, the models were initiated with a pre-trained
network without a fully connected (FC) layer.

2) Then, an entirely new connected layer added a pool-
ing layer and ‘‘softmax’’ as an activation function,
appended it on top of the VGG16 model.

3) Finally, the convolution weight was frozen during the
training phase so that only the FC layer should train
during the experiment.

The same procedure was followed for all other deep
learning techniques. In this experiment, the additional mod-
ification of the model for all CNN architectures was con-
structed as follows:AveragePooling2D(Poolsize = (4, 4))→
Flatten → Dense → Dropout(0.5) → Dense(Activation =
‘‘softmax ′′). As it is known, most pre-trained models contain
multiple layers which are associated with different param-
eters (i.e., number of filters, kernel size, number of hidden
layers, number of neurons) [52]. However, manually tun-
ing those parameters is considerably time consuming [53],
[54]. With that in mind, in our models, we have optimized
three parameters: batch size ,1 epochs ,2 and learning rate 3

1Batch size characterizes the number of samples to work through before
updating the internal model parameters [55]

2It defines how many times the learning algorithm will work through the
entire dataset [55]

3It is a hyper-parameter that controls the amount to change the model in
order to calculate the error each time the model weights are updated [56]

(inspired by [57], [58]). We used the grid search method [59],
which is commonly used for parameter tuning. Initially,
we randomly selected the following:

Batch size = [4, 5, 8, 10]

Number of epochs = [10, 20, 30, 40]

Learning rate = [.001, .01, 0.1]

For Study One, using the grid search method, we achieved
better results with the following:

Batch size = 8

Number of epochs = 30

Learning rate = .001

Similarly, for Study Two, the best results were achieved with:

Batch size = 50

Number of epochs = 50

Learning rate = .001

Finally, during Study Three, best performance was achieved
with:

Batch size = 50

Number of epochs = 100

Learning rate = .001

We used the adaptive learning rate optimization algo-
rithm (Adam) as an optimization algorithm for all models due
to its robust performance on binary image classification [60],
[61]. As commonly adopted in data mining techniques, this
study used 80% data for training, whereas the remaining
20% was used for testing [62]–[64]. Each study was con-
ducted twice, and the final result was represented as the
average of those two experiment outcomes, as suggested by
Zhang et al. (2020) [65]. Performance results were presented
as model accuracy, precision, recall, and f-score [66].

Accuracy =
tp + tn

tp + tn + fp + fn
(1)

Precision =
tp

tp + fp
(2)

Recall =
tp

tn + fp
(3)

F-score = 2×
Precision× Recall
Precision+Recall

(4)

where,
• True Positive (tp) = COVID-19 patient classified as
patient

• False Positive (fp)=Healthy people classified as patient
• True Negative (tn) = Healthy people classified as
healthy

• False Negative (fn) = COVID-19 patient classified as
healthy.
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FIGURE 3. VGG16 architecture used during this experiment.

TABLE 2. Study One Model Performance on Train Set.

TABLE 3. Study One Model Performance on Test Set.

IV. RESULTS
A. STUDY ONE
The overall model performance for all CNN approaches
was measured both on the training (40 images) and test
(10 images) sets using equation 1, 2, 3, and 4. Table 2
presents the results of the training set. In this case,
VGG16 and MobileNetV2 outperformed all other mod-
els in terms of accuracy, precision, recall, and f score.
In contrast, the ResNet50 model showed the worst per-
formance across all measures. Table 3 presents the per-
formance results for all models on the test set. Models
VGG16 andMobileNetV2 showed 100% performance across
all measures. On the other hand, ResNet50, ResNet101, and
VGG19 demonstrated significantly worse results.

1) CONFUSION MATRIX
Confusion matrices were used to better visualize the
overall performance of prediction. The test set contains
10 samples (5 COVID-19 and 5 other patients). In accor-
dance with the performance results previously presented,
Figure 4 shows that the VGG16, InceptionResNetV2, and
MobileNetV2 models correctly classified all patients. In con-
trast, models ResNet50, and ResNet101 incorrectly classified
3 non-COVID-19 patients as COVID-19 patients, and mod-
els VGG19 classified 2 non-COVID patients as COVID-19
patients while also classifying 1 COVID-19 patient as
non-COVID-19.

TABLE 4. Study Two Model Performance on Train Set.

TABLE 5. Study Two Model Performance on Test Set.

2) MODEL ACCURACY
Figure 5 shows the overall training and validation accu-
racy during each epoch for all models. Models VGG16 and
MobileNetV2 demonstrated higher accuracy at epochs 25 to
30, while VGG19, ResNet50, andResNet101 displayed lower
accuracy which sporadically fluctuated between epochs 10.

3) MODEL LOSS
Figure 6 shows that both training loss and validation loss
were reduced following each epoch for VGG16, Inception-
ResNetV2, and MobileNetV2. In contrast, for VGG19, both
measures are scattered over time, which is an indicative of
poor performance.

B. STUDY TWO
For Study Two, on the training set, most model accura-
cies were measured above 90%. Table 4 shows that 100%
accuracy, precision, recall, and f score were achieved using
MobileNetV2. Among all other models, ResNet50 showed
the worst performance across all measures.

Table 5 presents the performance results for all models
on the test set. Models VGG16, InceptionResNetV2, and
MobileNetV2 showed 99% accuracy; however, the precision,
recall, and f score were distinct for each model, yet all above
97%. On the lower end, ResNet50 demonstrated relatively
lower performance across all measures.
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FIGURE 4. Study one confusion matrices for six different deep learning models applied on the test set.

FIGURE 5. Training and validation accuracy throughout the execution of each model in study one.

1) CONFUSION MATRIX
Figure 7 shows that most of the models performance is satis-
factory on the test set. In Study Two, classification accuracy
for ResNet50 and ResNet101 is significantly better compared
to StudyOne, possibly as an effect of themodels being trained
with more data and more epochs. In general, MobileNetV
2 performed better among all the models and misclassified
only 2 images out of 369 images, while ResNet50 showed
lower performance and misinterpreted 25 images out of
369 images.

2) MODEL ACCURACY
Figure 8 suggests that the overall training and validation accu-
racy were more steady during Study Two than Study One.
The performance of ResNet50 and ResNet101 significantly

improved once trained with more data (1845 images) and
more epochs (50 epochs).

3) MODEL LOSS
Figure 9 provides evidence that both training and validation
losses were minimized following each epoch for all models,
potentially as an effect of the increased batch size, number of
epochs, and data amount.

C. STUDY THREE
As means of highlighting the potential of our proposed
models with more complex classifications, we executed a
small-scale pilot study to assess the performance of the
VGG16model on a multi-class dataset. The performance out-
comes for the train and test runs are presented in Table 6. The
accuracy remained above 90% on both runs, which suggests
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FIGURE 6. Training and validation loss throughout the execution of each model in study one.

FIGURE 7. Study two confusion matrices for six different deep learning models applied on the test set.

TABLE 6. VGG16 Model Performance on Train and Test Datasets of Study
Three.

a notably high performance of our model with either binary
or multi-class datasets.

D. TEST RESULTS WITH CONFIDENCE INTERVALS
Table 7 presents 95% confidence intervals for model accu-
racy on the test sets for Studies One and Two. For instance,
in Study One, the average accuracies for VGG16 and
MobileNetV2 were found to be 100%; however, the

Wilson score and Bayesian interval show that the estimated
accuracies lie between 72.2% to 100% and 78.3% to 100%,
respectively. On the other hand, Study Two reported relatively
narrower interval ranges.

A paired t-test was conducted to comparemodel accuracies
on both studies as shown in Table 8. There was no signif-
icant difference identified within the scores for Study One
(M = 84.50, SD = 15.922) and Study Two (M = 97.39,
SD = 2.38); t(5) = −2.251, p = .074. These results suggest
that model accuracy is competent on both datasets and makes
no statistically significant differences (p > 0.05).

V. DISCUSSION
As a means of comparing our results with those available in
the literature, Table 9 contrasts the accuracies of our three best
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FIGURE 8. Training and validation accuracy throughout the execution of each model in study two.

FIGURE 9. Training and validation loss throughout the execution of each model in study two.

performing CNN models on small datasets as part of Study
One. It is relevant to emphasize that none of the referenced
studies presents their results as confidence intervals, which
hinders a direct comparison, but still allows for a higher-level
assessment of the reported performance measures.

Using 50 chest X-ray images, we have achieved accu-
racy ranges from 68.1% to 99.8% using InceptionResNetV2,
while Narin et al. (2020) used 100 images and obtained 86%
accuracy [12]. Hemdan et al. (2020) and Sethy & Behera
(2020) used small datasets of 50 images and acquired 90%
and 9% accuracy using VGG19 and ResNet50 + SVM,
respectively [32], [33].

Additionally, In Study Two, some of ourmodels—VGG16,
InceptionResNetV2, MobileNetV2,VGG19— demonstrated

almost similar accuracy while considering a highly imbal-
anced dataset than referenced literature [37], [38] that
also used imbalanced datasets (Table 10). For the imbal-
anced dataset, we used 262 COVID-19 and 1583 non-
COVID-19 patients’ (1 : 6.04) chest X-ray images. Apos-
tolopoulos and Mpesiana (2020) used 1428 chest X-ray
images where the data ratio was 1 : 5.4 (224 COVID-19:
1208 others) and achieved 98% accuracy [36]. Similarly,
Khan et al. (2020) used 1251 chest X-ray images, data
proportion 1 : 3.4 (284 COVID-19:967 others), and acquired
89.6% accuracy [38]. In Study Two, some of the best models
we acquired were VGG16, VGG19, InceptionResNetV2, and
MobileNetV2 and accuracy lies between 97% to around
100%.
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FIGURE 10. Heatmap of class activation on different layers.

TABLE 7. Confidence Interval (α = 0.05) for Studies One and Two on Test
Accuracy.

A. FEATURE SELECTION
Figure 10 highlights extracted features as an effect of differ-
ent CNN layers of VGG16 models applied on chest X-ray
images from Study One. For instance, in block1_conv1 and
block1_pool1, the extracted features were slightly fuzzy,
while in block4_conv3 and block5_pool, those features
become more visible/prominent. The heatmap also demon-
strates a considerable difference in both COVID-19 and other
patient images corresponding to each layer. For instance,
as shown in Figure 11 (left), two specific regions were high-
lighted by heatmap for the COVID-19 patient’s X-ray image,
whereas for other patients’ images, the areas were found to
be haphazard and small.

During the experiment, each layer plays a significant role
in identifying essential features from the images in the train-
ing phase. As a result, it is also deemed possible to see which
features are learned and play a crucial role in differentiating
between the two classes. In Figure11, the left frame represents
a chest X-ray image of a COVID-19 patient, and the right one
highlights infectious regions of that same image, as spotted
by the VGG16 model during Study One. The highlighted

TABLE 8. Descriptive Statistics of Paired t-Test for Study One and Study
Two. M – Mean; SD – Standard Deviation; SEM – Standard Error Mean; DF
– Degree of Freedom.

TABLE 9. Different Deep CNN Models Performance on Small Chest X-Ray
Image Dataset.

region on the upper right shoulder, which resulted from the
individual layer of the VGG16 model (Study One), can be
considered an irrelevant and therefore unnecessary feature
identified by the network. The following topics extend the
discussion on this issue:

1) The models attained unnecessary details from the
images since the dataset is small compared to themodel
architecture (contains multiple CNN layers).

2) The models extracted features beyond the center of the
images, whichmight not be essential to differentiate the
COVID-19 patients from the non-COVID-19 patients.

3) The average age of COVID-19 patients in the first
case study is 55.76 years. Therefore it is possible that
individual patients might have age-related illnesses (i.e.
weak/damaged lungs, shoulder disorder), apart from
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TABLE 10. Comparison of Models Performance on Imbalanced Datasets.

FIGURE 11. Model’s ability to identify important features on chest X-ray
using VGG16.

FIGURE 12. Model’s competency to identify essential features on chest
X-ray using MobileNetV2.

complications related to COVID-19, which are not nec-
essarily considered by the doctor’s notes.

Interestingly, the these irrelevant regions spotted by our
models decreased significantly when trained with larger
datasets (1845 images) and increased epochs (50 epochs).
For instance, Figure 12, presents the heatmap of the Conv-1
layer of MobileNetV2, acquired during the Study Two. The
heatmap verifies that the spotted regions are very similar and
match closely with the doctor’s findings.

VI. LIMITATIONS OF THE STUDY
We present the following items as limitations of our study,
which shall be addressed in future works that consider our
choice of tools and methods:

• At the time of writing, the limited availability of data
represented a challenge to confidently assess the per-
formance of our models. Open databases of COVID-19
patient records, especially those containing chest X-ray
images, are rapidly expanding and should be considered
in ongoing and future studies.

• We did not consider categorical patient data such as age,
gender, body temperature, and other associated health
conditions that are often available in medical datasets.
More robust classification models that use those vari-
ables as inputs should be investigated as a means of
achieving higher performance levels.

• We were limited to assessing the classification per-
formance of our models against the gold standards
of COVID-19 testing. However, those gold standards
themselves are imperfect and often present false posi-
tives/negatives. It is imperative to ensure that the training
sets of AI models like those herein presented are classi-
fied to the highest standards.

• Lastly, our study did not explore the compatibility of
our proposedmodels with existing computer-aided diag-
nosis (CAD) systems. From a translational perspective,
future works should explore the opportunity to bridge
that gap with higher priority.

VII. CONCLUSION AND FUTURE WORKS
Our study proposed and assessed the performance of
six different deep learning approaches (VGG16, Incep-
tionResNetV2, ResNet50, MobileNetV2, ResNet101, and
VGG19) to detect SARS-CoV-2 infection from chest X-ray
images. Our findings suggest that modified VGG16 and
MobileNetV2models can distinguish patients with COVID-19
symptoms on both balanced and imbalanced dataset with
an accuracy of nearly 99%. Our model outputs were cross-
checked by healthcare professionals to ensure that the results
could be validated. We hope to highlight the potential of
artificial-intelligence-based approaches in the fight against
the current pandemic using diagnosis methods that work
reliably with data that can be easily obtained, such as chest
radiographs. Some of the limitations associatedwith our work
can be addressed by conducting experiments with extensively
imbalanced big data, comparing the performance of our
methods with those using CT scan data and/or other deep
learning approaches, and developingmodels with explainable
artificial intelligence on a mixed dataset.
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