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Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent muscular dystrophies characterized
by considerable variability in severity, rates of progression and functional outcomes. Few studies follow FSHD
cohorts long enough to understand predictors of disease progression and functional outcomes, creating gaps in
our understanding, which impacts clinical care and the design of clinical trials. Efforts to identify molecularly tar-
geted therapies create a need to better understand disease characteristics with predictive value to help refine clin-
ical trial strategies and understand trial outcomes.
Here we analysed a prospective cohort from a large, longitudinally followed registry of patients with FSHD in the
USA to determine predictors of outcomes such as need for wheelchair use. This study analysed de-identified data
from 578 individuals with confirmed FSHD type 1 enrolled in the United States National Registry for FSHD Patients
and Family members. Data were collected from January 2002 to September 2019 and included an average of 9 years
(range 0–18) of follow-up surveys. Data were analysed using descriptive epidemiological techniques, and risk of
wheelchair use was determined using Cox proportional hazards models. Supervised machine learning analysis
was completed using Random Forest modelling and included all 189 unique features collected from registry ques-
tionnaires. A separate medications-only model was created that included 359 unique medications reported by par-
ticipants.
Here we show that smaller allele sizes were predictive of earlier age at onset, diagnosis and likelihood of wheel-
chair use. Additionally, we show that females were more likely overall to progress to wheelchair use and at a
faster rate as compared to males, independent of genetics. Use of machine learning models that included all
reported clinical features showed that the effect of allele size on progression to wheelchair use is small compared
to disease duration, which may be important to consider in trial design. Medical comorbidities and medication use
add to the risk for need for wheelchair dependence, raising the possibility for better medical management impact-
ing outcomes in FSHD.
The findings in this study will require further validation in additional, larger datasets but could have implications
for clinical care, and inclusion criteria for future clinical trials in FSHD.
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Introduction
Fascioscapulohumeral muscular dystrophy (FSHD) is one of the
most prevalent types of muscular dystrophy1–4 with considerable
variability in age at onset, rates of progression and motor out-
comes.5–8 Cross-sectional and limited longitudinal studies have
shown an association between the D4Z4 repeat size, age at diagno-
sis, age of wheelchair use, and overall severity of disease.9–12

Outcome measurements in most studies have largely focused on
muscle strength testing, clinical severity score ratings,13 and more
recently MRI of muscle mass,14,15 but no study has linked these
measurements to motor outcomes such as wheelchair use or need
for non-invasive ventilation. Currently, there are few longitudinal
studies available with follow-up data of sufficient duration to in-
form our understanding of what drives this clinical variability and
motor outcomes, creating a gap in our understanding of FSHD,
which impacts care decisions and clinical trial design.

We previously analysed data from a smaller cohort of subjects
from the United States National Registry of FSHD Patients and
Family Members (hereafter referred to as ’The Registry’), which con-
tains over 180 data elements.12 However, a majority of this informa-
tion could not be analysed for contributions to functional outcomes
due to the volume and complexity of the data. Machine learning is a
powerful technology that offers the potential to better understand
predictors of outcomes in FSHD in large datasets by allowing ana-
lysis of large and complex datasets. A similar analysis based on ma-
chine learning of a large dataset of patients with Huntington’s
disease was used by Sun et al.16 to model disease progression. The
investigators were able to identify numerous disease states and pre-
dict the rate of transition from one state to the next, something that
has been historically difficult to elucidate due to the slowly progres-
sive nature of the disease. We posited that use of machine learning
with The Registry might help better understand disease progression
over time by identifying factors that contribute to the clinical het-
erogeneity and functional outcomes seen in patients with FSHD.

Our study used a combination of traditional epidemiological
methods and supervised machine learning techniques to analyse
an average of 9 years of longitudinally collected data from partici-
pants enrolled in The Registry. The primary outcome in this study
was progression to wheelchair use. Machine learning technology
allowed us to incorporate all of the data elements collected in The
Registry, including information on medical comorbidities and
medication use.

Materials and methods
Study design

We analysed a prospective cohort study using de-identified data
collected on individuals participating in The Registry located at the

University of Rochester Medical Center in Rochester, New York
(https://www.urmc.rochester.edu/neurology/national-registry.
aspx). Enrolment in The Registry is voluntary, and all individuals
give informed consent for de-identified data to be used in future
research projects on FSHD at the time of enrolment. Data analysed
were collected from January 2002 to September 2019. This study
was determined to be ‘not a human subject’ research after IRB re-
view because the data were already collected and de-identified.
The study protocol was submitted to an independent Registry
Scientific Advisory Board who approved the proposed study.

Patient population

Participants were included for analysis if they were confirmed to
have FSHD type 1 (FSHD1) based on positive genetic testing, which
was defined by The Registry as confirmation of: (i) commercial
testing based on medical chart review at entry into The Registry;
(ii) commercial testing in a first degree relative based on chart re-
view; or (iii) research testing performed at Leiden University
Medical Center as part of a FSHD research study in conjunction
with The Registry. Participants were excluded if they were not gen-
etically confirmed to have FSHD1. The number of patients with
FSHD type 2 (FSHD2) was too low to allow sufficient power for the
analysis, therefore, these patients were excluded.

Outcomes

At the time of enrolment in The Registry, a limited chart review is
conducted by staff at The Registry to verify the presence of clinical
features consistent with FSHD (facial, shoulder and/or foot dorsiflex-
ion weakness) on prior exams; to review genetic testing for molecu-
lar classification of disease type (FSHD1 or FSHD2 or other); and to
classify the likelihood of a diagnosis of FSHD (clinically definite, pos-
sible, unaffected with blood relative, or not FSHD). Once enrolled,
individuals fill out annual surveys that include detailed questions
related to current functional abilities, signs and symptoms (such as
patient reported age at diagnosis and symptom onset), medical
comorbidities and medication use. Data analysed in this study con-
tained 189 unique features (independent variables) and included in-
formation such as (but not limited to): gender, year of birth,
diagnostic tests, genetic analysis, presenting symptoms, family his-
tory, employment, education, use of assistive devices, medical
comorbidities, and medication use. Examples of these question-
naires can be found at: https://www.urmc.rochester.edu/neurology/
national-registry/join.aspx. This prospective information was used
to identify factors that might contribute to disease progression using
a combination of traditional epidemiological methods and super-
vised machine learning techniques.

The primary outcome for the machine learning analysis was
progression to wheelchair use for distance and/or full-time use,
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minimizing the potential for recall bias. The Registry contains sev-
eral types of data including nominal, count, and continuous varia-
bles that were included for machine learning analysis. Nominal
variables primarily consisted of ‘yes or no’ answers to questions
related to medical comorbidities (such as breathing concerns, arth-
ritis, pneumonia, hypertension, cardiac concerns, and constipa-
tion), presenting symptoms (such as facial weakness or proximal
upper extremity weakness), and types of medications used (such
as vitamins, minerals or non-steroidal anti-inflammatory drugs).
Gender is included in this as well. Count and continuous variables
included number of medications, age at diagnosis, current age of
the patient, and initial age at symptom onset. Some categories
required calculation prior to inclusion in the analysis, such as dis-
ease duration (defined as the patient’s current age minus the age
of initial symptom onset), and the length of time the patient spent
undiagnosed (defined as age at diagnosis minus the age of initial
symptoms onset). Body mass index (BMI) was determined using
standard calculations. All 189 features collected from The Registry
questionnaires were included for development of the machine
learning model and used to assess features that might be predict-
ive of progression to wheelchair use.

Registry data captured the D4Z4 small allele size in kilobytes
from commercial testing. For analysis, this small allele size was con-
verted into estimated number of D4Z4 repeats to be consistent with
the literature using the following formula: (small allele size – 6) / 3.3.

Statistical analysis

Baseline population characteristics were analysed using descrip-
tive techniques including means and standard deviation (SD), me-
dian and interquartile ranges (IQR), or counts and frequencies
according to the data type. Rudimentary categorical analysis
methods such as Fisher’s exact test were used to compare out-
comes across different demographic groups. Log Rank analysis
was used to assess age of wheelchair use based on gender with
one degree of freedom. Log Rank analysis was also used to assess
median time from age at diagnosis to age of wheelchair use based
on gender (one degree of freedom), genetics (D4Z4 repeat length;
two degrees of freedom) and gender + genetics (seven degrees of
freedom). The dependent variable was progression to wheelchair
use, and gender and genetics were the independent variables.
One-way Cox proportional hazards models were used to examine
the hazard ratios over time for gender and D4Z4 repeat length (in-
dependent variables), using age as the timescale. Progression to
wheelchair use was the dependent variable. The hazard ratio was
determined by taking the log odds of the coefficients, and 95%
confidence intervals (CI) were taken from the final model. The
test for proportional hazards was used to assess the assumption
of proportional hazards when using the models. For participants
who were not genetically defined but had a first-degree relative
who was genetically defined, the allele size of the relative was
substituted for the participant in the analysis. Early genetic test-
ing was reported as only ‘positive’ or ‘negative’ and therefore
some individuals do not have a kilobyte allele size reported.
Where appropriate, individuals who were not genetically
defined and/or did not have a kilobyte size reported were
excluded from model analysis. An alpha level less than P = 0.05
was considered statistically significant. All statistical analyses
were performed using R programming and statistical software
(version v4.0.4).

Python and Scitkit-learn were utilized to develop the super-
vised machine learning model. Random Forest was selected for
model development given its success in similar projects for dis-
ease modelling.16–20 Characteristics used to select the best model
included accuracy and area under the curve (AUC). For model

accuracy, an AUC approaching 0.8 is considered good, and 0.9 con-
sidered very good.21 To validate the best fit model, 15 records were
randomly extracted from the annual updates: 12 ‘test subjects’
who progressed from walking to wheelchair use, and three ‘con-
trols’ who did not progress to wheelchair use. The model correctly
predicted the outcomes of these individuals. Once validated, the
model was run against the entire dataset to identify features that
were predictive of wheelchair use. Features with a relative import-
ance value 40.03 were felt to have a significant contribution to-
wards influencing wheelchair use.

Shapley Additive Explanation (SHAP) was also used in an effort
to explain the relative importance of each feature both locally and
globally to wheelchair use, as predicted by the machine learning
model.22 SHAP assigns points on a scale of –1.0 to 1.0, with a value
of 1.0 representative of a feature’s influence towards wheelchair
use and a value of –1.0 representative of a feature’s influence to-
wards no wheelchair use.22 Each dot represents one individual in
the dataset. Red dots represent an individual having a value within
that feature that is proportionally higher than the median value;
blue dots represent an individual having a value that is proportion-
ally lower than the median value; and purple dots represent an in-
dividual having a value that is proportionally similar to the
median value. Binary categorical features within the set including
gender, medical comorbidities and medication use only had two
possible values, 0 and 1, so no purple dots could be represented by
those attributes. Attributes with a wider x-axis have a stronger in-
fluence on prediction of wheelchair use.

Medication-only model

A separate model containing only medications was created to
evaluate the influence of specific categories of medications on
wheelchair use; all other data were stripped from the model.
Names of medications were normalized and categorized based on
medication class.

Data availability

All de-identified data used in this study are available upon request
from The Registry (https://www.urmc.rochester.edu/neurology/na
tional-registry.aspx). Python software was used to generate the
Random Forest model and is openly available at https://scikit-
learn.org/stable/.

Results
At the time data were received from The Registry, a total of 1030
participants were enrolled. Seven patients with FSHD2 and 445
participants who were not genetically defined were excluded, leav-
ing a total of 578 participants with FSHD1 who were genetically
defined and were included for analysis. Data analysed were col-
lected from January 2002 to September 2019. An average of 9 years
of follow-up data were analysed, with a range from 0 to 18 years.
The majority of registry participants were Caucasian, with a slight
male predominance (Table 1). Most participants were middle-aged,
but ages spanned the lifespan (range 11–100). Over half of partici-
pants had achieved a college degree or higher (63.9%), and
most were employed at enrolment (52.6%). On average, there was
a 13-year delay between symptom onset and diagnosis (Table 1).
Over half of participants (n = 320, 55%) reported symptom onset
prior to age 18 (data not shown). Most participants (58.8%) had 4–7
D4Z4 repeats; 20.6% of participants had 8–10 D4Z4 repeats, and
10.4% of participants had 1–3 D4Z4 repeats. The five most common
initial symptoms reported are shown (Table 1). Females were more
likely than males to report facial weakness as their initial
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presenting symptom, whereas males were more likely to report
upper extremity weakness and muscle atrophy as their initial pre-
senting symptoms. Most participants (76.3%) were ambulatory at
the time of enrolment. Regarding breathing difficulty, 7.6% of par-
ticipants reported breathing difficulty due to FSHD and 4.8%
reported use of a breathing machine.

When we looked at repeat length and gender, we found a
higher frequency of females in the 1–3 D4Z4 repeat category
(P = 0.002), males in the 8–10 D4Z4 repeat group (P = 0.002), and a
roughly equal distribution of males and females in the 4–7 D4Z4
repeat category (Table 1). Consistent with previous studies, there
was a relationship between D4Z4 repeat length and the age at
diagnosis, with individuals with 1–3 repeats diagnosed at a mark-
edly younger age compared to those with higher numbers of
repeats (Fig. 1A). Overall, there was not a significant difference in
age at diagnosis between males and females with 1–3 or 8–10 D4Z4
repeats; however, females with 4–7 repeats were diagnosed
�10 years later than males in this category (Fig. 1B). When

comparing genetics, age at diagnosis, and presenting symptoms,
individuals with 1–3 repeats (10–18 kb allele size) were most likely
to report facial weakness (53.7%) as their initial symptom while all
others were most likely to report proximal upper extremity weak-
ness as their initial symptom (Fig. 2).

At the time of enrolment in The Registry, 137 individuals
reported using a wheelchair. Kaplan-Meier estimates of these indi-
viduals showed a median age of wheelchair use for individuals
with 1–3 repeats of 14 years (95% CI: 13, 38); 46 years for individuals
with 4–7 repeats (95% CI: 44, 52); and 60 years for individuals with
8–10 repeats (95% CI: 55, 68; data not shown). These results are
consistent with our previously reported study12 using a similar co-
hort, and also in line with other reported ages in the literature.9 Of
the 441 individuals at risk for wheelchair use, 286 progressed to
using a wheelchair giving an incidence estimate of 0.65. Across all
groups, we found that females were significantly more likely than
males to use a wheelchair (P = 0.003; Fig. 3A and Table 2), and that
females have a shorter time from age at diagnosis to wheelchair

Table 1 Registry demographics and disease characteristics

Female Male Overall

Demographics
Gender (% overall) 277 (47.9%) 301 (52.1%) 578 (100%)
Current age, median (1st, 3rd quartile)a 59 (45.5, 70.5) 59 (46, 69) 59 (46, 70)
Race (% overall)

Caucasian 250 (90.3%) 275 (91.4%) 535 (92.6%)
Black 0 (0%) 4 (1.3%) 4 (0.7%)
Asian 8 (2.9%) 7 (2.3%) 15 (2.6%)
Other/not reported 6 (2.2%) 4 (1.3%) 20 (3.5%)

Ethnicity (% overall)
Hispanic/Latino 11 (4%) 9 (3%) 20 (3.5%)

Education (% overall)
College, Masters or Doctoral degree 170 (61.4%) 199 (66.1%) 369 (63.9%)
Technical school 17 (6.1%) 20 (6.6%) 37 (6.4%)
Elementary + High school 84 (30.3%) 74 (24.6%) 158 (27.3%)
Missing 6 (2.2%) 8 (2.7%) 14 (2.4%)

Employed (% overall)b

Yes 129 (47.1%) 172 (57.7%) 301 (52.4%)
Disease characteristics
Age at diagnosis, median (1st, 3rd quartile)c 31.5 (16, 46) 29 (18, 47) 30.0 (18, 47)
Age of initial symptoms, median (1st, 3rd

quartile)d
16 (10, 31) 18 (13, 27) 17 (12, 29.5)

D4Z4 repeat lengthe

1–3 37 23 60 (10.4%)
4–7 175 165 340 (58.8%)
8–10 43 76 119 (20.6%)

Initial symptoms
Facial weakness 72 24 96 (17%)
Upper extremity, proximal weakness 77 105 182 (31%)
Upper extremity, unspecified weakness 8 19 27 (5%)
Lower extremity, unspecified weakness 27 29 56 (9.7%)
Atrophy, muscle mass change 5 25 30 (5%)

Use of a wheelchair (% overall)
Yes 80 57 137 (23.7%)

Breathing problems (% overall)
Yes 58 (20.9%) 47 (15.6%) 105 (18.2%)

Breathing problems due to FSHD (% overall)
Yes 23 (8.3%) 21 (7%) 44 (7.6%)

Use a breathing machine (% overall)
Yes 4 (1.4%) 24 (8%) 28 (4.8%)

aTwo participants (one male, one female) did not report birth year. Current age calculated based on birth year as of 31 December 2020.
bSix participants were excluded due to age 516 years as they were not considered old enough to be a part of the workforce.
c12 missing; four females, eight males.
d31 missing: 16 females, 15 males.
e59 missing; 22 female, 37 male.
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Figure 1 Repeat length, age at diagnosis and gender. Cumulative probability plots were used to compare repeat length and age at diagnosis (A), as
well as repeat length and age at diagnosis with respect to gender (B). (A) A median age of diagnosis of 14 (95% CI: 11, 17) for all individuals with 1–3
repeats; 30 years (95% CI: 27, 34) for all individuals with 4–7 repeats; and 40 years (95% CI: 35, 46) for all individuals with 8–10 repeats. When separated
by gender (B), there does appear to be a separation in the age at which males and females with 4–7 repeats were diagnosed. Males had a median age
of diagnosis of 25 (95% CI: 24, 30) whereas females had a median age of diagnosis of 35 (95% CI: 30, 37). There is no difference in the median age at
diagnosis for males and females with 1–3 or 8–10 repeats. Females in the 1–3 repeat category were diagnosed at a median age of 11 (95% CI: 10, 17)
whereas males were diagnosed at a median age of 16 (95% CI: 13, 33). Females in the 8–10 repeat category were diagnosed at a median age of 42 (95%
CI: 33, 55) whereas males were diagnosed at a median age of 38.5 (95% CI: 32, 47).

Figure 2 Small allele size (repeat length), age at diagnosis and initial symptoms. When comparing initial presenting symptoms to age at diagnosis
and repeat length, we see a cluster of facial weakness (1 = dark blue dots) in individuals with the smallest repeat lengths (1–3 repeats = 10–18 kb allele
size). We also see a cluster of proximal upper extremity weakness (3A = green dots) in individuals with medium (4–7 repeats; 18–30 kb allele size) re-
peat lengths. Right axis: 1 = facial weakness; 2 = trunk weakness; 3A = proximal upper extremity (UE) weakness; 3B = distal UE weakness; 3C = un-
specified UE weakness; 4A = proximal lower extremity (LE) weakness; 4B = distal LE weakness; 4C = unspecified LE weakness; 5A = pain in the back/
trunk; 5B = pain in the UE; 5C = pain in the LE; 6 = fatigue or generalized weakness; 7 = atrophy or loss of muscle mass; 8 = muscle cramps; 9 = abnor-
mal laboratory values; 10 = family history of FSHD; 11 = no symptoms; 12A = injury due to falling; 12B = injury not due to falling; 13 = unable to clas-
sify; 14 = sensory changes; N = missing data.
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use (P = 1 � 10–06; Fig. 3B), even after adjusting for differences in al-
lele length (Fig. 3C and D). Using all longitudinal data, we see that
individuals with 1–3 D4Z4 repeats were significantly more likely
than those with 4–7 repeats to use a wheelchair (Table 2).
Individuals with 8–10 repeats were less likely than those with 4–7
repeats to progress to wheelchair use.

Machine learning analysis

The Random Forest model selected had an accuracy of 0.79 and
AUC of 0.85 for predicting wheelchair use. Both the Random Forest
model and SHAP analysis found that age-related features had a

high predictive value as to whether or not someone will progress
to wheelchair use, with longer disease duration, older current age
of the patient, younger age at diagnosis and younger age at symp-
tom onset (Fig. 4A and B). The feature found to have the second
highest influence on progression to wheelchair use was the num-
ber of medications participants reported taking, with higher num-
bers of medication associated with wheelchair use. The presence
of several medical comorbidities were predicted to increase risk
for progression to wheelchair use, including breathing problems,
pneumonia, arthritis, constipation, heart problems and psychiatric
concerns. Female gender was associated with higher likelihood of
wheelchair use. Individuals with a BMI lower than the median at

Figure 3 Females are more likely to progress to wheelchair use overall. Log-rank analysis of baseline and longitudinal data shows that (A) females
were more likely at all ages to use a wheelchair compared to males, with a median age of wheelchair use of 59 (95% CI: 56, 62) whereas males had a
median age of wheelchair use at 64 (95% CI: 62, 68). Females have a shorter length of time from age at diagnosis to age of wheelchair use (B), with a
median difference of 23 years for females (95% CI: 19, 26) and 32 years for males (95% CI: 29, 37). There is no significant difference between D4Z4 repeat
length and length of time form diagnosis to wheelchair use (P = 0.2) (C), but when separated by gender we again see that females were more likely
than males to progress to wheelchair use (P = 4 � 10–4) (D). Females in the 1–3 D4Z4 repeat category have a median time of progression to wheelchair
use of 23 years (95% CI: 15, 31) whereas males with 1–3 D4Z4 repeats have a median time of progression to wheelchair use of 28 years (95% CI: 20, n/a).
Females in the 4–7 D4Z4 repeat category had a median time of progression to wheelchair use of 22 years (95% CI: 18, 27) whereas males had a median
time of progression of 33 years (95% CI: 29, 40). Females in the 8–10 D4Z4 repeat category had a median time of progression to wheelchair use of
20 years (95% CI: 12, n/a) whereas males had a median time of progression of 28 years (95% CI: 18, 54).
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entry were predicted to have a higher likelihood of wheelchair use.
Genetics (all repeat lengths) and presenting symptoms were lower
down on the list of features predicted to influence wheelchair use.

Medication-only model

A total of 494 participants reported taking 1461 unique medica-
tions that were grouped into 359 medication categories. Patients
not taking medications (n = 84) were excluded from this model. As
expected, the accuracy was lower at 0.62 and the AUC was 0.66. All
classes of medications were predicted to increase risk of wheel-
chair use with the exception being those that were classified as
amino acids (Fig. 4C).

Discussion
This study is one of the largest longitudinal datasets described to
date in FSHD and supports observations from mostly cross-sec-
tional studies, and also provides some potential new areas of
insights to improve patient care. Here we showed a relationship
between repeat length, age at diagnosis, and age at first wheel-
chair use, with a higher risk of wheelchair use overall in females.
When considering all the clinical data collected, machine learning
analysis suggested that the feature most predictive of wheelchair
use was disease duration, with genetics playing a smaller role, and
that medical comorbidities may also impact motor outcomes in
FSHD.

Our data supports previous observations that individuals with
smaller allele sizes (1–3 D4Z4 repeat units) are diagnosed at a
younger age and are more likely to use a wheelchair at a younger
age compared to those with larger allele sizes.9,12,23,24 However,
the machine learning analysis showed that longer disease dur-
ation had a larger influence on progression to wheelchair use than
genetics. While genetic mutation clearly has an impact on the age
of diagnosis and motor outcomes, over the course of a clinical trial
(�1 year) the predictive value is much less clear. It may be that
stratifying trial participants by disease duration may provide more
useful trial planning information.

Traditionally, males with FSHD are thought to be more severely
affected than females, and that females tend to be diagnosed at an
older age compared to males.11,25–27 It has been hypothesized that
hormonal differences may play a role in the different clinical out-
comes observed between males and females. Ricci et al.25 showed
that males with FSHD and their male relatives developed symp-
toms of motor impairment earlier than females, an observation
that was first observed around age 20 and ended around age 50.
Subsequent in vitro studies using myoblast cell cultures from
patients with FSHD showed that exposure to oestrogen improved
myoblast cell differentiation through decreased transcriptional ac-
tivity of the double homeobox 4 (DUX4) protein and interference
with recruitment of DUX4 in the nucleus, suggesting a protective
effect of oestrogens.28 Aberrant expression of DUX4 is felt to be
one of the pathogenic mechanisms contributing to decreased

myoblast cell survival in patients with FSHD. Mul et al.29 evaluated
the lifetime endogenous exposure to oestrogen and found no sig-
nificant effect, protective or damaging, to account for the reported
clinical variability seen between males and females. Banerji et al.5

recently reported that females who had been pregnant or carried
multiple children to term were associated with a slower onset of
muscle weakness. Contrary to this, Ciafaloni et al.30 found that 24%
of females reported worsening of their FSHD symptoms following
childbirth that did not improve.

In our study, we found that females were diagnosed approxi-
mately 10 years later than males in the 4–7 D4Z4 repeat category.
The separation in age at diagnosis appeared around age 20 and
disappeared around age 50, ages that roughly correlate with onset
of puberty and menopause, respectively. On the other hand, we
found a higher frequency of females in the 1–3 D4Z4 repeat group
who were diagnosed on average 5 years earlier than males, al-
though this was not statistically significant. Even after adjusting
for differences in allele length, we found that females were more
likely to progress to wheelchair use and at a faster rate compared
to males. While this does not explain the difference in age at diag-
nosis based on genetics, it does raise the possibility that females
are more severely affected by the disease than previously thought.
One possible explanation is that females have a more insidious
disease onset as compared to males leading to older age at diagno-
sis, or that their concerns are not taken seriously by physicians,
leading to the observed older age at diagnosis yet faster progres-
sion to wheelchair use. It may also be the case that females are
more likely than males to use assistive devices, which may make
it appear as though they have faster progression to wheelchair
use. Registry data include information on whether or not partici-
pants have children, and if those children are affected by FSHD,
but does not include information on disease progression following
childbirth for females, although this may be worthwhile to include
in the future given contradictory reports5,30 of disease progression
following childbearing. Additionally, large scale studies will be
needed to further clarify these findings and better understand if
there are sex and/or hormonal differences that contribute to clinic-
al presentation and functional outcomes.

This study used machine learning technology to evaluate all
clinical data collected during enrolment in The Registry and on the
annual follow-up questionnaires, providing a unique opportunity
for longitudinal analysis of individual disease progression over
time. The model identified several age-related items high on the
list of features influencing wheelchair use. In the addition, the
model identified medical comorbidities and medication use as im-
portant features influencing wheelchair use. To our knowledge,
this is the first time that medical comorbidities and medication
use have been associated with functional outcomes (wheelchair
use) in patients with FSHD. Surprisingly, genetics and presenting
symptoms were lower down on the list of features identified as
having an influence on wheelchair use.

The model identified breathing difficulty as the medical comor-
bidity having the most influence on progression to wheelchair use.
FSHD can result in restrictive lung disease and studies have shown
that expiratory muscles, rather than diaphragmatic muscles, tend
to be more affected.31–33 Santos et al.32 evaluated 29 age- and sex-
matched patients with FSHD with and without respiratory dys-
function and found that patients with respiratory dysfunction had
involvement of expiratory musculature and 20/29 met criteria to
start (non-invasive) mechanical ventilation, 14 of whom were
wheelchair bound. It is not clear from our study if breathing diffi-
culty as a consequence of FSHD is truly predictive of wheelchair
use, or if this is a medical condition that suggests worsening dis-
ease status and is therefore seen in higher frequency in individu-
als using a wheelchair. Future studies will be needed to better

Table 2 Wheelchair use

Overall (n = 578) Wheelchair use HR (95% CI)

Gender
Female 277 80 1.44 (1.13, 1.84)
Male 301 57 Reference group

D4Z4 repeat length
1–3 60 24 4.14 (2.87, 5.67)
4–7 340 76 Reference group
8–10 119 17 0.56 (0.40, 0.78)
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understand how breathing difficulty relates to disease progression
and functional outcomes in FSHD, and if this can be used as a way
to monitor disease progression over time.

Additional medical comorbidities identified as adding to risk of
wheelchair use included arthritis, pneumonia, hypertension, con-
stipation and psychological problems (such as depression or anx-
iety); however, not having these problems was not predicted to
influence away from wheelchair use. All of the comorbidities iden-
tified as influencing wheelchair use can be treated with various
medications. The model predicted that the more medications one
takes, the higher the likelihood of using a wheelchair. This raises
several interesting questions about medical management of

comorbidities in patients with FSHD and their overall level of gen-
eral health as it relates to risk of wheelchair use. Research suggests
that �50% of patients do not take their medications as prescribed,
leading to increased morbidity and mortality.34 Fitzgerald et al.35

surveyed participants in The Registry to evaluate medication ad-
herence in patients with FSHD and myotonic dystrophy and found
that 44% of patients with FSHD had hypertension, followed by
arthritis (29.5%) and depression (28.5%). One-third of participants
with FSHD reported taking more than six medications daily (pre-
scription and over-the-counter), and those individuals were more
likely to be older and unemployed compared to those taking fewer
medications. Most participants (82.2%) reported good medication

Figure 4 Feature importance predicted by the Random Forest machine learning model and SHAP analysis. The Random Forest machine learning
model (A) and SHAP analysis (B) both identified disease duration and number of medications as the most important features influencing wheelchair
use. Age-related features such as current age of the patient (Age), age at diagnosis (DxAge) were the next most important features. Female gender
was found to influence likelihood of wheelchair use. Having a low BMI was found to influence towards wheelchair use. Comorbidities such as respira-
tory concerns (Breathing), arthritis, pneumonia, hypertension (HighBP) and constipation were all found to influence towards wheelchair use.
Genetics (repeat length) and initial presenting symptoms were further down on the list of feature importance. A separate ‘medication-only’ model
(C) found that all classes of medications influenced towards wheelchair use except for those classified as amino acids. Duration = disease duration;
NumMeds = number of medications; Age = current age of the patient; DxAge = age at diagnosis; Breathing = Y/N respiratory difficulties; InitAge =
initial age symptom onset; HighBP = hypertension; HeartProbs = heart problems; H = 8–10 D4Z4 repeat units; UndiagnosedLength = time spent un-
diagnosed (in years); PsychProb = psychiatric concerns; 1.0 = initial symptom facial weakness
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compliance without significant barriers (defined as cost of medica-
tion, side effects and understanding of need for medication) to tak-
ing their medications as prescribed. These findings suggest that
there may be an association between the number of medications a
patient is taking, medical comorbidities and progression to wheel-
chair use. Future studies will be needed to determine if better med-
ical management of comorbidities might influence functional
outcomes in FSHD, or if loss of mobility due to FSHD predisposes
individuals to developing comorbidities.

We further investigated the different classes of medications
reported by The Registry participants to see if there were specific
types of medications that influenced wheelchair use. The medica-
tion-only model is inherently less accurate but did show that all
types of medications influenced towards wheelchair use except
those classified as amino acids, which included supplements such
as acetyl-L-carnitine, L-lysine, branched chain amino acids, N-ace-
tyl cysteine and hydroxymethylbutyrate (data not shown).
Interestingly, the general model that included all reported clinical
data identified minerals, vitamins and non-steroidal anti-inflam-
matory drugs (NSAIDs) as having the highest influence on wheel-
chair use. Here we cannot determine whether the number of
medications and medical comorbidities increased the likelihood of
needing a wheelchair, or whether more severely affected individu-
als were more likely to have medical comorbidities necessitating
treatment. These findings will require a more thorough investiga-
tion using larger datasets to better understand the influence of
medication use and medical comorbidities on patient outcomes in
FSHD.

There are several limitations to this study. The Registry is a col-
lection of patient-reported symptoms and medical data that are
collected annually, raising the possibility of recall bias. In an effort
to minimize this, we focused on features that are memorable
moments in one’s lifetime such as age at diagnosis or age at first
wheelchair use. There is also the possibility of selection bias to-
wards those individuals willing to participate in The Registry. A
large proportion of individuals enrolled in The Registry were
excluded from this analysis because they were not genetically
defined, which could result in further selection bias. We chose to
focus only on individuals who are genetically confirmed to have
FSHD1 to minimize the possibility that individuals are included for
analysis who do not truly have FSHD and improve the reliability of
our results for those with FSHD1. The Registry contains only a
small number of individuals with FSHD2, and it is possible that
some of the individuals who were not genetically defined have
FSHD2. Although these individuals are felt to have a clinical course
similar to those with FSHD1, they were excluded from this analysis
in an effort to minimize confounding variables. Individuals in the
registry were primarily Caucasian and future enrolment should
aim to improve diversity and include more individuals from differ-
ent ethnic backgrounds to better represent the spectrum of disease
in the population. We also found that most individuals participat-
ing in The Registry were highly educated, raising the possibility
that more educated individuals are more likely to participate in
The Registry. Almost half of individuals were unemployed at the
time of enrolment. This could represent registry bias towards indi-
viduals who are more severely affected, whereas individuals who
are still working and not as severely affected may be less inclined
to join. Finally, from a machine learning perspective, the number
of subjects analysed is on the smaller side of what would be trad-
itionally used to build a model. Future studies should aim to in-
crease the size of the dataset to provide further validation of the
findings reported here.

In conclusion, we showed that while genetics and gender may
influence age at diagnosis, machine learning technology suggests
that medical comorbidities and medication use may have a larger

influence on functional outcomes for patients with FSHD than pre-
viously appreciated. We found an association between the number
of medications one takes and medical comorbidities, but the direc-
tion of this relationship is not clear. Future studies should aim to
clarify this relationship to help determine if aggressive medical
management of comorbidities can improve functional outcomes
in patients with FSHD. This could also have future implications for
clinical trial design by restructuring how patients are categorized
(e.g. by disease duration) and identifying clinically meaningful out-
come measures to assess for improvement in function over time.
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