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Abstract

Circulating urate levels are determined by the balance between urate production and excretion, 

a homeostasis regulated by the function of urate transporters in key epithelial tissues and cell 

types. Our understanding of these physiological processes and identification of the genes encoding 

the urate transporters has advanced significantly, leading to a greater ability to predict risk for 

urate associated diseases and identify new therapeutics that directly target urate transport. Here 

we review the identified urate transporters and their organization and function in the renal tubule, 

the intestinal enterocytes, and other important cell types to provide a fuller understanding of the 

complicated process of urate homeostasis and its role in human disease. Further, we provide a 

review of the genetic tools that have provided the unbiased catalyst for transporter identification 

as well as a discussion of the role of transporters in determining the observed significant sex 

differences in urate associated disease risk.
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I. Introduction

Uric acid is a weak organic acid with a pKa of 5.75, and at physiological pH exists 

primarily in its protonated form, urate. Urate has peak solubility at pH 5.5[1], and is less 

soluble at more alkaline, including physiological, pH[2]. Urate is the terminal metabolite 

of purine metabolism in humans and the other great apes, due to accumulation of three 

mutations in the uric acid oxidase (uricase) gene (UOX) resulting in complete loss of 

function[3]. The pseudogenization of UOX in humans is the culmination of a diminishing 

gradient of uricase activity in all primates[3], supporting strong selective pressure for the 

loss of uricase function and the increase of circulating urate levels[4]. Urate is produced 

from the degradation of purine nucleotides and amino acids, mediated by xanthine oxidase. 
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Without uricase activity, humans have serum urate (SU) levels 5 to 6 times higher than other 

mammals[5]. The gradual loss of uricase activity likely permitted adaptation to increased 

urate load in humans, mitigating many pathophysiological consequences associated with 

uricase silencing, including the acute urate nephropathy renal failure observed in uricase 

knock-out mice[6]. The possible benefit of elevated SU is still hotly debated, however the 

disadvantages for human health are clear: increased SU results in hyperuricemia (>6.8 mg/

dL), a condition which increases the risk of precipitation of monosodium urate crystals and 

gout, as well as a risk factor for cardiometabolic diseases[7].

The number of affected individuals with hyperuricemia in the United States is estimated to 

be 47.2 million (20%); with 27.9 million individuals (11.9%) having severe hyperuricemia 

(>7mg/dL), and men (20.2%) are affected five times more often than women (4.2%)[7]. 

These large numbers of hyperuricemic individuals result in an equally high prevalence of 

gout of approximately 4% in the United States, Europe, and Southeast Asia[7, 8]. In addition 

to a causal role in gout, hyperuricemia is independently associated with major drivers in 

human health including renal diseases, hypertension, cardiovascular disease, and metabolic 

syndrome[7–10]. Beneath each of these pathologies is a derangement in the careful balance 

between urate production and excretion with significant biological consequences. This 

urate homeostasis, predominantly determined by urate excretion, is maintained by epithelial 

transport systems of the liver, kidney, and intestine[11], but is mirrored by similar systems 

at the tissue and cell layer in the blood brain barrier, placenta, and in chondrocytes[12, 

13]. Here we will review the molecular mechanisms of urate transport in an effort to 

understand urate homeostasis and the consequences of its disruption, and the role of genetics 

in determining risk of urate related pathologies.

II. Genome-wide association study evidence

Several approaches have been utilized to attempt to identify urate transporter machinery. 

Gout risk and SU levels display a strong heritable component, estimated between 40–

70%[14, 15], making SU a strong candidate for genomic exploration. Initial studies 

examined families with pathological SU levels using a labor-intensive comparative and 

candidate based cloning approach. This led to the identification of urate transporter URAT1, 

encoded by SLC22A12[16]. Subsequent work proved that other members of the SLC22 

gene family (the Organic Anion Transporters or OATs) have affinity for urate[17, 18]; 

however, physiological relevance of these transporters has been difficult to substantiate[19]. 

Frustratingly, the candidate approach failed to identify secretory urate transporters or 

transporters linked to increased disease risk. Fortunately, the advent of genome-wide 

association studies (GWAS) provided an unbiased approach to identify urate associated 

genes. GWAS find correlations between a given condition and common single nucleotide 

polymorphisms (SNPs), which serve as markers for genomic space[20]. After identification 

of these genomic regions, additional analyses can then be performed to identify those genes 

most likely to underlie the associated SNP, in some cases identifying novel causal variants 

that contribute to disease risk.

An abundant number of urate associated GWAS have been conducted with large and 

diverse populations, greatly expanding our knowledge of the key urate transporters in 
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humans[21, 22]. The three most commonly associated genes are ABCG2, SLC2A9, and 

SLC22A12[21–27], and variants in these three genes have been shown to contribute to the 

largest portion of the measured variability in SU levels (~5%)[22]. In addition, a recent 

targeted study demonstrated the common ABCG2 variant rs2231142 is the only locus 

strongly associated with early onset gout in both European and Polynesian individuals[28]. 

Some additional urate associated transporters include SLC16A9[22, 24, 25], SLC17A1–
4[21, 22, 24–26], SLC22A6[22], SLC22A7[22, 27], and SLC22A11[24, 25], with some 

evidence for SLC22A9 in East Asian populations[29], as well as SLC22A8, SLC22A13, 

and ABCC4 in populations with chronic renal insufficency of either European or African 

ancestry[30] and in Māori and Pacific Island populations of New Zealand[31]. In addition 

to genes coding for transport proteins, more than one hundred other loci have associated 

with either serum urate levels, gout risk, or both, providing an extremely rich genetic 

understanding of networks of associated genes, including genes that modify transporters. 

For example, a recent comprehensive trans-ancestry GWAS, Tin et al[22] attempted to 

identify common variants causal for alterations in urate levels. They identified both well-

established urate transporter gene variants in ABCG2[32], as well as in the transcription 

factor genes HNF1A and HNF4A[22], both of which have been shown to affect expression 

of several urate transporters[22, 33–38]. Finally, computational approaches can be added 

to trans-ancestral meta-analyses to improve fine mapping of candidate causal variants to 

single SNP resolution, and have recently identified causal variants in SLC2A9 for both urate 

(rs3775948) and gout (rs4697701), and another variant in ABCG2 (rs2622621) in gout along 

with the previously established rs2231142[39].

A second genetic methodology that has aided in our understanding of the mechanisms of 

urate transport is whole exon association studies. These use whole exon or whole exome 

sequencing of patient populations again compared to phenotypes, specifically powered to 

discover both common and rare causal variants associated with SU or gout risk. Tin et 

al[40] found a large number of exclusively rare variants in SLC22A12 and demonstrated 

a select few were loss of function variants, illustrating key functional components of the 

URAT1 transporter. They also found a large number of both common and rare variants in 

SLC2A9, helping better understand the structure and function of the SLC2A9 (GLUT9) 

urate transporter protein[40]. Thus, genetic studies provide valuable information into the 

identification of various urate associated genes, including urate transporters themselves, 

variations in allele frequency in populations of different ethnicities, and sex differences. 

In addition, this work has illuminated, through the identification of functional variants, the 

structure and function of the key transport proteins providing insights into the unique human 

handling of urate and road maps to future therpautic targets.

III. Urate handling in the kidney

Urate homeostasis is the balance between urate production and excretion, a dynamic process 

that requires physiological adaptation and flexibility. Urate excretion occurs primarily 

through the normal excretion pathways for all metabolites and waste products: the kidney 

and the gastrointestinal tract. Of these two, the kidneys are responsible for 70% of 

the total urate excretion (Figure 1), joining the other primary human nitrogenous waste 

product, urea, expelled in the urine[41, 42]. Like our understanding of urea handling in 
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the human kidney, urate excretion appears more complicated than necessary for simply 

waste elimination. After urate is freely filtered at the renal glomerulus, transporter proteins 

within the convoluted S1 segment of the proximal tubule facilitate the reabsorption of urate 

as part of the initial bulk reabsorption of many organic anions[19, 43, 44] (Figure 1C). 

This early proximal urate reabsorption may be influenced by either sodium or volume 

status. Clinical studies showed that increased dietary sodium and the resulting increases in 

volume, blood pressure, and renin, correlated with decreased serum urate, consistent with 

decreased tubule reabsorption[45]. In rats, decreases in extracellular fluid volume increases 

urate reabsorption in the proximal tubule and decreases urate excretion, while increases in 

extracellular fluid volume have the opposite effect[46], similar to what has been reported 

in humans[45]. Overall, the majority of the filtered urate (estimated as high as 95%)[19] 

is reabsorbed, an odd fate for a waste product, but may be a result of efficient but low 

specificity general anion capture in the early proximal tubule. The next step is avid and 

energetically costly secretion of urate back into the tubule lumen, as much as 50% of the 

original filtered load[44]. This may occur in the next 2 segments of the proximal tubule (S2, 

S3), the segments with the highest expression of secretory transporters (Figure 1D). The 

process is completed with a second phase of reabsorption in the latter S2 and S3 segments 

resulting in a dynamic fractional excretion of urate (FEUA) ranging from 5 to 15%[19, 43, 

44]. This model of urate handling is based largely on experiments in animal models and 

in vitro assays and remains somewhat controversial[19]. The recent identification of many 

key human urate transporters, their functional assessment, and expression along the human 

nephron, has supported the functionally distinct phases of urate handling along the tubule. 

However, confirmatory protein localization in human tissue is often missing and so testing 

this hypothesis remains a driving force in urate research.

Functional characterization of several candidate transporters have revealed a number of 

proteins which have some affinity for urate (Figure 1). Based on renal tubular expression 

in vivo, the initial bulk reabsorption is likely conducted by apically expressed OAT4 

(encoded by SLC22A11), and OAT10 (encoded by SLC22A13), and other still unindentified 

probable transporters with lower urate affinity, to remove urate from the tubular lumen, then 

transported basolaterally back into the interstitum via SLC2A9[11, 17, 47–50]. Interestingly, 

in mice the key urate reabsorption transporter SLC2A9 is not expressed in the proximal 

tubule[51] and kidney specific knock out of SLC2A9 results in mice with moderate 

hyperuricosuria, polyuria with no concentration defect, and no change in SU, urine pH, 

or renal structure[52]. In contrast, humans with loss of function mutations in SLC2A9 

experience significant hypouricemia[23] as discussed below, demonstrating differences in 

the role of SLC2A9 between the two species, and suggesting renal urate handling in 

humans is an adaptation to the increases in filtered urate load resulting from the loss 

of uricase function. Urate in the peritubular capillary then re-enters the tubule though 

basolateral transporters OAT1 (encoded by SLC22A6) and OAT3 (encoded by SLC22A8)

[17, 47, 53–55], where it is secreted through the primary secretory transporter, ABCG2 

(BCRP), expressed on the apical brush border membrane, with further secretion contributed 

potentially by apically localized Na+ / phosphate co-transporters, NPT1 (encoded by 

SLC17A1) and NPT4 (encoded by SLC17A3)[32, 56–58]. Post secretory reabsorption is 

likely facilitated primarily by URAT1 (encoded by SLC22A12), which is expressed at the 
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apical brush border membrane, coupled with SLC2A9 on the basolateral membrane to 

transport urate to the peritubular capalaries[16, 23, 49, 59]. SLC16A9 is also preferentially 

expressed in proximal tubule cells[60], however the precise localization and role in urate 

transport is not currently understood. Paradoxically, protein localization in human proximal 

tubules shows ABCG2 mediated secretion and URAT1 mediated reabsorption can occur in 

the same cell[61], begging the obvious question of why urate is secreted and reabsorbed 

simultaneously; could the nephron be using urate to perform other physiological work?

Recent advances in single cell RNA-Seq data have revealed that many of the urate associated 

transporters have different expression patterns along the nephron (Figure 1B). All of these 

transporters are expressed in the three segments of the proximal tubule, however SLC17A1, 

SLC17A3, SLC22A6 and SLC22A8 have highest mRNA expression in the S1 segment, 

ABCG2, SLC2A9, and SLC22A12 have highest mRNA expression in the S3 segment, while 

SLC22A11 and SLC22A13 have similar mRNA expression levels in both the S1 and S3 

segments[62]. Of note, some of these transporter proteins, including ABCG2, may be long 

lived within the cell[63], rendering mRNA levels deceptively low. Thus, different segments 

of the proximal tubule may have heterologous expression of a given set of transporters.

Further evidence supporting the involvement of URAT1 and SLC2A9 in urate reabsorption 

is found in patients with renal hypouricemia. Symptoms of hypouricemia may include 

hematuria and hypercalciuria, but more often include recurrent episodes of nephrolithiasis 

acute kidney injury (AKI) usually from dehydration due to intense or frequent exercise or 

gastroenteritis, or posterior reversible encephalopathy syndrome in patients with exercise 

associated AKI[64]. Hypouricemia type 1 (OMIM #220150) is the more common condition 

and associated with homozygous or compound heterozygous loss of function variants in 

SLC22A12, while hypouricemia type 2 (OMIM #612076) is caused by either heterozygous 

or homozygous defects in SLC2A9[64, 65]. These conditions have been best characterized 

in patients of East Asian ancestry, but additional evidence has shown that these variants 

are also found in a variety of ethnic groups including Arab Israelis, Ashkenazi Jews, Iraqi 

Jews, as well as individuals of various European ancestries[64]. Approximately 150 variants 

have been identified in the SLC22A12 gene, and over 100 variants have been described in 

SLC2A9, some of which have known associations with gout[40, 64]. URAT1 expression and 

localization appears evolutionarily conserved, however, the human version of the URAT1 

protein has a much higher affinity for urate than that of mice and rats. This is due to 

substitution of a few key amino acids within the primate transporter, which likely took place 

in the same timeframe as primates loss of uricase function, providing further evidence for a 

selection advantage to increased urate retention[66].

One possible explanation for the complexity in urate transport is that urate provides crucial 

driving forces for the movement of other critical anions and electrolytes along the nephron. 

For example, URAT1 is an exchanger, and thus reabsorbs urate when another counter-ion is 

secreted in trans. URAT1 has affinity for numerous metabolically active anions, including 

lactate, ketoglutarate (αKG) and β-hydroxybutyrate(βHB)[16]. OAT1/3 can also transport 

these citric acid cycle intermediates [47, 50, 54, 67]. Some of these anions are generated 

within the cell as a product of anaerobic (lactate) or aerobic (αKG and βHB) glucose 

catabolism, or these molecules can enter the cells through transporters. Lactate is freely 
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filtered at the glomerulus and can be used for gluconeogenesis in the renal cortex [68], and 

uptake is increased by acidosis [69]. Lactate is primarily reabsorbed by sodium-coupled 

transporters encoded by SLC5A8 and SLC5A12, whose protein products SMCT1 and 

SMCT2 are expressed on the apical side of proximal tubular cells [70, 71]. Interestingly, 

mice that are null for both SLC5A8 and SLC5A12 demonstrate increased urinary excretion 

of both lactate and urate indicating a functional coupling of lactate and urate transport 

in vivo [72]. The importance of sodium-dependent urate transport is further supported 

from data showing that healthy subjects administered the SGLT2 inhibitor phloridzin 

demonstrated increased FEUA[73] and that mice deficient in SGLT1 demonstrate glucosuria 

and uricosuria with the addition of SLGT2 inhibitor canagliflozin, evidence that increased 

luminal glucose may induce uricosuria, and that URAT1 is required for this effect[74]. On 

the basolateral side, another sodium-dependent transporter NaDC3 (encoded by SLC13A3) 

also transports metabolic intermediates succinate, αKG, and citrate into the cell[75]. NaDC3 

may couple with the basolateral OATs, in order to exchange αKG for urate[11]. Taken 

together, this data provides evidence for potential roles for urate in energy metabolism and 

sodium handling. Furthermore, the expression and activity of these transporters in the late 

proximal tubule seem to be conserved across species; however, further studies are required 

to elucidate the roles of these transporters in urate handling in humans.

Renal function may also contribute to hyperuricemia and gout susceptibility. Not only 

has hyperuricemia been reported as an independent risk factor for chronic kidney disease 

(CKD) [76], but patients with worsening kidney function may also be more likely to 

develop gout[77]. There is also evidence that mild hyperuricemia may correlate with 

kidney damage. Increased SU levels may predict development of end stage renal disease 

(CKD stage 5)[76], and overall prevalence of gout in CKD is 3 to 6 times higher than 

in the general population[7, 77]. However, urate lowering therapy (ULT) is currently only 

recommended for CKD patients with gout, and not asymptomatic hyperuricemia, as urate-

lowering therapy with allopurinol does not alter progression of CKD in those without 

gout[78, 79]. Both allopurinol and febuxostat are xanthine oxidase inhibitors[80]. These 

and other ULT drugs, including uricosuric agents, have complex interactions with urate 

transporter proteins (reviewed in detail in [81], with selected examples in Table 1). For 

example, both allopurinol and oxypurinol are substrates of ABCG2 (Figure 1D)[82], and this 

interaction may cause reduced response to allopurinol urate lowering therapy, especially in 

patients with the ABCG2-Q141K variant[83, 84]. The primary target for most uricosurics is 

URAT1, with some drugs also inhibiting other reabsorptive transporters including OAT4 and 

OAT10 (Table 1a), thereby decreasing reabsorption and increasing urinary urate excretion. 

Other drugs used to treat kidney disease can also affect urate levels, including diuretics and 

SGLT2 inhibitors (Table 1b). Diuretics have been shown to increase SU levels, acting as 

competitive inhibitors for urate on OAT1 – 3[85]. Loop diuretics can also directly inhibit 

ABCG2[86] and NPT4[58], which leads to a decrease in urate secretion. The uricosuric 

effect of interactions between SGLT2 inhibitors and urate transporters is much less well 

characterized, with some evidence that SGLT2 inhibitor luseogliflozin (approved for use in 

Japan) does not affect reabsorptive urate transport activity of SLC2A9, URAT1, OAT4 or 

OAT10[87], indicating glucose may be influencing urate levels by some other mechanism, 

which remains unclear.
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IV. Urate handling in the gut

Several of the urate transporters expressed in the kidney are also found in intestinal 

epithelial cells (Reviewed in [88]), including ABCG2, SLC2A9 and others. ABCG2 is 

localized to the apical compartment of the intestinal enterocytes[89]. SLC2A9 is expressed 

primarily on the basolateral side of enterocytes in mice[61, 90], poised to provide basolateral 

entry, coupled with ABCG2 on the apical side (Figure 1E). Disruption of this pathway in 

mice with the intestine specific knockout of SLC2A9 or the knock-in of the human gout 

variant ortholog Q140K ABCG2, leads to significantly reduced intestinal urate excretion, 

moderate hyperuricemia, and metabolic syndrome[61, 90]. However, the role of SLC2A9 

in human intestine is less clear. Other urate associated transporter genes expressed in 

the intestine include SLC17A4[91] expressed on the apical brush border, SLC22A13[92] 

and SLC16A9[93], but where these proteins localize and how they contribute in intestinal 

excretion remains to be confirmed.

The most well characterized intestinal urate transporter is ABCG2. Matsuo et al 

demonstrated that patients with end stage renal disease who had severely reduced renal 

urate excretion were highly dependent upon ABCG2 mediated secretion in the gut [94]. 

Thus, patients with loss of function variants in ABCG2 activity displayed a higher degree of 

hyperuricemia compared with those without. A recent human interventional trial measured 

urate handling in individuals with the common Q141K variant (rs2231142) of ABCG2 

compared to a control cohort. They showed in the control cohort that extrarenal (intestinal) 

excretion of urate was the primary driver of variation in SU levels during a urate loading 

test, whereas for Q141K ABCG2 individuals, renal excretion was the primary source of 

variation in SU, and there was a significant loss of extrarenal excretion. To understand the 

mechanism, in the same study, Hoque et al created a mouse ortholog model of the Q141K 

ABCG2 variant. These animals replicated the human phenotype: hyperuricemia, moderate 

reduction in renal excretion, and significant loss to intestinal urate excretion[61]. ABCG2 is 

expressed in the brush border of the villi cells in the jejunum and ileum in mice, and mice 

with the ABCG2 variant showed a complete loss of ABCG2 mediated intestinal excretion 

correlated with a severe reduction in ABCG2 abundance. Interestingly, the Q141K mouse 

model also confirmed the role of ABCG2 in renal excretion, but they found that, in contrast 

to the intestines, the variant showed only a moderate decline in abundance and function. 

Similar results were observed in ABCG2 whole body knockout mice, which demonstrate 

increased SU levels and decreased intestinal excretion of urate[95].

V. Urate handling in the liver

Increased urate production is another potential cause of hyperuricemia. The liver is the 

major site of urate production[19, 96], where urate precursors enter hepatic cells, and are 

then metabolized to urate through xanthine oxidase. These precursors include endogenous 

nucleotide purines, including AMP and GMP, as well as dietary purines and fructose[97]. 

Fructose metabolism rapidly consumes ATP, stimulating AMP deaminase, leading to 

increased urate production[98]. Increased fructose intake through either sucrose or high 

fructose corn syrup can not only increase SU levels through increased ATP consumption, 

but can also increase risk for developing several urate associated co-morbidities including 
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metabolic syndrome, fatty liver disease, insulin resistance, and type 2 diabetes[99]. In vitro 
analyses of human hepatocytes have shown that increased urate, independent of fructose, 

can stimulate fructose metabolism through up-regulation of fructokinase (KHK)[100], 

and that inhibition of urate production blocked fructose-induced hepatocyte triglyceride 

accumulation in both human HepG2 cells and in male rats fed high fructose treated with 

allopurinol[100]. Thus, there is evidence that it is the increased urate as a result of higher 

fructose intake that plays a role in fructose associated co-morbidities.

The liver also expresses several urate transporters, including ABCG2, SLC2A9, SLC22A7 
and SLC22A11[49, 89, 101] supporting an important role for urate transport in the liver that 

has yet to be determined, particularly in humans. SLC2A9 is expressed on the apical surface 

of hepatocytes in humans[49], as well as mice[102]. Interestingly, liver-specific SLC2A9 

knock out mice (LG9KO) demonstrate higher SU than whole body SLC2A9 knock out 

mice (G9KO), with a lower increase in FEUA (~25%) compared to G9KO mice (~100% 

for males, ~150% for females), implying SLC2A9 may be essential for urate uptake into 

murine livers[102]. In addition, ABCG2 is expressed in the liver, specifically at the bile 

canalicular membrane, oriented to efflux urate into the bile, leading to eventual deposition 

in the intestine[89]. However, oxonate-treated rats demonstrated only a 0.68% recovery of 

administered 14[C] uric acid in the bile, compared to 42.58% in the urine and 8.90% in the 

intestinal lumen[103], supporting a lesser contribution to overall urate excretion from the 

liver. Human hepatic excretion of urate in the bile has yet to be determined[12], so the effect 

of common ABCG2 variants in the liver is unclear.

VI. Sex differences in urate handling

Sex differences in human physiology have recently come into focus in a variety of fields, 

including immunological[104–106] and renal diseases[107–111]. There is also substantial 

evidence that male sex is a significant risk factor for hyperuricemia and gout[112, 113], with 

men up to 4 times more likely to be affected than women[8]. This observation has recently 

been coupled to investigations of sex differences in urate handling in the kidney[61], as 

well as differential effects of pathogenic variants in urate transporter genes[22, 114]. A 

recent review[115] argued that even though SU levels tend to be lower in females[7], 

females with elevated SU levels have increased risk of associated co-morbidities, including 

hypertension[116–118], chronic kidney disease[117, 119, 120], and type 2 diabetes[117, 

121]. GWAS evidence has shown almost 200 loci associated with SU levels[22, 29], but 

only three of these SNPs have sex specific effects; two in urate transporters ABCG2 and 

SLC2A9, and the third in gene encoding urate transporter scaffold protein PDZK1[22, 114]. 

Thus, the observed sex differences are more likely due to intrinsic differences in urate 

handling in males compared to females, with some evidence that estrogen may play a role 

in regulating either urate transporters themselves[122–124], or urate associated transcription 

factors[125, 126]. This is further supported by the fact that the chance of females becoming 

hyperuricemic increases 5-fold after menopause, and this risk can be mitigated by hormone 

replacement therapy[127–129]. However, further studies are required to elucidate the precise 

mechanisms for the differential regulation of urate handling between males and females.
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VII. Summary

Urate homeostasis is a complicated process that involves several organ systems. Several 

urate transport proteins have been identified through genetic associations using GWAS and 

in vitro studies. Urate transport in the kidney has been the most well characterized; however, 

the purpose and regulation of this intricate process of reabsorption, secretion, and additional 

reabsorption has yet to be elucidated. This complex system implies the kidney may be using 

urate as a counter-ion to perform some other function that remains to be determined. Further 

study is also required to identify the full complement and subsequent roles of the urate 

and related transporters in both the intestine and the liver to better understand whole body 

urate homeostasis. This greater understanding could lead to insights into the mechanisms 

regarding sex differences in urate handling, as well as potential novel therapeutic targets and 

treatments to improve quality of life of patients afflicted with hyperuricemia, gout, and other 

related co-morbidities.

VIII. Practice Points

• Serum urate levels are influenced by the urate transport mechanisms of the 

kidney and intestine excretion pathways.

• Pathological disruptions of these key excretory organs, as observed in CKD and 

intestinal infection, increases serum urate and risk for gout.

• Recent genetic analysis has revealed much of the heritability of hyperuricemia 

and gout risk is due to functional variants in the key urate transporter genes, 

ABCG2, SLC22A12, and SLC2A9.

• Understanding individuals genetic background may inform on risk for urate 

associated disease and point to patient centered treatment options.

IX. Research Agenda

• Additional research into the physiology and identities of urate transporters to 

better understand the counter intuitive nature of the kidney’s handling of urate

• Functional studies examining the role of urate as a counter-ion for some other 

physiologically important process, such as sodium or water balance

• Additional laboratory research examining the role of how urate and glucose 

each influence renal handling of the other, and mechanistic studies into the 

contributions of SGLT2

• Identification and characterization of additional urate transporters in the intestine 

and the liver

• Functional studies to determine the underlying mechanisms for the sex 

differences in urate handling
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Fig. 1. Renal and Intestinal Urate Physiology
(A) The proximal tubule of the renal nephron is the principal site of urate (UA) handling 

through both secretion (blue arrow) and reabsorption (purple arrow). (B) Expression 

patterns of human urate transporter genes. Secretory transporter genes are shown in blue, 

while reabsorptive transporter genes are shown in purple. Gradients are displayed on 

the membranes of expression, with SLC22A6/7/8 and SLC2A9 coding for basolateral 

proteins, and ABCG2, SLC17A1/3, and SLC22A11/12/13 encoding apical transporters. 

The darker the color, the higher the expression, based on data from the Kidney Interactive 

Transcriptomics database[62]. Percentages delineate the amount of the original urate filtered 

load is either reabsorbed (purple arrows) or secreted (blue arrow) leading to a final fraction 

excretion of urate (FEUA) shown in black. Transporter protein localization and transport 

patterns are shown for the S1 (C) and S3 (D) segments. (C) Transporters most abundantly 

expressed in the S1 segments include transporters of the secretory pathway: NPT1 

(SLC17A1), NPT4 (SLC17A3), OAT1 (SLC22A6) and OAT3 (SLC22A8), shown in blue, 

and transporters of the reabsorptive pathway: OAT4 (SLC22A11), OAT10 (SLC22A13), and 

SLC2A9/GLUT9 (SLC2A9), shown in purple. (D) Transporters most abundantly expressed 

in the S3 segment include secretory pathway transporters ABCG2/BCRP (ABCG2), OAT1, 

OAT2 (SLC22A7) and OAT3 shown in blue, and reabsorptive pathway transporters URAT1 

(SLC22A12), SLC2A9, OAT4, and OAT10, shown in purple. Additional transporters that 

are functionally coupled to urate transport include the sodium cotransporters SMCT1 
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(SLC5A8) and NaDC3 (SLC13A3) shown in red. Blue and purple arrows indicate the 

direction of urate transport, while black and red arrows indicate transport of counter ions. 

(E) Urate is also excreted through the jejunum segment of the small intestine, where 

urate may enter through basolateral SLC2A9 (**well established in mice, requires further 

confirmation in humans), and is then secreted into the lumen primarily through ABCG2 

with some potential contribution from SLC17A4 (SLC14A4).. *Some transporters have 

many known endogenous substrates, with only the most relevant shown. Lac: lactate; αKG: 

alpha-ketoglutarate; OA: organic anion; Pi: inorganic phosphate. Endogenous OAs for the 

OATs may include the following: OAT1: medium chain fatty acids, citrulline, prostaglandin 

E2 prostaglandin F2, cyclic nucleotides (cAMP, cGMP), folate[47, 50, 53]; OAT2: 

cAMP, GMP, GDP, GTP, cGMP, glutamate, glutarate, α-ketoglutarate, L-ascorbate, orotic 

acid, trigonelline, hypoxanthine, prostaglandin E2, prostaglandin F2, estrone-3-sulfate, 

dehydroepiandrosterone sulphate[50, 67]; OAT3: cAMP, cortisol, glutarate, prostaglandin 

E2, prostaglandin F2α, dehydroepiandrosterone sulphate, estrone sulphate, estradiol-17β-

glucuronide, taurocholate, cholate, indoxyl sulphate [47, 50, 54, 130]; OAT4 estrone-3-

sulfate, prostaglandin E2, prostaglandin F2, dehydroepiandrosterone sulphate[50, 67]; 

OAT10: lactate, nicotinate, glutathione, succinate[50, 92]. An additional endogenous OA 

for NPT1 and NP4 is inorganic phosphate co-transported in cis with Na+[57, 58]. SMCT1 

mediates sodium dependent transport of monocarboxylates including short chain fatty acids, 

pyruvate and nicotinate[131], while NaDC3 mediates sodium coupled transport of di- and 

tri-carboxylates including, α-ketoglutarate, glutarate and its derivatives, citrate, succinate, 

and amino acid N-acetyl-L-aspartate[75].
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Table 1a.

Drugs that Increase Urinary Urate Excretion

Drug Drug Action
Interactions with Urate 
Transporters (Secretion 
Pathway)

Interactions with 
Urate Transporters 
(Reabsorption 
Pathway)

Effects on Serum Urate

Primary Uricosuric Agents

Probenecid Renal tubule reabsorption 
inhibitor

High affinity inhibitor 
of OAT1[53] and 
OAT3[130], lower 
affinity inhibitor of 
OAT2[67] and NPT4[58]

Lower affinity inhibitor 
of URAT1[132] and 
OAT4[67]

Decreased SU due to decreased 
urate reabsorption at higher doses
Increased SU due to inhibition of 
secretory transporters

Benzbromarone* Renal tubule reabsorption 
inhibitor OAT1 inhibitor[53] Inhibitor of SLC2A9 

[133] and URAT1[134]

Decreased SU due to increased 
urinary excretion with decreased 
urate reabsorption

Sulfinpyrazone Renal tubule reabsorption 
inhibitor --- URAT1 inhibitor [132, 

135]

Lesinurad Renal tubule reabsorption 
inhibitor

Minimal effects on 
OAT1 and OAT3[136]

Inhibitor of URAT1 and 
OAT4[137]

Verinurad† Renal tubule reabsorption 
inhibitor --- URAT1 inhibitor[138]

Dotinurad† Renal tubule reabsorption 
inhibitor --- URAT1 inhibitor[139]

Arhalofenate† Renal tubule reabsorption 
inhibitor --- Inhibitor of URAT1 and 

OAT4[140]

Agents with Secondary Uricosuric Properties

Tranilast†
Anti-inflammatory with 
pleiotropic effects

Moderate inhibition of 
NPT1, OAT1, and OAT3, 
with no inhibition of 
ABCG2[141]

High affinity inhibition 
of URAT1, SLC2A9, 
OAT4 and OAT10[141]

Preferential inhibition of urate 
reabsorption results in decreased 
SULosartan

Angiotensin II 
receptor antagonist 
(antihypertensive)

ABCG2 inhibitor[86] Inhibitor of URAT1[134] 
and SLC2A9[133]

Fenofibrate PPARα activator 
(cholesterol lowering)

Inhibitor of ABCG2[86, 
142] and OAT3 [143]

Moderate inhibition of 
URAT1 [144]

Xanthine oxidase inhibitors (with net urinary urate excretion)

Allopurinol Xanthine oxidase inhibitor Substrate of ABCG2 [83, 
84] and OAT2[145] ---

Decreased urate production 
with potential decreased urate 
secretion

Febuxostat Xanthine oxidase inhibitor ABCG2 inhibitor[86] ---

Topiroxostat† Xanthine oxidase inhibitor
Inhibition of 
ABCG2[86], OAT1 and 
OAT3[81]

---

SU: serum urate; ---: No known interactions;

†:
clinical trials ongoing, drugs are not currently FDA approved in the US

*
Benzbromarone has been withdrawn in the US due to concerns with hepatotoxicity [146]
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Table 1b.

Drugs that Decrease Urinary Urate Excretion

Drug Drug Action
Interactions with 
Urate Transporters 
(Secretion Pathway)

Interactions with 
Urate Transporters 
(Reabsorption 
Pathway)

Effects on Serum Urate

Loop Diuretics

Furosemide
NKCC2 
Inhibitor (loop 
diuretic)

Inhibitor of 
ABCG2[86] and 
NPT4[58]; substrate of 
OAT3[85]

---

Direct inhibition of urate secretion with 
competitive inhibition of urate transport, 
leads to increased SU due to decreased 
secretion;

Bumetanide
NKCC2 
Inhibitor (loop 
diuretic)

NPT4 inhibitor[58]; 
substrate of OAT1[85], 
OAT2[67], OAT3[85],

Substrate of 
OAT4[67] Competitive inhibition of urate transport, 

leads to increased SU due to decreased 
secretion

Ethacrynic acid
NKCC2 
Inhibitor (loop 
diuretic)

NPT4 inhibitor[58]; 
substrate of oAt3[85] ---

Torasemide
NKCC2 
Inhibitor (loop 
diuretic)

Substrate of OAT1 and 
OAT3[147]

Substrate of 
OAT4[147]

Competitive inhibition of urate transport at 
the basolateral membrane, and increased 
urate uptake at the tubule lumen lead to 
increased SU

Thiazide Diuretics

Bendroflumethiazide NCC inhibitor 
(diuretic)

Substrate of OAT1 and 
OAT3[148] ---

Competitive inhibition of urate transport, 
leads to increased SU due to decreased 
secretion
Increased SU due to increased reabsorption

Chlorothiazide 
Cyclothiazide 
Trichlormethiazide

NCC Inhibitor 
(diuretic) Substrate of OAT1[85] ---

Hydrochlorothiazide NCC Inhibitor 
(diuretic) Substrate of OAT1[85] Substrate of 

OAT4[48]

SGLT2 Inhibitors

Canagliflozin SLGT2 inhibitor 
(glucosuric)

Substrate of ABCG2, 
but not OAT1 or OAT3 
[149]

URAT1 not inhibited 
but is required for 
uricosuric effect[74]

Uricosuric effects may be related to 
increased tubular glucose concentration[74, 
87] or increased urate secretion, however 
the mechanisms are currently unknown

Dapagliflozin SLGT2 inhibitor 
(glucosuric)

May improve OAT3 
function[85]

Increased reduction 
in SU without 
influencing urate 
excretion in 
combination with 
febuxostat and 
verinurad [150]

Empagliflozin SLGT2 inhibitor 
(glucosuric)

Substrate of 
ABCG2[81]; may 
upregulate ABCG2 
expression [151]; some 
interactions with OAT3 
and minimally with 
OAT1[152]

---

Ertugliflozin SLGT2 inhibitor 
(glucosuric)

Substrate of ABCG2 
[81] ---

Other Drugs

Aspirin NSAID Inhibition of OAT1 and 
OAT3 [153]

Substrate of 
URAT1[153]

Low does can increase SU due to increased 
reabsorption and decreased secretion
High doses can cause inhibition of URAT1, 
with SU due to decreased reabsorption

SU: serum urate; NCC: Sodium Chloride Co-transporter; NKCC2: Sodium-Potassium-Chloride Co-transporter; PPARα: peroxisome proliferator-
activated receptor alpha; SGLT2: sodium glucose cotransporter 2; NSAID: nonsteroidal anti-inflammatory drug; ---: No known interactions
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