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1 | INTRODUCTION

Abstract

Nanoparticles possess some unique properties which improve their biochemical reac-
tivity. Plants, due to their stationary nature, are constantly exposed to nanoparticles
present in the environment, which act as abiotic stress agents at sub-toxic concentrations
and phytotoxic agents at higher concentrations. In general, nanoparticles exert their
toxicological effect by the generation of reactive oxygen species to which plants respond
by activating both enzymatic and non-enzymatic anti-oxidant defence mechanisms. One
important manifestation of the defence response is the increased or de novo biosynthesis
of secondary metabolites, many of which have commercial application. The present re-
view extensively summarizes current knowledge about the application of different
metallic, non-metallic and carbon-based nanoparticles as elicitors of economically
important secondary metabolites in different plants, both 7 vivo and 7 vitro. Elicitation
of secondary metabolites with nanoparticles in plant cultures, including hairy root cul-
tures, is discussed. Another emergent technology is the ligand-harvesting of secondary
metabolites using surface-functionalized nanoparticles, which is also mentioned. A brief
explanation of the mechanism of action of nanoparticles on plant secondary metabolism
is included. Optimum conditions and parameters to be evaluated and standardized for the
successful commercial exploitation of this technology are also mentioned.

Engineering, 2004). However, sometimes particles up to
1000 nm in size are included in nanotechnology. The nanometre

Nanotechnology is probably the greatest technological revo-
lution to impact the world in the new millennium. It is a
technology defined by size, in the sense that it encompasses all
technology within the nanometre size range. Of these, nano-
particles (NPs) are the most widely researched and applied.
The definition of nanomaterials recommended by the Euro-
pean Commission (EC) in 2011 (2011/696/EU) is as follows:

A natural, incidental or manufactured material
containing particles, in an unbound state or as an
aggregate or as an agglomerate and where, for
50% or more of the particles in the number size
distribution, one or more external dimensions is
in the size range 1 nm—100 nm.

The generally accepted definition of the size of NPs is
1-100 nm (The Royal Society and Royal Academy of

size confers some unique properties to NPs, namely large spe-
cific surface area (surface area per unit mass), high surface en-
ergy and quantum confinement [1]. This improves their
biochemical reactivity. These properties are responsible for the
unique behaviour and environmental effects of NPs compared
with larger particles of the same kind. Nanotechnology is
identified by the communication of the EC as a key enabling
technology with a global market evaluated at around 11 million
tonnes and direct employment of 300,000 to 400,000 jobs (these
figures take into account commonly known nanomaterials, i.c.
those known to have a particle size between 1 and 100 nm) [2].

The global nanotechnology market is projected to exceed
US $125 billion by 2024 of which about 85% consists of NPs
[3]. The use of NPs in agriculture, industry, biomedicine and
domestic goods is increasing exponentially, and with it, the rate
of their release into the environment. The nanomaterials
commonly in use are silver (Ag), gold (Au) and nano-oxides of
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coppet (CuO/Cuy0), iron (Fes04/Fe;O3), cerium (CeOy),
titanium (TiO,), zinc (ZnO), silicon (SiO,) and magnesium
MgO) [4]. Of these, NPs of Ag, CuO, TiO,, ZnO and SiO,
are employed in agriculture as pesticides, fungicides, herbicides
or fertilizers [5—7]. In 2010, it was reported that 63%—91% of
the 260,000-309,000 metric tons of wotldwide products con-
taining NPs were disposed of in landfills while 8%—28% of
them entered the soil [8]. Plants, due to their stationary nature,
are in constant interaction with NPs present in the environ-
ment which includes soil, water and air. NPs, at sub-toxic
concentrations, are known to act as abiotic stress agents to
plants while at higher concentrations they act as phytotoxic
agents [9]. NPs, in general, are reported to exert their toxico-
logical effect on plants by the generation of reactive oxygen
species (ROS) [10,11]. It is known that plants respond to
oxidative stress by activating both enzymatic and non-enzy-
matic anti-oxidant defence mechanisms to scavenge excess
ROS [12]. Correspondingly, NP-mediated stress also activates
the plant's anti-oxidant machinery.

It is known that plants respond to various biotic and abiotic
stress conditions by increased or de novo biosynthesis of sec-
ondary metabolites [13,14]. It has been suggested that nano-
particle-generated ROS may act as a trigger for the induction of
secondary metabolism in plants [11]. Secondary metabolites
play a defensive role in plants against abiotic as well as biotic
stress including pathogens, pests, herbivores and predators.
They may act as phytoalexins/phytoanticipins offeting pro-
tection against pathogen attacks [15—17], or can resist abiotic
stress as physical or chemical protectors or anti-oxidants of
ROS [13]. They may also act as chemical signals in symbiotic
interactions with beneficial organisms, and as allelopathic
agents to protect plants from rhizosphere competitors [18]. In
addition, they also serve as physical and chemical batriers to
abiotic stressors and as anti-oxidants to scavenge ROS [13,19].
Hence, it can be inferred that stimulation of secondary meta-
bolism by nanoparticle-mediated ROS will lead to protection of
plants from abiotic and biotic stress. Chandra et al. [20],
demonstrated in Camellia chinensis (tea) ex vivo that chitosan
NPs (90 £ 5 nm in diameter) could act as an effective elicitor of
innate immune response in plants, which upregulated the genes
and increased the activity of defence enzymes peroxidase,
polyphenol oxidase (PPO), phenylalanine ammonia lyase
(PAL), p-1,3-glucanase as well as anti-oxidant enzymes super-
oxide dismutase (SOD) and catalase (CAT). It coincided with
an increase in phenolics, particularly flavonoids which play a key
role in the defence response. They suggested a role of nitric
oxide as a signal molecule in the innate immune response [20].

Many secondary metabolites are useful to mankind as
pharmaceuticals, flavouring agents, food additives and indus-
trially important chemicals in textiles, cosmetics etc. [13,14]
The present review focuses on exploring the role of NPs in
enhancing the economic value of plants by positively influ-
encing their secondary metabolism, thereby converting a stress
response to an economic benefit for mankind. It may be
mentioned that the flavour and anti-oxidant properties of tea,
which confer its health benefits, are largely determined by its
phenol and polyphenol content [21,22] and is expected to be

enhanced by the treatment with chitosan NPs. [20] Although
secondary metabolites play a key role in protecting plants
against biotic and abiotic stress, particularly pathogen attacks,
which indirectly is an economic benefit, the phytoprotective
aspect is beyond the scope of this review, which focuses on the
production of secondary metabolites useful to mankind.

The uptake, accumulation and build-up of NPs in plants
vary, and these factors largely depend on the size, shape and the
composition of the NPs as well as on the type, size and nature of
the plants. The uptake of NPs by plants may occur either 7
v1v0 or in vitro, under culture conditions. The 7 vivo routes of
uptake include (a) by foliar sprays and (b) through roots from
the soil ot hydroponic nuttient medium. The 7 vitro routes of
administration are through artificial nutrient media in different
types of tissue cultures. In case of foliar sprays, NPs primarily
enter through stomata into the sub-stomatal chamber and
subsequently into the mesophyll cells. In case of roots, the entry
may be through root hairs or epidermal cells into cortical cells.
Several mechanisms have been proposed for the entry of NPs
into plant cells. Some pathways suggested include entry by
being bound to a carrier protein, through aquaporin, ion
channels or endocytosis through existing pores or by the cre-
ation of new pores [23,24]. The penetrative capacity by creating
new pores is particularly an attribute of carbon nanotubes [25].
Due to high surface area-to-mass ratio of NPs compared with
the bulk metals they have higher reactivities compared with the
surroundings [26]. Consequently, they may readily form com-
plexes with membrane transporters or root exudates before
being transported into the plants. Metal-based NPs may be
taken up through the corresponding ionic transporters, since
most that have been reported as being taken up by plants
include elements for which ion transporters have been identi-
fied [27]. After entry into the plant cells, the NP may be
transported either apoplastically or symplastically from one cell
to another via plasmodesmata [28] and translocated within the
plant via the liquid column of xylem or phloem.

2 | NANOPARTICLES AS ELICITORS OF
SECONDARY METABOLITES IN PLANTS
IN VIVO

Many studies have reported the application of nanoparticles to
positively modulate the content and/or composition of sec-
ondary metabolites in plants iz vivo. The enhancement of sec-
ondary metabolite content is generally reported to have a
positive correlation with the activities of enzymes related to
oxidative defence and secondary metabolism, and often with
the transcription of their corresponding genes (Figure 1 and
Table 1).

2.1 | Metal, metal oxide and metal alloy
nanoparticles

Silver nanoparticles (AgNPs) have been the most extensively
used as elicitors of secondary metabolism in plants in
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Schematic representation of the elicitation of secondary

laboratory experiments, although their high cost is likely to be a
limiting factor in their commercial application. In one of the
earliest reports, AgNPs (diameter 2-50 nm) synthesized using
aqueous leaf extract of Acalypha indica 1. were found to
enhance total phenolic content (TPC) along with catalase and
peroxidase activity in hydroponically treated Bacopa monnier:
(Linn.) Wettst. plants. However, the stress response was milder
in comparison to Ang ions released from AgNOj; solution
[29]. Aghajani et al. [30], reported the effect of AgNPs
(diameter ~32 nm) exposure (3 h at 20, 40, 60, 80 and 100
ppm) on essential oil content and composition in Thymus
kotschyanus Boiss. & Hohen. There was an increase in the
major compounds of essential oils such as a-terpinyl acetate at
60 ppm exposure and the thymol content was more than twice
of carvacrol at all employed concentrations of AgNPs except
100 ppm. However, the minor components of the essential oil
were not significantly altered under the conditions of the
experiment. In Borago officinalis 1.. (borage) foliar application
of AgNPs (diameter ~35 nm) was found to increase the
phenol, tannin and alkaloid contents along with other vegeta-
tive and phytochemical properties, the most effective con-
centration being 0.6 mM [31]. Hydroponically grown
Calendula officinalis 1.. (marigold) plants, when treated with
0.4 mM AgNPs (diameter 30-50 nm) and 100 mM methyl
jasmonate (MeJa) showed 117% increase in saponin content
but a decrease in anthocyanin and flavonoid contents [32].
Similar effects were observed in the medicinal herb
Achillea millefolium 1., which on elicitation with AgNPs

(diameter 30-50 nm) and Meja showed an increase of
approximately 230% in essential oil content. There was an
increase in flavonoids as well as some precious medicinal
compounds such as anti-bacterial isoprenoids, namely
camphor, allo-ocimene, germacrene, trans-caryophyllene and
farnesol which possess anti-bacterial, anti-fungal, anti-inflam-
matory and anti-cancer properties. There was an increase in
lipid peroxidation but a decrease in anthocyanin content and
radical scavenging activity [33]. In Pelargonium graveolens
(geranium) foliar application of AgNPs (size 5-20 nm)
enhanced essential oil yield, the maximum being at 40 mg L
concentration. Among the 26 components of the essential oil,
the maximum citronellol and geraniol content was found at
40 mg L™, while linalool and citronellyl butyrate content
decreased steadily with increasing AgNP levels until 40 mg L
and increased rapidly thereafter. Maximum citronellol/geraniol
ratio was obtained at 80 mg L.~ [34]. AgNPs (1-20 nm; 5 and
10 mg L™ ") were demonstrated to induce most of the genes
related to secondary metabolism (glucosinolates, anthocyanin)
in Brassica rapa ssp. rapa L. (turnip) seedlings along with an
increase in the content of anthocyanin and malondialdehyde as
well as hydrogen peroxide, indicating oxidative stress [35].
Similar gene induction and anti-oxidant activities were
observed with AgNPs at higher concentrations (>250 mg L")
in Brassica rapa ssp. pekinensis (Chinese cabbage) seedlings
[36]. Treatment of Trigonella foenum-graecum 1. (fenugreek)
seedlings with AgNPs (diameter 8-21 nm) were reported to
significantly enhance plant growth as well as diosgenin
biosynthesis [37]. AgNPs (diameter ~25 nm) were reported to
act as positive elicitors of the glycosides stevioside and
rebaudioside A in Stevia rebandiana (B), after spray treatment,
the maximum enhancement occurring at a concentration of
40 mM [38]. In Citrus reticulata (Kinnow Mandarin) AgNPs
(size ~21.64 nm) synthesized using leaf extracts of Moringa
oleifera, on exogenous application, enhanced the synthesis of
total flavonoids and phenolics at a concentration of 30 ppm
thereby increasing its anti-oxidant capacity and offering resis-
tant against brown spot disease caused by Alternaria alternate
[39]. In Cucumis sativus (cucumber) AgNPs (4/40 mg/plant)
were reported to activate oxidative defence response by an
increase of phenolics [40]. In hydroponically grown Rosmar-
inus officialis 1.. (Rosemary) foliar application AgNPs at 200
ppm for 12 days was found to enhance carnosic acid content
by more than 11% along with that of total flavonoids [41].
Copper or copper oxide nanoparticles (Cu/CuO NPs) have
also been reported to be effective elicitors of secondary
metabolism in plants. Plantlets of Citrus reticulata, when
germinated 7 vitro in media supplemented separately with
CuO NPs (15-32 nm) and ZnO NPs (8-32 nm) (green syn-
thesized using white leaves of Allium cepa L.) at concentra-
tions of 30 ug ml™", showed significant enhancement of total
phenolic and flavonoid contents as well as anti-oxidant ca-
pacity [42]. Foliar treatment of Mentha piperata L. (peppet-
mint) plants with CuNPs (1.0 g L") was reported to increase
chlorophyll content and essential oil percentage by 35% and
20%, respectively. The menthol, menthone and menthofuran
content in the essential oil were up to 15%, 25% and 65%
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(Continued)

TABLE 1

Effect on antioxidant

Effect on ROS,

Effect on secondary
metabolism and

Effective

and secondary
metabolic genes

antioxidant and other
enzyme activities

Mode of

concentration
of NPs

Size of

Reference

antioxidant capacity

application

Plant species

NPs (nm)

NP

20

Upregulation of the genes

Increased activity of

Increase in phenolics,

0.001% (w/v) Camellia chinensis (tea)  Poliar ex vivo

90 £ 5

Chitosan

defence enzymes of PPO, f-1,3-

patticularly flavonoids

glucanase, PAL,

POD, PPO, PAL, -

thaumatin-like protein
(TLP), SOD, CAT as
well as flavonoid

1,3-glucanase as well as

antioxidant enzymes
SOD and CAT

biosynthetic genes

cinnamate 4-

hydroxylase (C4H),

flavonoid 3-

hydroxylase (F3H) and

anthocyanidin

reductase (ANR)

Abbreviations: APX, ascorbate peroxidase; CAT, catalase; GPX, glutathione peroxidase; NP, nanopatticle; PAL, phenylalanine ammonia lyase; POD, peroxidase; PPO, polyphenol oxidase; ROS, reactive oxygen species; SOD, superoxide dismutase.

higher than in control, respectively [43]. CuO NPs were found
to significantly enhance polyphenol, flavonoid and tannin
content along with anti-oxidant capacity in roots of the Indian
medicinal plants Withania somnifera 1.. Dunal (Ashwagandha)
[44] as well as in Chicorium intybus L. (chicory) [45]. Hy-
droponic application of Cu(OH), nanopesticides (primary
diameter ~40 nm, hydrodynamic diameter 2590 £ 1138 nm in
deionized water) at concentrations of 10 and 20 mg L 'in
Cucumis sativus L. (cucumber) was found to increase ascorbic
acid, phenolics as well as amino acids while decreasing citric
acid [46]. In witro germinated secedlings of Artemisia
absinthium treated with NPs of Au (40 nm), Ag (34 nm) and
Cu (26 nm) showed enhanced TPC, total flavonoid content
(TFC), anti-oxidant activity, SOD activity and total protein
content. While TPC and TFC were enhanced more by AgNP
(AuNPs)
enhancement of radical scavenging capacity [47]. Foliar appli-
cation of CuO NPs (50 nm) in plants of Solanum lycopersi-
cum L. (tomato) enhanced fruit quality by stimulating greater

treatment, gold nanoparticles showed greater

accumulation of bioactive compounds such as vitamin C,
lycopene, total phenols and flavonoids in the fruits and
enhancing anti-oxidant capacity along with increasing anti-
oxidant enzymes CAT and SOD. The best results were ob-
tained with a CuNP concentration of 250 mg L' [48]. Under
salt stress the same NP at 250 mg L~' enhanced the Cu
concentration in the tissues of tomato while enriching phenols
(16%) in the leaves and the content of vitamin C (80%),
glutathione (GSH) (81%) and phenols (7.8%) in the fruit
compared with the control. This was accompanied by an in-
crease in the activities of anti-oxidant enzymes phenylalanine
ammonia lyase (PAL), ascorbate peroxidase (APX), glutathione
peroxidase (GPX), SOD and catalase (CAT) in the leaf tissue
by 104%, 140%, 26%, 8% and 93%, respectively [49]. While
the others are anti-oxidant defence enzymes, PAL is the first
enzyme of the general phenylpropanoid pathway that catalyses
the deamination of phenylalanine to cinnamic acid and plays a
key role in diverting aromatic amino acids from primary
metabolism to the phenylpropanoid pathway of secondary
metabolism [50]. All of these afforded better salt stress tolet-
ance and enhanced anti-oxidant defence to the plant [49]. In
studies with CuyO/Cu NPs (2-20 nm) in hydroponically
grown Bacopa monnieri (L) Pennell Plants iz vivo it was
observed that the contents of saponins, alkaloids, flavonoids as
well as anti-oxidant capacity was observed to increase from
5 mg L' to 2 maximum at 40 mg L_l, and of phenolics at
20 mg L decreasing thereafter, an effect known as hormesis.
A concentration of 100 mg L7 was detrimental to the pro-
duction of secondary metabolites, presumably due to metabolic
toxicity which inactivates the enzymes. A similar trend was
observed in the activities of PAL and anti-oxidant enzymes
SOD, CAT and APX, while there was consistent increase in
ROS marker H,O, and MDA [51]. Foliar application of
CuNPs (~50 nm) and Selenium NPs (2-20 nm) jointly in So-
lanum bycopersicum (tomato) decreased the severity of early
blight disease caused by the fungus Alternaria solani, while
simultaneously increasing vitamin C, glutathione, phenol and
flavonoid content in fruits, thereby improving fruit quality. The
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effect was correlated with the induction of the activity of the
enzymes SOD, APX, GPX and PAL in the leaves, and the
enzyme GPX in the fruit [52]. Enhancement of glycyrrhizin,
total phenolic compounds, flavonoids, anthocyanins and pro-
line content was reported in seedlings of Glycyrrhiza glabra
(licorice) seedlings after elicitation by nano-oxides of Cu and
Zn (size <50 nm). [53]. In vitro grown seedlings of Solanum
melongena 1.. (eggplant) treated with nano-oxides of Cu (25—
55 nm), Ni (10-20 nm) and Zn (18 nm) showed enhancement
of secondary metabolites anthocyanin, flavonoids and pheno-
lics in a concentration-dependent manner, the effect of NiO
NPs being the most pronounced [54].

Iron oxide (Fe-O) NPs (20 nm), when applied synergistically
with Gamma irradiation, were reported to result in a significant
increase in contents secondary metabolites like essential oils,
phenolics and flavonoids in Lepidum sativum 1. (cress) culti-
vated in sandy soil with a low quantity of saline water [55].

Cadmium oxide (CAdO) NPs (size 7-60 nm; concentration
2.03 £ 045 x 10° particles cm ) enhanced ferulic acid and
isovitexin content in Hordeum vulgare 1.. (barley) plants [56].

Titanium dioxide (TiO,) NPs (10-15 nm), on application
in Salvia officinalis 1.. (sage) plants, enhanced secondary me-
tabolites such as phenolics, flavonoids and essential oils, the
maximum increase being at concentrations of 100 and 200 mg
L', Among the major constituents of essential oils, namely
monoterpenes, including Camphene, p-Cymene, 1,8-Cineol,
cis-Thujene and Camphor, the maximum increase of cis-
Thujene (34.5%) and 1,8-Cineol (21.2%) were achieved in
plants exposed to 200 mg L.”" TiO, NPs, while the maximal
content of Camphene (12.1%) was obtained from plants
exposed to 1000 mg L™ nano-TiO, treatment [57]. On foliar
application in Dracocephalum moldavica 1. (Moldavian
Dragonhead) plants under normal irrigation, TiO, NP (10—
25 nm) at 10 ppm concentration increased plant shoot dry
mass and essential oils content. Under water-deficit condition,
plants treated with 10 ppm TiO, NPs had higher proline and
significantly lower H,O, and malondialdehyde content as
compared with untreated plants, indicating amelioration of
water deficit stress [58]. Under drought stress, TiO, NPs
increased the content of essential oils and some valuable
phenolics like rosmarinic acid (RA) and chlorogenic acid in the
same plant [59]. TiO, NPs have been demonstrated to enhance
secondary metabolite as well as amino acid and fatty acid
content correlated with crop quality in Oryza sativa L. (tice)
[60]. In Mentha piperita 1. (peppermint), treatment with TiO,
NPs (<21 nm) at concentrations of 100 and 150 mg L was
reported to significantly enhance essential oil content by 39.4%
and  105.1%,
increasing content and yield of menthol in the essential oil by
9.6% and 124.1% [61]. On foliar application at a concentration
of 90 mg 1" in Vetiveria zizanioides 1.. Nash (vetiver grass/
khus), TiO, NPs (size ~14 nm), increased the content and
yield of essential oil by 23.6% and 55.1%, respectively. The
content and yield of khusimol, the main ingredient of the
essential oil was found to be enhanced by 24.5% and 93.2%,
respectively. This coincided with an enhancement in chloro-
phyll content and photochemical efficiency of PSII [62].

respectively, over control, simultaneously

In Nigella sativa 1.. (Black cumin), treatment of plants in eatly
flowering stage with SiO, and TiO, NPs was found to stim-
ulate the expression of the Geranyl diphosphate synthase
(GPPS) gene, which is the key gene in the synthesis of the
secondary metabolite thymoquinone, in a concentration-
dependent manner. The effect of TiO, NPs was more
pronounced than that of SiO, NPs [63]. Treatment of Tana-
cetum parthenium L. (feverfew) plants separately with TiO,
(~25 nm) and SiO, NPs (10-15 nm), at concentrations of
25 mM augmented parthenolide synthesis. The expression of
the genes related to parthenolide synthesis, 7pCarS, COST and
TpGAS were all upregulated by SiO, NPs, and TiO, NPs
upregulated COST and 7pGAS while
TpCarS [64].

Zinc oxide (ZnO) NPs (12-24 nm), when applied to
Capsicum annum L. seeds at concentrations of 100 ppm and
higher before germination, were found to inhibit seedling

downregulating

radical growth and promote the accumulation of phenolics,
flavonoids and tannins while enhancing the anti-oxidant ca-
pacity of the seedlings [65]. Biogenically synthesized Zn NPs
(size 3070 nm) using leaves of Mentha arvensis 1. signifi-
cantly increased TFC and SOD in Brassica napus L. (turnip)
while decreasing TPC [66]. The combined foliar application of
ZnO NPs (~5-12 nm) synthesized using Leuconostoc mesen-
teroides (lactic acid bacteria) and FeO NPs (~2—-6 nm) syn-
thesized using Saccharomyces cerevisiae (yeast) along with
chicken manure was reported to significantly enhance the
concentration of anthocyanins, phenols, tannins, flavonoids as
well as crude protein and carbohydrates contents in roots of
field-grown Raphanus sativus cv. Champion (red radish)
compared with a single treatment [67].

Bimetallic alloy NPs of Au, Ag and Cu present in different
proportions were demonstrated to induce production of sec-
ondary metabolites like phenolics and flavonoids in germi-
nating seedlings of the medicinal plant Eruca sativa at
concentrations of 30 pg ml ™, along with enhancement of anti-
oxidant capacity. Smaller NPs induced more toxic stress while
the effect of Cu in the NPs was more pronounced than that of
Au and Ag [68]. In the ayurvedic medicinal plant Withania
somnifera 1.. Dunal (Ashwagandha), alloy Zn—-Ag NPs (25—
40 nm) in the molar ratio of 19:1 and 3:1 were found to
enhance withanolide content while Zn—Ag NPs (9:1, 1:1), Cd—
Se Quantum dots and Ni NPs were found to have a negative
effect on withanolide biosynthesis and content both i vivo
and in vitro. The effect on withanolide synthesis correlated
well with the activity of anti-oxidant enzymes as well as rates of
transpiration, photosynthesis, Calvin cycle and carbohydrate
metabolism [69].

2.2 | Non-metal oxide nanoparticles

Silicon dioxide (SiO,) NPs (50 and 100 mg L"), on foliar
application, were demonstrated to significantly augment
essential oil content in Mentha piperita 1. (peppermint) while
enriching the menthol content but decreasing menthone and
menthyl acetate in the essential oil [70].
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2.3 | Carbon-based nanoparticles

As mentioned eatlier, Chandra et al. [20] demonstrated in
Camellia chinensis (tea) ex vivo that chitosan NPs (90 + 5 nm
in diameter) caused as increase in phenolics, particularly fla-
vonoids which coincided with upregulation of the genes and
increased activity of defence enzymes peroxidase, PPO, PAL,
P-1,3-glucanase as well as anti-oxidant enzymes SOD and
catalase (CAT). Upregulation of the genes of PPO, f-1,3-glu-
canase, PAL, thaumatin-like protein (TLP), anti-oxidant en-
zymes SOD, CAT as well as flavonoid biosynthetic genes
cinnamate 4-hydroxylase (C4H), flavonoid-3-hydroxylase
(F3H) and anthocyanidin reductase (ANR) were also observed.

3 | NANOPARTICLES AS ELICITORS OF
SECONDARY METABOLITES IN PLANTS
IN CULTURE

3.1 | Metal, metal oxide and metal alloy
nanoparticles

In vitro cultutes of plants supplemented with nanopatticles are
emerging as an important technology for the uniform pro-
duction of high quantities of economically important second-
ary metabolites (Figure 2). The nanoparticles not only act as
elicitors of secondary metabolites but also as a source of
micronutrients, and sometimes as anti-microbial agents and
stimulators of callus induction, organogenesis, shoot growth
and root initiation [71] (Table 2).

Silver nanoparticles (1.2 mg L") were reported to signifi-
cantly enhance essential oil content and that of its components
a-pynene, B-pynene, p-pynene, a-thujene, Calendula glycoside,
a-cadinene, cadinol, t-muurolol, 1,8-cineol and limonene in
callus cultures of Calendula officinalis 1.. (marigold) in Mura-
shige and Skoog (MS) medium supplemented with growth
regulators 2,4-D (2 mg L") and kinetin (0.2 mg LY [72]. In
suspension cultures of Aloe vera 1., AgNPs (0.625 mg ml™")
and TiO, NPs (120 mg L") separately caused significant
enhancement of aloin content after 48 h of exposure which
gradually declined thereafter [73]. In Capsicum frutescens callus
cultures in the presence of 2,4-D and kinetin, AgNPs were
demonstrated to cause a significant increase in capsaicin content
compared with fruits of Capsicum annuum and C. frutescens
[74]. Production of anti-cancer compounds taxanes, taxol and
baccatin IIT along with total soluble phenols, in cell suspension-
cultures of Corylus avellana 1.. (hazel) was enhanced about
two-fold by elicitation with 5 ppm AgNPs but declined at 10
ppm concentration [75]. TPC and anti-oxidant capacity were
significantly enhanced in Vanilla planifolia Jacks. ex Andrews
(vanilla) shoots cultured in MS medium supplemented with 25
and 50 mg I.”" Ag NIPs (35 & 15 nm), but decreased at 100 mg
L', an effect known as hormesis [76]. Cell suspension cultures
of Momordica charantia 1. (bitter gourd) amended with AgNPs
(1-20 nm; 5 mg L") showed enhanced total phenolic and
flavonoid contents compared with the control culture. There
was also an increase in the contents of flavonols hydroxybenzoic

and hydroxycinnamic acids which could be correlated with
enhanced pharmacological activities (anti-oxidant, anti-diabetic,
anti-bacterial, anti-fungal and anti-cancer) of the plant [77].
Elicitation with AgNPs (45 mg L") was found to enhance
stevioside production to the maximum in callus cultures of
Stevia rebaudiana 1.. [78]. In cultures of the endangered me-
dicinal plant Caralluma tuberculata (Asclepiadaceae), AgNPs
(size 40 nm, concentration 60 ug L"), when combined with
plant growth regulators in MS media, was found to enhance
callus biomass. At AGNP concentration of 90 ug I.™", the callus
cultures showed higher production of phenolics (TPC: 3.0 mg),
flavonoids (TFC: 1.8 mg), PAL activity (PAL: 5.8 U/mg) and
anti-oxidant activity (90%), respectively. At 90 pg/L AgNP
concentration without growth regulators, enhanced activities of
anti-oxidant enzymes such as SOD, peroxidase, catalase and
APX were observed [79].

In callus cultures of Prunella vulgaris 1. (self-heal),
AgNPs and AuNPs alone (30 pg L") or in
combination
in different proportions, in presence of NAA (2 mg L7
enhanced secondary metabolite production. The Ag—Au NPs
(1:3) in combination with NAA induced maximum production
of phenolics and flavonoids. Moreover, Ag—Au NPs (3:1)
without NAA enhanced anti-oxidant activity (87.85%) while
AgAu (1:3) and AuNPs alone enhanced SOD and peroxidase
enzymes to the maximum extent [80]. It was reported that the
addition of 50 and 10 mg dm > nanocolloids of Ag
(27.5 & 4.8 nm) and Au (24.2 & 2.4 nm) to cultures of Lav-
andula angustifolia (lavender) altered the essential oil
composition. There was a decrease in lower molecular weight
compounds (e.g «-pinene and B-pinene, camphene, 8-3-
carene, p-cymene, 1,8-cineole, trans-pinocarveol and cam-
phoriborneol), which were substituted by higher molecular
weight compounds [t-cadinol 9-cedranone and a-cadinol 9-
cedranone, cadalene, a-bisabolol, cis-14-nor-muurol-5-en-4-
one, (E,E)-farnesol] [81].

Application of copper nanoparticles (~1-2.7 nm; 0.5 mg
L") and cobalt nanoparticles (~1.3-3 nm; 0.8 mg 1.~ ") during
clonal micropropagation of Mentha longifolia increased the
essential oil content by 2.226% and 2.19%, respectively [82]. In
in vitro cultures of Stevia rebaudiana Bert. elicitation with
CuO NPs (~47 nm in diameter) caused a significant rise of
bioactive major steviol glycosides (rebaudioside A and stevio-
side) at 10 mg L.~ " concentration accompanied by an increase
in total phenolic and flavonoid contents as well as anti-oxidant
activity [83]. CuO NPs (concentration 50, 100 and 150 mg
L") were found to enhance phenolic and malonaldehyde
content in Solanum nigrum L. callus cultures while upregu-
lating the activities of anti-oxidant defence enzymes peroxidase
(POD), PPO and PAL [84]. In cell suspension cultures of the
medicinal plant Gymnema sylvestre (Retz.) R. Br amended
with CuO NPs (size 25-55 nm) at a concentration of 3 mg L
there was a nine-fold increase in the production of gymnemic
acid II and phenolic compounds compared with control [85].

Aluminium oxide nanoparticles (Al;O3 NPs) (concentra-
tion 10100 pg L"), when added to cell suspension cultures of
Nicotiana tabacum 1.. (tobacco) were reported to significantly
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FIGURE 2 Schematic representation of
biosynthesis of secondary metabolites by currently
known nanoparticles in plant tissue cultures
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increase the phenolic content in a dose-dependent and time-
dependent manner [86].

Cobalt nanoparticles (10 nm), when added to cell suspen-
sion cultutes of the anti-malarial medicinal plant artemisia
annua, significantly enhanced artemisinin production (2.25-fold
at 5 mg I " after 24 h) while the expression of two artemisinin
biosynthesis genes SQS and DBR2 wetre downregulated [87].

Elicitation of shoot tip cultures of Atropa belladonna
(deadly nightshade) with manganese trioxide (Mn,O3) NPs
enhanced phenolics, flavonoids and alkaloids in a dose-
dependent manner while activating anti-oxidant defence en-
zymes SOD, peroxidase, catalase and ascorbate peroxidase [88].

Exposure of suspension cultures of the Iranian medicinal
herb Dracocephalum polychaetum Bornm. to magnetite
(Fe,0O3) NPs (100 ppm) along with static magnetic field (30 mT)
was found to significantly enhance the contents of total phe-
nolics, flavonoids, anthocyanins, lignin and malondialdehyde
while increasing the activities of the enzymes PPO (which oxi-
dises phenol) and PAL. There was an increase in the content and
liberation rate of medicinal compounds such as RA, naringin,
apigenin, thymol, carvacrol, quercetin and rutin [89].

The application of TiO, NPs (4.5 or 6.0 mg L") signifi-
cantly increased the content of gallic acid, chlorogenic acid,
o-coumaric acid, tannic acid and cinnamic acid in embryonic

[ Secondary Metabolites J

calli of Cicer arietinum (chickpea) [90] In callus cultures of
Hypericum perforatum, addition of biologically synthesized
perlite NPs (size 14.51-23.34 nm) and TiO,perlite nano-
composites (size 15.5-24.61 nm) in the concentration range of
25-200 mg 1.”', was reported to cause an increase in the
content, variety and number of volatile compounds as well as
in the amounts of hypericin and pseudohypercin [91].

Zinc and iron oxide NPs at 100 ppb concentrations
significantly increased the production of hypericin and hyper-
forin in cell suspension cultures of Hypericum perforatum
(St John's wort) [92]. Hormetic effect of ZnO NPs on Lilium
ledebourii Bioss. cultures was reported where maximum con-
tent of phenolics and flavonoids was observed at ZnO NP
concentrations of 75 and 25 mg L™, respectively [93]. ZnO
NPs (<100 nm in size; 500-1500 mg Lfl) were also reported
to increase phenolic and flavonoid production in callus cultures
of Brassica nigra L. (Black mustard) in a concentration-
dependent manner while enhancing anti-oxidant capacity [94].
In micropropagated shoots of Stevia rebaudiana Bert. ZnO
NPs (size 34 nm) enhanced the production of steviol glyco-
sides (rebaudioside A and stevioside) as well as total phenolic
and flavonoid contents along with anti-oxidant capacity at a
concentration of 1 mg L., but the effect declined at higher
concentration [95]. In suspension cultures of Bacopa monnier:
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(Continued)

TABLE 2

Effect on ROS,

Effect on antioxidant
and secondary

antioxidant and

Effect on secondary
metabolism and

Effective

other enzyme

concentration
of NPs

Size of

Reference

Type of culture antioxidant capacity activities metabolic genes

Plant species

NPs (nm)

NP

109

9.7-fold, 11.87-fold, 3.85-fold Enhanced APX, CAT Upregulation of pal

Hairy root

D. kotschyi

75 mg L'

Fe-O

and 7as gene

and SOD activities

and 2.27-fold

expressions

enhancement in the

contents of rosmarinic

acid, xanthomicrol,

cirsimaritin and

isokaempferide,

respectively, compared

with control after 24 h

exposure

Abbreviations: APX, ascorbate peroxidase; CAT, catalase; GPX, glutathione peroxidase; NP, nanoparticle; PAL, phenylalanine ammonia lyase; POD, peroxidase; PPO, polyphenol oxidase; ROS, reactive oxygen species; SOD, superoxide dismutase.

(L.) Wettst., ZnO NPs (size 24 nm) at a concentration of 1
ppm were reported to cause a two-fold increase in the content
of the saponin bacoside A while lowering the expression of the
HMG CoA reductase gene which controls the rate-limiting
step in bacoside A biosynthesis. It was suggested that ZnO
NPs possibly have an effect on the isoprenoid pathway of
biosynthesis [96]. Repeated elicitation of cell suspension cul-
tures of Linum wusitatissimum with ZnO NPs (size <35 nm,
concentration 100 mg LY was reported to enhance the
production of lignans in 15 days, and of phenolics, flavonoids
and neolignans at 25 days [97]. ZnO NPs (size 34 nm)
significantly enhanced thymol and carvacrol production in
callus cultures of Thymus ssp., namely T. wvulgaris, T. dae-
nensis and T. kotschyanus. The highest increases for thymol
and carvacrol were achieved with 150 mg L' of ZnO NPs in
T. kotschyanus and T. daenesis, respectively [98].

Bimetallic nanoalloys of Cu and Au at 30 mg L.~ con-
centration were reported to stimulate biomass production and
enhance the total content of phenolics and flavonoids as well
as anti-oxidant capacity in submerged adventitious root cul-
tures of Stevia rebaudiana Bert. Maximum effect was seen
with AuCu (1:3) NPs [99].

3.2 | Carbon-based nanoparticles
Supplementation of cultures of Capsicum annuum L. with
chitosan NPs was found to enhance the contents of soluble
phenols, proline and alkaloid while amplifying organogenesis
through micropropagation like growth promoters, the most
effective dose being 1 mg L', There was also an enhancement
in the activities of the enzymes peroxidase, catalase and PAL
[100].

In an interesting report multi-walled carbon nanotubes
(MWCNT) (5-15 nm in diameter) were found to enhance the
content of secondary metabolites, namely phenolics, flavonoids,
RA, caffeic acid and the activity of oxidative enzymes PPO, PAL
and peroxidase (POD) in callus cultures of the medicinal plant
Satureja kbuzestanica in B5 medium, the most effective con-
centrations being 25 and 50 wg L~ [101]. In seedlings of
Catharanthus roseus (rose periwinkle), grown in MS basal me-
dium, MWCNT treatment enhanced alkaloid and phenol con-
tents 1.7-fold and 23%, respectively, along with enhancement of
activities of catalase, peroxidase and PAL and upregulation of
the deacetylvindoline-4-O-acetyltransferase (DAT) gene. This
was accompanied by increase in plant growth indices like total
biomass, leaf width, area and weight, root length, chlorophyll,
carotenoid and protein contents and callus proliferation [102].

3.3 | Nanoparticle-mediated elicitation in
hairy root cultures

Another strategy for the fast production of biomass with a high
content of secondary metabolites from plant cultures involves
the induction of hairy root cultures by Agrobacterium rhizo-
genes-mediated genetic transformation, followed by elicitation
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with NPs. Elicitation with 900 mg L.~' Ag-SiO, core—shell NPs
(average size 101.8 &= 8.9 nm) were reported to enhance Arte-
misinin production from 1.67 to 2.86 mg g~ ' dry weight in hairy
root cultures of Artemisia annua accompanied by an increase in
H,O, generation, lipid peroxidation and catalase activity [103].
Elicitation with AgNPs enhanced atropine production in hairy
root cultures of Datura metel by 1.147-fold, 1.117-fold and
2.42-fold in comparison to the control samples after 12, 24 and
48 h of treatment, respectively [104]. Hairy root cultures of
Hyoscyamus reticulatus L. elicited with nano-iton oxide
(FeNPs) effectively enhanced the production of the tropane
alkaloids hyoscyamine and scopolamine. The highest increase of
hyoscyamine and scopolamine was observed with 900 mg ™'
FeNPs for 24 h and 450 mg I.”" FeNPs for 48 h, respectively
[105]. Haity root cultures of Brassica rapa ssp. rapa (turnip)
elicited with AgNPs exhibited elevated levels of glucosinolates
(glucoallysin, glucobrassicanapin, sinigrin, progoitrin, glucona-
pin, 4-methoxy-glucobrassicin, 4-hydroxyglucobrassicin, gluco-
brassicin, neoglucobrassicin and gluconasturtin) and upregula-
tion of their transcripts (MYB34, MYB51, MYB28 and MYB29)
[106]. In haity root cultutes of Brassica rapa ssp. pekinensis
(Chinese cabbage), elicitation with CuO NPs was reported to
significantly enhance the contents of glucosinolates (gluconas-
turtin,

glucobrassicin,  4-methoxyglucobrassicin,  neo-

glucobrassicin, 4-hydroxyglucobrassicin, glucoallysin,
glucobrassicanapin, sinigrin, progoitrin and gluconapin) and
upregulate the corresponding transcript (MYB34, MYB122,
MYB28 and MYB29) levels [107]. In both cases, there was an
increase in total phenolic and flavonoid contents and upregu-
lation of their gene expression (PAL, CHI and FLS). This was
accompanied by enrichment of the phenolic compounds (fla-
vonols, hydroxybenzoic and hydroxycinnamic acids). The effect
on secondary metabolism could be correlated with increased
anti-oxidant, anti-microbial and anti-neoplastic activities of both
the plants [106,107]. In hairy root cultures of Dracocephalum
kotschyi Boiss., elicitation with SiO, NPs (100 mg L") resulted
in an 8.26-fold increase in the content of RA compared with
control, after 48 h exposure time. Anti-cancer flavonoids
including xanthomicrol, cirsimaritin and isokaempferide
increased 13-fold, 13.42-fold and 10-fold, respectively,
compared with the control. There was significant upregulation
in the pal and RA synthase (ras) gene expressions [108]. Similar
results were obtained using FeO NPs which gave a 9.7-fold,
11.87-fold, 3.85-fold and 2.27-fold enhancement in the contents
of RA, xanthomicrol, cirsimaritin and isokaempferide, respec-
tively, compared with controls, after 24 h of exposure to 75 mg
L' Fe NP, along with the upregulation of pal and ras gene
expressions under the influence of elicitation [109].

4 | LIGAND HARVESTING OF PLANT
SECONDARY METABOLITES USING
NANOPARTICLES

Interestingly, a novel application of NPs in secondary metabolite
chemistry has opened up in the form of ligand fishing or ligand
harvesting, Ligand fishing is an extraction technique based on
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FIGURE 3 Schematic diagram of ligand-harvesting of secondary
metabolites from intact plant cells by functionalized nanopatticles

the receptor theory. It is widely used to recover specific ligands
from complex biological matrices using known or orphan re-
ceptors. The technique is widely used in protein purification.
Nanoparticle-mediated ligand fishing is particularly useful to
screen and harvest specific bioactive compounds from complex
botanical extracts. By this technique plant secondary metabolites
may be nano-harvested as conjugates directly from living plant
cells using surface-modified NPs, without damaging the host
cells. The NPs, usually surface-conjugated with specific re-
ceptors, enter living plant cells and are extracted after binding
with targeted secondary metabolites, which may be subsequently
separated and identified (Figure 3). The advantages of this
technique is that it avoids the use of organic solvents for
extraction, keeps host cells viable and also permits spectro-
metric identification of isolated compounds [110,111]. Human
serum albumin functionalized magnetic nanoparticles (HSA-
MNPs) (diameter ~20 nm) coupled with electrospray ionization
mass spectrometry have been employed for the fast extraction
of four bioactive secondary metabolites progenin II, progenin
II1, dioscin and gracillin from herbal extracts of the Chinese
medicinal plant Dioscorea panthaica [110]. Similarly, anatase
TiO, NPs (2.8 &= 1.4 nm in size) were used to harvest enediol
and catechol-rich flavonoids, particularly quercetin-derivatives,
from living cells of the plant Arabidopsis thaliana by forming
flavonoid-NP conjugates, without affecting the viability of the
source plant [111]. This technology is still in its infancy and
needs further exploration and investigation.

5 | MECHANISM OF ACTION OF
NANOPARTICLES ON PLANT
SECONDARY METABOLISM

It must be reiterated that increased or de novo synthesis of
secondary metabolites by plants is a response to abiotic and
biotic stress and is a defence mechanism. A brief overview of
the mechanism is presented here (Figure 4). Plant response to
stress occurs both at the cellular as well as the organismic level.
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FIGURE 4 Schematic representation of the
probable mechanism of modulation of plant
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The stress signal is first perceived by the receptors present on
the cell membrane. This activates a large and complex signal-
ling cascade intracellularly, including the generation of sec-
ondary signal molecules. The stress signal can first activate
phospholipase C (PLC), which hydrolyses phosphatidyl-
inositol 4,5 bisphosphate (PIP;) to generate inositol triphos-
phate (IP;) and diacylglycerol (DAG). IP; diffuses into the
cytosol and subsequently releases of Ca”" ions from intracel-
lular Ca*" stores, resulting in an increase in the level of Ca*"
ions in the cytosol. Ca*" release also occurs primarily from
extracellular source (apoplastic space). The increased Ca™"
concentration is sensed by calcium-binding proteins (CaBP,
calcium sensor) such as calmodulin (CaM), calmodulin-like
proteins (CML), phospholipase D, annexins, calreticulin, cal-
nexin and Pistil-expressed Ca*" binding protein (PCP) or
directly by calcium-dependent protein kinases (CDPK). These
sensors recognize and decode the information provided in the
calcium signatures, relay the information downstream to
initiate a phosphorylation cascade leading to regulation of gene
expression. Several reports suggest that Ca®" regulates the
transcription of target genes by altering the phosphorylation
status of specific transcription factors (TF). DAG is phos-
phorylated by DAG kinase to give phosphatidic acid (PA),
another signalling molecule. Various other chemical signals
including abscisic acid (ABA), salicylic acid (SA), polyamines,
jasmonates (JA) and nitric oxide are involved in stress re-
sponses in plants, often through cross-talk [112,113]. The
biosynthesis of many of the secondary metabolites is mediated
through (methyl) jasmonate [(Me)JA)], a plant hormone pro-
duced in response to stress. Production of secondary metab-
olites is controlled at the level of expression of the biosynthetic
genes by developmental and tissue-specific factors or by
external signals [114-116]. In the resting state, a family of
proteins called JAZ interacts and repress certain downstream
TF (e.g MYC2) to suppress JA responses. In response to JA
signal, the F-box protein COI1 interacts with and ubiquitinates
JAZs tagging them for degradation through the 26S protea-
some, thereby releasing downstream TFs to regulate gene
expression and activate JA responses [117].

Nanoparticles are known to cause a certain degree of
phytotoxicity, especially at high concentrations [9]. NPs,

depending on size, have a high degree of cell penetrability.
They can enter the plant cell through the apoplast and cross
the plasma membrane by endocytosis; subsequently, they can
be translocated within the plant by the symplastic flow [118].
There is also evidence of transport of NPs into subcellular
organelles like nucleus, plastids and vacuoles [119,120]. NPs
can interfere with electron transport chain in chloroplasts and
mitochondria causing oxidative burst and accumulation of
reactive oxidative species (ROS) like hydrogen peroxide
(H20y), superoxide anions (O, ), hydroxyl radical (OH’) and
singlet oxygen ('Oy). Induction of reactive nitrogen species
(RNS) (NO nitric oxide), due to exposure of duckweed Spi-
rodela punctata to Ag and ZnO NPs [121] and of cultured
tobacco BY cells to Al,O3 NPs [86] have also been reported.
NO is known to be an important elicitor of plant secondary
metabolism [122]. Metal and metal oxide NPs have been
extensively studied for their toxic effects on plants which are
thought to largely occur through (ROS) burst [10]. ROS are
known to interact with almost all cellular components causing
protein modifications, lipid peroxidation and DNA damage
[123]. They also activate the plant's enzymatic and non-enzy-
matic anti-oxidant system. The key enzymes involved in anti-
oxidant defence response are SOD that catalyses the conver-
sion of Oy to either molecular oxygen (Oy) or H,O,, APX
that detoxifies HyO, using ascorbic acid as a substrate, catalase
which decomposes H,O, to water and O, and glutathione-S-
transferases (GST) which catalyse the conjugation of the
reduced form of glutathione (GSH) to xenobiotic substrates
for the purpose of detoxification.

Nanoparticles may enter plant cells through membrane re-
ceptors or plasmodesmata causing reactive oxygen species
(ROS) burst which may damage the plasma membrane. The
ROS activates Phospholipase C (PLC) which hydrolyses phos-
phatidyl-inositol 4,5 bisphosphate (PIP,) to generate inositol
triphosphate (IP;) and diacylglycerol (DAG). DAG is phos-
phorylated by DAG kinase to give phosphatidic acid (PA), a
signalling molecule. IP; diffuses into the cytosol and subse-
quently causes a Ca®t ion spike. The increased Ca®" concen-
tration is sensed by calcium-binding proteins (CaBP, calcium
sensor) or directly by calcium-dependent protein kinases
(CDPK), which recognize and decode the information provided
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in the calcium signatures, relay the information downstream to
initiate a phosphorylation cascade, including the upregulation of
mitogen-activated protein kinase (MAPK) cascades. Various
other chemical signals including abscissic acid (ABA), salicylic
acid (SA), polyamines, jasmonates (JA) and nitric oxide are
involved in stress responses often through cross-talk. Ca®"
possibly regulates the transcription of target genes by altering
the phosphorylation status of specific transcription factors (TF).
MAPK phosphorylation and activation of downstream tran-
scription factors like WRKY generally lead to the transcriptional
upregulation of secondary metabolism as well as activation of
anti-oxidant defence enzymes.

The enzymatic anti-oxidant defence also involves the
downregulation of dehydroascorbate reductase (DHAR) and
monodehydroascorbate reductase (MDAR) enzymes that
regulate the cellular Asc redox state [124]. Depending on the
delicate balance between ROS generation and scavenging, ROS
may cause oxidative damage or act as cellular signalling mol-
ecules. NADPH oxidases are known to act as key signalling
nodes in ROS regulation network of plants integrating
numerous signal transduction pathways and mediating multiple
biological processes. ROS are also thought to modulate sec-
ondary metabolism either directly or by acting as signals for
other inducers like JA, SA, ethylene, NO and brassinosteroids.
ROS generation is thought to result in cytoplasmic Ca®* spike
resulting in upregulation of MAPK cascades similar to other
abiotic stresses [11,125]. NPs either mimic Ca”* or signalling
molecules in the cytosol to be sensed by calcium-binding
proteins (CaBPs) or other NP-specific proteins [126]. MAPK
phosphorylation and activation of downstream TT like WRKY
generally lead to the transcriptional upregulation of secondary
metabolism in plants [127-129].

6 | PERSPECTIVES

The role of nanoparticles as inducers of abiotic stress and toxic
effects in plants has been understood for a considerable length
of time. However, it is only recently that they are being regarded
as tools for molecular pharming to elicit beneficial secondary
metabolites in plants both iz vivo and in vitro and also as
agents for nano-harvesting secondary metabolites from plant
cells as conjugates. Both these applications have immense
commercial potential. The function of nanoparticles as elicitors
of secondary metabolites is greatly dependent on their chemical
and mineralogic composition, size, sometimes shape and also
on the concentration of application. As mentioned earlier, the
effect of NP concentration appears to be hormetic, as shown in
Bacopa monnieri (L.) Pennell [51] and Vanilla planifolia Jacks.
ex Andrews [76]. According to the report of Syu et al. [130], the
shape of nanoparticles plays a significant role in the elicitation
of anthocyanins in Arabidopsis seedlings, the most effective
being spherical NPs. Since each nanoparticle-plant system is
unique, it would be necessary to determine the optimum size,
shape and other parameters as well as concentration of
NPs for maximum production of secondary metabolites on a
case-by-case basis. Also, the physical and chemical properties as

well as biological activities of the secondary metabolites ob-
tained from plants treated with NPs both iz vivo and in vitro,
should be studied in detail to determine their quality and effi-
cacy. The toxicological risks associated with the application of
nanoparticles for the purpose of secondary metabolite elicita-
tion must also be evaluated and safety standards formulated vis-
a-vis the dose and route of administration for each plant.
Stringent dose-response studies must be undertaken to deter-
mine the optimum concentration for each NP-plant system for
maximum secondary metabolite yield with minimum toxic ef-
fects on the plant as well on as the consumer of the product and
the environment. The entire life cycle of these NPs should be
monitored, including their fabrication, storage and trans-
portation, application and potential abuse and disposal. The
penetration, translocation and bioaccumulation process in each
nanoparticle-plant system must be investigated on a case-by-
case basis [4]. Moreover, most of the results reported ate from
laboratory-scale or at the most, greenhouse experiments. The
feasibility of applying this technology for scaled-up production
in field conditions or industrial set-ups remains to be evaluated
along with the costs of such commercial production. It is likely
that the NPs of noble metals like Ag, Au and Cu may too
expensive to apply on a commercial scale and less expensive
alternatives like that of Al, Fe, Si, Zn or even chitosan may be
preferable. In conclusion, it may be stated that NP-mediated
elicitation and extraction of plant secondary metabolites both
in vivo and in vitro, holds the prospect of positively impacting
industrial activities utilizing secondary metabolites, if the tech-
nology is standardized and adapted for commercial application.
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