
Random forest: random results or
meaningful insights for patients with
facioscapulohumeral muscular dystrophy?

This scientific commentary refers to ‘Predictors of functional out-
comes in patients with facioscapulohumeral muscular dystrophy’
by Katz et al. (doi:10.1093/brain/awab326).

Facioscapulohumeral muscular dystrophy (FSHD), inherited in an
autosomal dominant fashion, is the most common adult-onset
muscular dystrophy. The disease is caused by a deletion on the
long arm of chromosome 4,1 in a highly methylated region contain-
ing a motif of D4Z4 repeats. The size of the D4Z4 repeat contraction
due to this deletion influences disease behaviour: longer deletions
result in earlier onset of disease and more severe weakness. This
suggests that the disorder is caused by an epigenetic disturbance,
with the size of the deletion influencing the extent of epigenetic
dysregulation. The discovery that hypomethylation of the D4Z4
repeats leads to reduced transcriptional regulation of developmen-
tally regulated genes, and that double homeobox 4 (DUX4)—a de-
velopmentally regulated gene in muscle—shows persistent
expression in FSHD, provided further confirmation of this.2 In this
issue of Brain, Katz and co-workers analyse the relationship be-
tween the D4Z4 allele size and disease characteristics and confirm
that smaller allele sizes correlate with earlier onset of disease, ear-
lier diagnosis, more severe weakness and earlier need for wheel-
chair assistance.3

The authors divided their patient cohort into three groups: (i) 1–
3 D4Z4 repeats; (ii) 4–7 D4Z4 repeats; and (iii) 8–10 D4Z4 repeats.
Surprisingly there were more female FSHD patients than male in
the 1–3 D4Z4 repeat cohort. This was unexpected because females
were thought to be less severely affected than males and to be
affected at an older age.4 However, there were no differences in
age at diagnosis or age at symptom onset between males and
females with 1–3 D4Z4 repeats. The majority of the patients had 4–
7 D4Z4 repeats. Males were more likely to report upper extremity
or proximal weakness at onset of symptoms, while females had
more facial weakness (and were thus more likely to be misdiag-
nosed). Males were more likely than females to complain of
breathing difficulty. This is an important area for future investiga-
tion. Reduced lung capacity and diaphragmatic and intercostal
muscle weakness may result in significant morbidity and may con-
tribute to higher mortality. Complications such as sleep-disordered
breathing and ineffective airway secretion clearance are treatable
and should be screened for.

One of the surprising findings by Katz et al.3 was the higher inci-
dence of wheelchair use and shorter time from diagnosis to wheel-
chair use in females, independent of allele length. This did not
seem to be related to breathing issues, as discussed above. Earlier

studies, by contrast, had suggested that females were less severely
affected than males and that oestrogens have a protective role in
FSHD.5 Under-reporting by females of muscle weakness, especially
in the limbs, is one possible explanation. The authors also suggest
that females may be more accepting of a wheelchair than males.
However, this still does not satisfactorily explain the earlier loss of
ambulation in females. This should be explored further in pro-
spective studies, especially in the context of patterns of muscle in-
volvement clinically and on MRI, and how these may relate to
changes in ambulatory functions. Such changes should be consid-
ered in relation to genotype and other covariates, such as preg-
nancy, which has been reported to worsen progression of
weakness in other neuromuscular cohorts.6

In rare neuromuscular diseases, such as FSHD, having too
much data tends not to be a concern. However, parsing cohort-
level data at the electronic medical record level or identifying novel
variants at the genomic level may require the use of artificial intel-
ligence (AI) algorithms. But what is the difference between AI, ma-
chine learning, and deep learning?

AI, simply put, is when a computer does something humans do
using ‘intelligence’. Machine learning is a large subset of AI that
uses various methods to create algorithms that learn from data.
Deep learning is a smaller subset of machine learning that utilizes
neural networks to learn, and solve, even more complex problems.

Katz et al.3 utilized random forest modelling, a machine learn-
ing method, to analyse clinical data gathered in the United States
National Registry for FSHD Patients and Family members.7

Random forest modelling is built on decision trees (Fig. 1).8

Decision trees apply simple logic to depict possible outcomes for a
given variable. The example in Fig. 1A shows a decision tree and
possible outcomes for selection of strength testing methods when
considering specific variables (e.g. need for equipment, affordabil-
ity). While this decision tree is useful in logically arriving at a deci-
sion, the result could be biased by the features selected. Random
forest modelling uses multiple decision trees based on ‘boot-
strapped’ or random sampling of the full dataset and a subset of
variables for each tree. Each instance adds a new tree to the forest.
Bagging, or aggregating, the results across the training dataset and
trees creates a more accurate and stable prediction than could be
achieved with a single decision tree (Fig. 1B).

In random forest models, the computer selects random sam-
ples to determine which features of the dataset result in the most
trees and highest accuracy of prediction. The random selection of
data and variables in the random forest model allows it to be more
generalizable as it is not conditioned or biased by specific data
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features.2 In our strength testing example, other features such as
sensitivity to change, ease of use, variability of measurement,
standardization of scoring and training, or time to complete test-
ing, could be considered across various trees and data samples to
arrive at our outcome.

Overfitting a model to a dataset is a concern with machine
learning and important to consider. This can occur if a large por-
tion of the data is used to train a model; in this instance, the model
may be highly accurate within the dataset but too specific to be
applied to another. Katz et al.3 used a small subset of 15 records to
train the model and then applied it to the full cohort, lending cred-
ibility to their findings as overfitting is not likely.

Machine learning algorithms succeed with large datasets as
there is sufficient data to both train the model and deliver accurate
results. The authors report several relationships between data fea-
tures and risk of wheelchair use, but these relationships should
not necessarily be considered causative. For example, consider
whether disease duration, presence of comorbidities (specifically
breathing difficulty), and use of medications may influence wheel-
chair use. Disease duration was most predictive, which is not en-
tirely surprising as weakness tends to progress and the likelihood
of wheelchair use will therefore increase with time. The authors
correctly posit that while breathing difficulty strongly influenced
progression to wheelchair use, it may be that difficulty breathing is
a medical condition that suggests worsening disease status and
will thus be seen more frequently in patients using wheelchairs.
This may also be true for medication use.

The FSHD Registry, even though prospective in nature, is heavily
dependent on recall and thus subject to recall bias. The data that are
collected are primarily subjective or binary. To minimize in-person
visits, and to capture a larger group of patients, objective measures
such as muscle strength or pulmonary function, are not part of the
registry data. There is also participation bias, with more severely
affected patients more likely to participate than their less severely
affected counterparts. Registries are great for creating a snapshot of
a disease but are not designed per se to measure disease progression.
Though much cheaper to run and less burdensome for patients and
caregivers, registries are significantly different from natural history
studies, which although limited in terms of the number of subjects
they can capture, provide a more objective and detailed character-
ization of disease behaviour and progression.

There are currently several prospective natural history
studies ongoing that will help further define motor outcomes in

FSHD (NCT04635891), and to validate clinical outcome measures
through repeated objective assessments (NCT03458832).9 Efforts to
validate additional biomarkers, such as MRI changes over time
(NCT01671865),10 as well as changes on electrical impedance
myography (EIM) (NCT03458832) are also underway. Such efforts
are directly linked to clinical trial readiness, allowing for more
accurate capture of disease progression during therapeutic
interventions.

As technology improves and the integration of electronic med-
ical records with growing registries yields ever larger datasets, use
of AI models to understand relationships within datasets, predict
patient outcomes, and identify novel genes or genetic modifiers
influencing patient trajectories will intensify. In FSHD and other
rare patient cohorts, collaboration and data sharing will be
required to enable effective use of AI. Data quality should be
prioritized over data quantity, with standardized outcomes gath-
ered by trained evaluators and well-planned registries collecting
data on meaningful, interpretable end points.
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Figure 1 Depiction of how a strength testing method can be selected via (A) a decision tree versus (B) a random forest model. The decision tree only
considers a certain number of features or factors (e.g. need for equipment, affordability), whereas a random forest model will randomly select varia-
bles from across a dataset (e.g. equipment, affordability, reliability, sensitivity to change, ease of standardization, etc) to evaluate which features have
the greatest influence on the outcome.
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