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Abstract

Automated methods for detecting prostate cancer and distinguishing indolent from aggressive 

disease on Magnetic Resonance Imaging (MRI) could assist in early diagnosis and treatment 

planning. Existing automated methods of prostate cancer detection mostly rely on ground truth 

labels with limited accuracy, ignore disease pathology characteristics observed on resected 

tissue, and cannot selectively identify aggressive (Gleason Pattern≥4) and indolent (Gleason 
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Pattern=3) cancers when they co-exist in mixed lesions. In this paper, we present a radiology-

pathology fusion approach, CorrSigNIA, for the selective identification and localization of 

indolent and aggressive prostate cancer on MRI. CorrSigNIA uses registered MRI and whole-

mount histopathology images from radical prostatectomy patients to derive accurate ground truth 

labels and learn correlated features between radiology and pathology images. These correlated 

features are then used in a convolutional neural network architecture to detect and localize normal 

tissue, indolent cancer, and aggressive cancer on prostate MRI. CorrSigNIA was trained and 

validated on a dataset of 98 men, including 74 men that underwent radical prostatectomy and 24 

men with normal prostate MRI. CorrSigNIA was tested on three independent test sets including 55 

men that underwent radical prostatectomy, 275 men that underwent targeted biopsies, and 15 men 

with normal prostate MRI. CorrSigNIA achieved an accuracy of 80% in distinguishing between 

men with and without cancer, a lesion-level ROC-AUC of 0.81±0.31 in detecting cancers in 

both radical prostatectomy and biopsy cohort patients, and lesion-levels ROC-AUCs of 0.82±0.31 

and 0.86±0.26 in detecting clinically significant cancers in radical prostatectomy and biopsy 

cohort patients respectively. CorrSigNIA consistently outperformed other methods across different 

evaluation metrics and cohorts. In clinical settings, CorrSigNIA may be used in prostate cancer 

detection as well as in selective identification of indolent and aggressive components of prostate 

cancer, thereby improving prostate cancer care by helping guide targeted biopsies, reducing 

unnecessary biopsies, and selecting and planning treatment.

Graphical Abstract
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1. Introduction

Prostate cancer causes the second highest number of cancer deaths among American men. 

The American Cancer Society estimated 191,930 new cases of prostate cancer, and 33,330 

deaths from prostate cancer in 2020 (Siegel et al., 2020). Magnetic Resonance Imaging 

(MRI) is increasingly used in early detection of prostate cancer, deciding who to biopsy, 

and guiding biopsies and local treatment (Liu et al., 2018). However, interpretation of 
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MR images has many challenges, particularly because of the very subtle visual differences 

between benign tissue, indolent cancer and aggressive cancer. Radiologist interpretations 

suffer from false negatives (12% of aggressive cancers missed during screening (Ahmed 

et al., 2017), 34% of aggressive and 81% of indolent cancers missed in men undergoing 

prostatectomy (Johnson et al., 2019)), false positives (>35% false-positive rate (Ahmed 

et al., 2017)), and high inter-reader variability (inter-reader agreement κ = 0.46 − 0.78 

(Barentsz et al., 2016; Sonn et al., 2019)). Moreover, it is challenging for radiologists to 

distinguish and localize the indolent and aggressive components of prostate cancer when 

they co-exist within the same lesion which occurs commonly (48% of all cancers and 76% 

of index lesions Johnson et al. (2019)).

Machine learning methods could help radiologists interpret prostate MRI by accurately 

and robustly detecting, localizing and stratifying the aggressiveness of prostate cancer on 

MRI. Some automated methods focus on detecting and localizing cancer on prostate MRI 

(Sumathipala et al., 2018; Cao et al., 2019; Sanyal et al., 2020), while others focus on 

classifying the aggressiveness of already demarcated lesions on MRI (Viswanath et al., 

2019; Hectors et al., 2019). These methods use a variety of techniques including traditional 

classifiers with hand-crafted and radiomic features (Viswanath et al., 2012; Litjens et al., 

2014; Viswanath et al., 2019), and deep learning based models (Sumathipala et al., 2018; 

Cao et al., 2019; Sanyal et al., 2020; Schelb et al., 2019; De Vente et al., 2020; Seetharaman 

et al., 2021; Bhattacharya et al., 2020). However, most of these methods suffer from one or 

more of the following shortcomings:

1. Inaccurate ground truth labels: Currently, there are three ways of deriving 

pathology-confirmed ground truth cancer labels for training machine learning 

models: (1) radiologist demarcated lesions confirmed by biopsy (Wang et al., 

2014; Kwak et al., 2015; Armato et al., 2018; Litjens et al., 2014), (2) cognitive 

manual alignment of pre-operative MRI and post-operative histopathology 

images (Sumathipala et al., 2018; Cao et al., 2019), and (3) manual or semi-

automatic registration between MRI and histopathology images using landmarks, 

ex-vivo MRI or external fiducials (Penzias et al., 2018; Hurrell et al., 2017; 

Wu et al., 2019; Ward et al., 2012; Li et al., 2017). All these ground truth 

labels suffer from various inaccuracies. First, radiologist demarcated lesions 

substantially underestimate tumor size, miss MRI invisible cancers (Priester et 

al., 2017), and cannot provide pixel-level cancer grading on the entire prostate 

as biopsy tracts sample the prostate sparsely. Secondly, cognitive registration 

provides pixel-level annotations of cancer and Gleason grade for the entire 

prostate, but the extent of cancer on MRI is often underestimated (Priester et 

al., 2017), and it is still challenging to outline the ~20% of tumors that are not 

clearly seen on MRI (Barentsz et al., 2016). Finally, manual and semiautomatic 

registration approaches are labor-intensive, requiring highly skilled experts in 

both radiology and pathology (Kalavagunta et al., 2015; Hurrell et al., 2017; 

Losnegård et al., 2018). Thus, many automated methods focus only on the 

index lesion (largest lesion with highest Gleason grade) (Sanyal et al., 2020) or 

only MRI-visible lesions (Sumathipala et al., 2018; Cao et al., 2019), failing to 

capture the complete extent of the disease.
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2. Agnostic to disease pathology characteristics: Most existing machine learning 

methods learn from MRI alone (Sumathipala et al., 2018; Cao et al., 2019; 

Seetharaman et al., 2021; Schelb et al., 2019; De Vente et al., 2020), ignoring 

disease pathology characteristics observed on resected tissue. Our recent work 

(Bhattacharya et al., 2020) is the only prior study that seeks to learn MRI 

features that are correlated to pathology characteristics of prostate cancer. We are 

seeking to extend our prior work to not only detect prostate cancer on MRI but 

also to differentiate between aggressive and indolent cancer.

3. Inability to distinguish between indolent and aggressive cancer in mixed 
lesions: Identifying and localizing the indolent and aggressive components of 

mixed lesions on a pixel-level can help guide targeted biopsies and treatment 

planning. Our prior work SPCNet (Seetharaman et al., 2021) is the only study 

that seeks to localize indolent and aggressive cancers using pixel-level histologic 

grade labels, while all other prior studies focus on lesion-level grade labels. 

Unlike our prior SPCNet work (Seetharaman et al., 2021) that only uses MRI 

features, in this study we focus on showing the benefits of using the pathology 

image information in addition to mapping the indolent and aggressive labels 

from histopathology onto MRI.

4. Generalizability: Most prior studies focus on patients that either underwent 

radical prostatectomy or biopsy, but not on both groups together. It is, however, 

important to test such generalizability, because models trained on prostatectomy 

patients with advanced disease would be clinically relevant only if they 

generalize to the biopsy population that shows a different disease distribution, 

ranging from benign conditions to aggressive cancer.

To address these challenges, we build on our prior studies (Bhattacharya et al., 2020; 

Seetharaman et al., 2021) and present CorrSigNIA, the Correlated Signature Network for 

Indolent (Gleason pattern=3) and Aggressive (Gleason pattern ≥4) prostate cancer detection 

and localization on MRI. CorrSigNIA was trained on men with cancer that underwent 

radical prostatectomy and others who had no cancer. Including radical prostatectomy 

patients with confirmed prostate cancer in the training set ensured CorrSigNIA could learn 

to reliably identify and localize aggressive and indolent cancers on prostate MRI. Including 

men without prostate cancer in the training set ensured CorrSigNIA could also learn the 

appearance of normal prostates which is necessary when MRI is used as a screening tool.

While training on men with radical prostatectomy, CorrSigNIA used ground truth cancer 

labels from an expert pathologist, and pixel-level histologic grading assigned by a pathology 

deep learning model (Ryu et al., 2019) on whole-mount histopathology images. These 

post-operative histopathology images were accurately registered with pre-operative MRI 

using the RAP-SODI registration platform (Rusu et al., 2020), enabling the capture of both 

the extent and histologic grades of all cancers, including MRI invisible cancers. CorrSigNIA 

included two major steps. First, it learned correlated features using a common representation 

learning framework by identifying MRI features that are correlated with corresponding 

spatially aligned histopathology features. Second, it used the learned correlated features 

and original MRI intensities in a convolutional neural network model to detect and localize 
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normal tissue, indolent cancer, and aggressive cancer at a pixel-level. The histopathology 

images were used only in the first step to learn correlations between radiology and pathology 

features. Once learned, the correlated features can be extracted from MRI alone, without the 

need for pathology, thereby enabling feature extraction and prediction in new patients. In 

this study, we sought to evaluate the performance of CorrSigNIA in comparison to existing 

methods for detecting aggressive and indolent prostate cancer. We also sought to test the 

generalizability of CorrSigNIA on men who underwent radical prostatectomy, men who 

underwent biopsies, and men with normal prostate MRI without cancer.

2. Materials and Methods

2.1. Dataset

This retrospective chart review study was approved by the Institutional Review Board (IRB) 

of Stanford University. As a chart review of previously collected data, patient consent was 

waived. The study included three cohorts C1, C2, and C3 as detailed in Table 1. Cohort C1 

included 129 men with confirmed prostate cancer who underwent MRI followed by radical 

prostatectomy at Stanford University, and whole-mount histologic processing of the excised 

prostate tissue. Cohort C2 included 275 men who had an MRI which was examined by an 

expert radiologist followed by MRI-Ultrasound fusion targeted biopsy at Stanford University 

to confirm presence or absence of prostate cancer. Cohort C3 included 39 men without 

cancer, as confirmed by a negative prostate MRI and negative biopsy.

2.1.1. MRI—For patients in all three cohorts, the MR images were acquired using 3 

Tesla GE scanners (GE Healthcare, Waukesha, WI, USA) with external 32-channel body 

array coils without endorectal coils. The imaging protocol included T2-weighted MRI 

(T2w), diffusion weighted imaging, derived Apparent Diffusion Coefficient (ADC) maps, 

and dynamic contrast-enhanced imaging sequences. Axial T2w MRI (acquired using a 2D 

Spin Echo protocol) and ADC maps were used in this study (Table 1).

2.1.2. Histopathology—Histopathology images were only available for cohort C1. 

For patients in cohort C1, the whole-mount excised prostate tissue was sectioned in the 

same plane as the T2w MRI using patient-specific 3D printed molds. The whole-mount 

prostate slices were then stained using Hematoxylin & Eosin (H&E) and digitized at 20x 

magnification. For patients in cohort C2 and C3, the biopsy samples were stained in H&E 

for evaluation and the final pathology result was used to label the radiologist demarcated 

lesions.

2.1.3. Labels—For 123 of 129 men in cohort C1, our expert pathologist (C.A.K. with 

10 years of experience) outlined cancer on all high-resolution whole-mount histopathology 

slices, generating a per-pixel cancer labeling. For 121 of 129 men in cohort C1, per-pixel 

Gleason pattern labels on the high resolution histopathology images were derived from a 

previously validated automated Gleason scoring system trained on histopathology images 

(Ryu et al., 2019). The automated per-pixel combined Gleason pattern labels achieved an 

average Dice overlap of 0.80±0.09 with the pathologist annotations of cancer. It may be 

noted that the moderate Dice overlap metric captured the difference in resolution between 
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the two annotations, i.e., the automated approach outlined glands in great detail, whereas it 

was impractical for a human annotator to outline each gland at high resolution for a large 

number of cases. In our study, Gleason pattern 4 and above was considered as aggressive 

cancer, whereas Gleason pattern 3 was considered indolent cancer. Regions with overlapping 

Gleason pattern 3 and 4 labels were considered aggressive cancer.

Cancer labels for cohort C2 were derived from radiologist outlined lesions and the highest 

Gleason grade group of the corresponding targeted biopsies. Cohort C2 included 275 men 

with radiologist annotated lesions and PI-RADS (Prostate Imaging-Reporting and Data 

System) (Turkbey et al., 2019) scores of 3 or above. Out of the 275 men, 147 men were 

confirmed as having cancer. There were a total of 189 cancerous lesions (Gleason grade 

group ≥ 1), out of which 110 lesions were clinically significant (Gleason grade group ≥ 2).

In addition to cancer labels, prostate segmentations were available on all T2w MRI and 

histopathology slices for all patients in all cohorts. Prostate segmentations on all T2w slices 

were initially performed by W.S., J.B.W., S.J.C.S., and N.C.T. (with 6+ months experience 

in this task) and were carefully reviewed by our experts (C.A.K, G.S. – a urologic oncologist 

with 13 years of experience, P.G. – a body MR imaging radiologist with 14 years of 

experience, M.R. – an image analytics expert with 10 years of experience working on 

prostate cancer).

Train-test splits:  The models were trained with men from cohorts C1 and C3, and 

evaluated on men from cohorts C1, C2 and C3. The training set included 74 men from 

cohort C1 and 24 men from cohort C3, used in 5-fold cross validation setting, as detailed 

in Table 1. In cohort C1-train, 71 men had both pathologist annotations and pixel-level 

histologic grade labels assigned by (Ryu et al., 2019), while all 74 men in C1-train had 

pathologist annotated cancer labels. In C1-test, 45 of the 55 men had both pathologist and 

histologic grade labels, while the remaining 10 men had either one of the two kinds of 

labels.

2.2. Data Pre-processing

2.2.1. Registration—T2w MRI and digitized histopathology images in cohort C1 were 

registered using the RAPSODI registration platform (Rusu et al., 2020), thereby enabling 

mapping of per-pixel cancer and grade labels from histopathology images onto MRI. Fig.1 

displays a sample case of registered MRI and histopathology slices.

2.2.2. Histopathology Preprocessing

• Smoothing: The histopathology images were smoothed with a Gaussian filter 

with σ = 0.25 mm to avoid downsampling artifacts. The value of σ was 

chosen based on visual inspection of downsampled histopathology images after 

smoothing using different values of σ, namely 0, 0.25, 0.5, 0.75, and 1 mm.

• Resampling: The Gaussian-smoothed histopathology images were padded and 

then downsampled to an X-Y size of 224×224, resulting in an in-plane pixel size 

of 0.29×0.29 mm2. An image size of 224 × 224 was selected because several 
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deep-learning architectures like the VGG-16 and HED can easily process inputs 

of this X-Y size.

• Intensity normalization: Each RGB channel of the resulting histopathology 

images were then Z-score normalized.

2.2.3. MRI Preprocessing

• Affine Registration: The ADC maps from cohort C1 were manually registered to 

the T2w images using an affine registration.

• Resampling: For patients in cohort C1, the T2w and ADC images, prostate 

masks, and cancer labels were projected and resampled on the corresponding 

histopathology images, resulting in images of 224 × 224 pixels with pixel size of 

0.29 × 0.29 mm2. For patients in cohort C2 and C3, the T2w and ADC images 

were cropped around the prostate and resampled to have the same dimensions 

and pixel size as images in cohort C1.

• Intensity standardization: To ensure similar MRI intensity distribution for all 

patients irrespective of scanners and scanning protocols, a histogram alignment-

based intensity standardization method (Nyúl et al., 2000; Reinhold et al., 2019) 

was applied to the prostate region of T2w and ADC images.

• Intensity normalization: Z-score normalization was then applied to the prostate 

regions of T2w and ADC images.

2.3. The CorrSigNIA Model

CorrSigNIA is comprised of two main modules: (1) correlated feature learning, and (2) 

prostate cancer detection and characterization of aggressiveness (Fig. 2).

2.3.1. Correlated feature learning—Features from the pre-processed T2w, ADC, and 

histopathology images of cohort C1-train were extracted by passing them through the first 

two convolutional and ReLU blocks of a pre-trained VGG-16 architecture (Simonyan and 

Zisserman, 2014), generating feature maps of size 224 × 224 × 64. Inspired by prior studies 

that use VGG-16 as a feature extractor for prostate cancer detection on MRI (Abraham and 

Nair, 2019; Salama and Aly, 2021; Alkadi et al., 2019; Seah et al., 2017), and histopathology 

images (García et al., 2019), we also used the VGG-16 network to extract similar features 

on both MRI and histopathology images. This approach allowed the study of correlations 

between the two modalities in the feature space as the features extracted via the learned 

kernels capture low-level textural characteristics (Figs. 4 (a–c)).

The T2w and ADC features for each pixel were concatenated to form an MRI 

feature representation Ri ∈ ℝ128, and the histopathology features formed a histopathology 

representation Pi ∈ ℝ64. The pixel-level representations were used to train a Correlational 

Neural Network (CorrNet) architecture (Chandar et al., 2016) to learn common (or shared 

latent) representations from MRI and histopathology features. While training CorrNet, the 

k-dimensional shared latent representation H(Zi) was computed from the input Zi = [Ri, Pi] 

as:
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H Zi = f W Ri + V Pi + b (1)

where W ∈ ℝk × 128, V ∈ ℝk × 64 and b ∈ ℝk × 1, and f is the activation function in the hidden 

layer. The reconstructed output Zi′ was computed as:

Zi′ = g W ′H Zi , V ′H Zi + b′ (2)

where W ′ ∈ ℝ128 × k, V ′ ∈ ℝ64 × k and b′ ∈ ℝ(128 + 64) × 1, and g is the activation function 

at the outer layer. The CorrNet model learned common representations between MRI and 

histopathology features by learning the parameters of the CorrNet model θ = {W,W′, V, 

V′, b, b′} through the objective function (Equation 3) that (1) maximized the correlation 

between the latent representations of both modalities (correlation error), and (2) minimized 

the reconstruction error of features from both modalities.

Lcorrnet = Lrecon − λLcorr (3)

where, λ = 2 weighed the correlation error term twice the reconstruction error term.

The correlation error was defined as:

Lcorr =
∑i = 1

N [(H(Ri) − H(R)) H Pi − H(P)]

∑i = 1
N H Ri − H(R) 2∑i = 1

N H Pi − H(P) 2
(4)

where, H(Ri) = f(WRi + b) represents the latent representation computed from MRI 

features alone, and H(Pi) = f(VPi + b) represents the latent representations computed 

from histopathology features alone. H(R) and H(P) indicate the mean of the MRI and 

histopathology latent feature representations. The reconstruction error was defined as:

Lrecon = ∑
i = 1

N
L Zi, Zi′ = ∑

i = 1

N
Zi − Zi′ 2

(5)

where, Zi = [Ri, Pi] represents the input MRI and histopathology features, Zi′ indicates the 

reconstructed features, and L is squared error between original and reconstructed features. 

Identity was used as both activation functions f and g. This optimum objective function for 

the CorrNet model was decided based on experiments described in Section 2.4.

For correlated feature learning, an equal number of cancer and non-cancer pixels were 

sampled from within the prostate. Training the CorrNet on a per-pixel basis enabled 

learning common representations using a large training sample of ≈ 1.2M pixels. After 

the CorrNet model was trained, the learned weights W and b were used to compute the latent 

representations of the input MRI features Ri as H(Ri) = f(WRi + b). These k-dimensional 

MRI latent representations H(Ri) formed our CorrNet representations of the input MRI. The 

CorrNet representations (correlated MRI features) were thus a linear weighted combination 

of T2w and ADC low-level texture features that were maximally correlated with a weighted 
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combination of spatially aligned histopathology low-level texture features (H(Pi)). Once 

trained, these CorrNet representations (correlated feature maps) can be constructed even in 

the absence of histopathology images.

The CorrNet architecture was chosen for correlated feature learning because (1) it enables 

learning correlations between similar kinds of MRI and histopathology features in the latent 

representation, and (2) ensures the correlated latent representations do not distort the original 

features.

2.3.2. Prostate cancer detection and characterization of aggressiveness—
The SPCNet architecture (Seetharaman et al., 2021) which is a modified version of the 

Holistically Nested Edge Detection (HED) architecture (Xie and Tu, 2015) (Fig. 2(c)) 

was considered as the baseline architecture for the detection and localization of normal 

tissue, indolent cancer and aggressive cancer. Our modifications to the original HED and 

SPCNet architectures to be used for the CorrSigNIA model involved (1) including three 

input sequences (normalized T2w and ADC images, and CorrNet representations) processed 

in three independent branches which allows the learning of individual features for each input 

sequence, and (2) including three consecutive slices for each input sequence to predict a 

cancer probability map for the central slice while learning the volumetric continuity of MRI 

scans. The modified HED architecture leads to 11 side outputs, which are fused using a 

Conv-1D layer to form a weighted fused output. To reduce internal covariate shift, accelerate 

training, and reduce over-fitting, batch normalization was added in each block, before 

ReLU activation. To address the class imbalance problem caused by the fact that aggressive 

and indolent cancer pixels accounted for ≈ 4% each of the prostate pixels, class-balanced 

categorical cross-entropy loss functions (Equation 6) were optimized for each side output 

and final output.

lmulti
(m) = 1

N ∑
n = 1

N
∑
i = 1

3
βiyi

(n)lnyi
(n)

(6)

and

βi = N + 3ϵ
∑n = 1

N yi
(n) + ϵ (7)

where lmulti
(m)  represents the class-balanced cross entropy loss computed for a batch and side 

output/final output m, m represents one of the 11 side outputs or the final input, N is 

the number of pixels in the batch, yi
(n) represents the ground truth label for pixel n, yi

(n)

represents the predicted label for pixel n, i represents one of the three classes (normal, 

indolent or aggressive), ϵ = 10−5, and βi represents the class-specific weight assigned to the 

loss function of class i and is equivalent to the inverse proportion of pixels belonging to class 

i in each batch. The per-batch losses were averaged across all the batches to compute the 

loss for each epoch.
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The SPCNet architecture was chosen for the prostate cancer detection framework because 

it enables learning and combining multi-scale and multi-level features, and have been used 

in prior studies on prostate cancer localization (Bhattacharya et al., 2020; Seetharaman et 

al., 2021). Moreover, in our prior study, we found that SPCNet outperformed vanilla U-Net 

(Ronneberger et al., 2015) and DeepLabv3+ (Chen et al., 2018) architectures in aggressive 

and indolent prostate cancer detection.

While training CorrSigNIA, histologic grading from the automatic grading platform (Ryu 

et al., 2019) were considered only when they overlapped with cancer annotations from the 

expert pathologist (C.A.K.), thereby ensuring agreement between the two kinds of labels 

while emphasizing annotations from the expert pathologist. The difference in resolution 

between the original histopathology images and the MRI scans resulted in pixelated 

histologic grading on the MRI scans Fig. 1(d). To account for this, the pixel-level histologic 

grade labels were smoothed using a median filter of size 3 × 3 pixels. Pixels without cancer 

annotations by the expert pathologist were considered to be normal tissue. Pixels within 

the expert pathologist cancer annotations that did not have histologic grade labels were 

considered to be indolent or aggressive with equal likelihood. Fig. 1 (e) shows the processed 

ground truth labels used in training and evaluating the models.

Softmax activation function in the last layer of CorrSigNIA generated three probability 

maps for the prostate, one for each of the normal, indolent, and aggressive classes. These 

probability maps were used to generate multi-class predicted labels, assigning the label to 

the class with the highest predicted probability. This is in tune with standard multi-class 

classification problems. No post processing was performed on the predicted probabilities or 

the predicted labels.

2.4. Experimental Design

CorrSigNIA used normalized T2w, ADC images and the top five CorrNet representations, 

where five was chosen based on our prior study (Bhattacharya et al., 2020). The correlated 

feature learning framework was trained using MRI and histopathology images from patients 

in cohort C1-train. For training the correlated feature learning framework, a learning rate η 
= 10−5, and 300 training epochs were used, based on our prior study (Bhattacharya et al., 

2020).

The prostate cancer detection framework was trained using men from cohorts C1-train and 

C3-train. For training the prostate cancer detection framework, an Adam optimizer with an 

initial learning rate η = 10−3, weight decay α = 0.1, epochs = 100 with early stopping, 

and a batch size of 8 were used. A patience of 10 epochs was used to reduce learning rate 

on plateau and a patience of 20 epochs was used for early stopping on no improvement in 

validation loss. The last model from early stopping was used for evaluation on the test sets. 

In addition, the prostate cancer detection framework augmented the training data using one 

random rotation between angle −15 and 15 degrees and left-right flipping.

Several ablation studies and experiments were performed to (a) determine the best strategy 

to learn and integrate correlated features in CorrSigNIA, and (b) to compare CorrSigNIA 

performance with existing deep-learning models with MRI-only inputs. All experiments 
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used the same training data with identical pre-processing steps, five-fold cross validation 

splits, batch size, and data augmentation. Moreover, the prostate cancer detection models 

were trained using the same class-balanced cross entropy loss function (Equation 6) to have 

multi-class predictions of normal, indolent and aggressive cancer. The training strategy using 

learning rate decay and early stopping was identical for all models, with the only exception 

being in the initial learning rate η. The following experiments were designed to ensure a fair 

comparison of different approaches with CorrSigNIA:

1. Models with MRI inputs only: The following models with MRI-only inputs 

(T2w and ADC images) were trained: (a) SPCNet (Seetharaman et al., 2021), (b) U-Net 

(Ronneberger et al., 2015), (c) BrU-Net (branched U-Net). All MRI-only models were 

given three adjacent slices of T2w and ADC images as input, similar to the prostate cancer 

detection framework of CorrSigNIA. The BrU-Net architecture is a modification of the 

vanilla U-Net with two independent branches for T2w and ADC images, with each branch 

taking in three adjacent MRI slices. The BrU-Net incorporates the changes that SPCNet 

incorporates to the baseline HED architecture (independent branches for T2w and ADC 

images, and three adjacent slice inputs for each branch). The initial learning rate η was 10−3 

for SPCNet, and 10−6 for U-Net and BrU-Net, decided based on experiments in our prior 

study (Seetharaman et al., 2021).

2. Models with MRI and correlated features as inputs:

(a) Correlated feature learning:  To determine the optimum objective function for the 

CorrNet model, several individual reconstruction error terms were defined:

1. Lrecon1 = ∑i = 1
N L Zi, G H Pi  is the reconstruction error when pathology 

features are used alone as input, enabling prediction of both radiology 

and pathology features from the shared representation of pathology features 

alone. Please note that H(Pi) = f(VPi + b) indicates that the hidden/shared 

representation is computed from pathology features alone, in absence of 

radiology features. The term G(.) is used as an abbreviation for Equation 2.

2. Lrecon2 = ∑i = 1
N L Zi, G H Ri  is the reconstruction error when radiology 

features are used alone as input, enabling prediction of both radiology and 

pathology features from the shared representation of radiology features alone.

3. Lrecon3 = ∑i = 1
N L Zi, G H Zi  is the reconstruction error when both radiology 

and pathology features are used as inputs, enabling prediction of both features 

from their shared representation.

4. Lrecon4 = ∑i = 1
N L Pi, G H Ri + L Ri, G H Pi  is the cross reconstruction 

error, enabling reconstructing one modality features from the other modality 

features.

Each reconstruction term used a squared error loss function, similar to Equation 5. Then, 

the following CorrNet objective functions were defined by a combination of the individual 
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reconstruction terms Lrecon1 through Lrecon4 with the correlation error term Lcorr defined in 

Equation 4:

1. J123(θ) = Lrecon1 + Lrecon2 + Lrecon3 − λLcorr.

2. J3(θ) = Lrecon3 − λLcorr.

3. J4(θ) = Lrecon4 − λLcorr.

The subscripts in each of the CorrNet objective functions indicate the individual 

reconstruction loss terms (Lrecon1 through Lrecon4) incorporated. We set λ = 2 for all 

objective functions, based on our prior study (Bhattacharya et al., 2020). For each objective 

function, the activation functions f and g in Equations 1 and 2 were simultaneously chosen 

as either identity or sigmoid, resulting in six different CorrNet models. The CorrNet 
representations learned from these six different CorrNet models were named as below:

1. CR-123-I trained with objective function J123(θ) and identity activation 

functions.

2. CR-123-S trained with objective function J123(θ) and sigmoid activation 

functions.

3. CR-3-I trained with objective function J3(θ) with identity activation functions.

4. CR-3-S trained with objective function J3(θ) with sigmoid activation functions.

5. CR-4-I trained with objective function J4(θ) with identity activation functions.

6. CR-4-S trained with objective function J4(θ) with sigmoid activation functions.

(b) Prostate cancer detection and characterization of aggressiveness:  Ablation studies 

with SPCNet as baseline: CorrNet representations (correlated features) corresponding to 

each of the six CorrNet models trained in Section 2.4 (2(a)) above were extracted for 

all patients in all cohorts. Histopathology images were not needed while extracting the 

CorrNet representations from the already trained CorrNet models. Six models with MRI 

and correlated features as inputs were trained using the SPCNet model as the baseline, as 

detailed in rows 1–6 of Table 2. These six MRI+correlated features-based models were 

evaluated on a lesion-level in detecting cancer and clinically significant cancer on cohort C1 

(Tables 3, 4), and the two best performing CorrNet representations were identified.

Ablation studies with U-Net models as baseline: The two best performing CorrNet 
representations for the SPCNet baseline model were then added as inputs (along with T2w 

and ADC images) to the vanilla U-Net and BrU-Net architectures, resulting in four U-Net 

model variants with CorrNet representations, as detailed in rows 7–10 of Table 2.

All the models were evaluated on cohorts C1, C2, and C3 using a lesion-level and patient-

level evaluation approach as detailed in Section 2.5.

2.5. Evaluation Methods

2.5.1. Lesion-level evaluation—The models were evaluated for their ability to detect 

and localize (1) cancerous (aggressive and indolent) lesions and (2) clinically significant 
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cancerous lesions. For cohort C1, clinically significant lesions were defined as cancerous 

lesions with at least 1% aggressive ground truth pixels labeled by the histologic grading 

platform (Ryu et al., 2019). For cohort C2, clinically significant lesions were defined as 

lesions with targeted biopsy Gleason grade group ≥ 2.

To evaluate the models on a lesion-level, the per-pixel ground truth labels in cohort C1 were 

converted to connected lesion labels, continuous in the MRI volume, using a morphological 

closing operation with a 3D structuring element. The 3D structuring element was formed 

by stacking three disks of sizes 0.5 mm, 1.5 mm and 0.5 mm respectively. This structuring 

element was chosen based on visual inspection of generated lesions from several randomly 

selected patients, after experimenting with various structuring elements of different sizes. 

Visual inspection was done to ensure that the generated lesions were continuous in 3D and 

faithfully represented the original data.

Lesion labels less than 250 mm3 in volume were discarded in our lesion-level evaluation 

because: (1) the PI-RADS v2 (Turkbey et al., 2019) guidelines state a lesion volume 

threshold of 500 mm3 for a lesion to be clinically significant cancer, and (2) previous studies 

(Matoso and Epstein, 2019; Seetharaman et al., 2021) have considered such small volume 

lesions (≈ 6 mm×6 mm ×6 mm) as clinically insignificant as they are often highly likely to 

be MRI invisible. Discarding these small lesions from our lesion-level analysis also helps 

in dealing with the radiology-pathology resgistration errors (~2 mm on prostate border, ~3 

mm inside the prostate) from our RAPSODI registration platform (Rusu et al., 2020). The 

models were then evaluated on a lesion-level as follows:

1. True positives and false negatives: If the 90th percentile of the predicted labels 

within the ground truth lesion was cancer, the lesion was considered to be 

detected (true positive), otherwise it was considered not detected (false negative).

2. True negatives and false positives: The prostate was split into sextants, by first 

dividing it into left and right halves, and then dividing each half into 3 roughly 

equal regions, base, mid and apex along the Z-axis (Fig. 3). A sextant was 

labeled as ground truth negative if it had less than 5% ground truth cancer pixels. 

If the 90th percentile of the predicted labels for this sextant was normal, the 

sextant was considered to be correctly classified as a negative (true negative), 

otherwise it was considered to be wrongly classified as a positive (false positive). 

A sextant with more than 5% ground truth cancer pixels was evaluated as per 

step (1) above. This sextant-based approach for evaluating lesions was based 

on how biopsies are performed clinically (the most common biopsy protocol 

includes 12-core needle samples with 2 cores from each sextant) and has been 

used in prior studies (Seetharaman et al., 2021).

Metrics:  The predicted labels and the ground truth labels were used to compute true and 

false positives, and true and false negatives, which were then used to compute Sensitivity 

(Se), Specificity (Sp), Precision (Pr), Negative Predictive Value (NPV), F1-score, Dice, and 

Accuracy (Acc) on a perpatient basis. The 90th percentile of the predicted cancer probability 

maps derived by summing the indolent and aggressive cancer probabilities were used to 

compute the Area under the Receiver Operating Characteristic curve (ROC-AUC) and the 
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Precision-Recall curve (PR-AUC). For clinically significant lesions, an additional metric 

“aggressive cancer overlap” was defined, which was computed as the percentage of overlap 

between predicted and ground truth aggressive labels. This aggressive cancer overlap metric 

measures how well the models selectively identified and localized aggressive cancer in 

mixed lesions.

For lesion-level evaluation on cohort C1-test, only patients having both pathologist labels 

and histologic grade labels (Ryu et al., 2019) and lesion volumes ≥ 250 mm3 were 

considered. For cohort C2, all biopsy confirmed radiologist lesions were considered, 

irrespective of size.

2.5.2. Patient-level Evaluation—All patients in cohort C1 were confirmed to have 

prostate cancer, while all patients in cohort C3 were confirmed to be normal. The models 

were evaluated on a patient-level in their ability to distinguish between normal and 

cancerous patients. For a patient with cancer, the lesion-level approach described in Section 

2.5.1 was used. If the models correctly detected even one lesion, it was considered a true 

positive patient, otherwise a false negative patient. For normal patients without cancer, the 

model predicted labels were morphologically processed to produce predicted lesions, in a 

way similar to the ground truth lesion labels in Section 2.5.1. If the predicted lesions were 

less than 250 mm3 in volume, the patient was considered to be a true negative, otherwise the 

patient was a false positive.

Metrics:  All patients from C1-test (N=55) and C3-test (N=15) were combined to compute 

Sensitivity (Se), Specificity (Sp), Precision (Pr), Negative Predictive Value (NPV), F1-score, 

and Accuracy (Acc) in patient-level evaluation. Patients from cohort C2 were not used 

for patient-level evaluation because even if an MRI scan did not have radiologist outlined 

lesions and positive targeted biopsies, it was possible that systematic biopsies were positive. 

Thus, it was not possible to confirm whether a targeted biopsy negative man in cohort C2 

was actually normal without cancer.

2.5.3. Ranking of models—The models were evaluated on a per-patient basis (mean 

and standard deviation values were computed for the test set patients for each evaluation 

metric). All models were then assigned a rank based on their performance in individual 

metrics, with the highest rank assigned to the model with the highest mean metric 

performance. If two models had the same mean metric performance, the model with 

the smaller standard deviation was assigned the higher rank. If both mean and standard 

deviation values were identical for more than one model, they were all assigned the 

same rank. Then, all individual metric ranks were summed up to derive an aggregate 

model rank. The model with the highest aggregate rank was considered to be the best 

model. This ranking-based evaluation scheme was motivated by the need to find clinically 

relevant models that perform consistently across all evaluation metrics. This ranking-based 

evaluation scheme has been used in prior studies to rank classification models (Brazdil and 

Soares, 2000; Nai et al., 2021), including ranking prostate segmentation models (Nai et al., 

2021).
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3. Results

3.1. Correlated feature learning

3.1.1. Qualitative evaluation—For the sample patient slice in Fig. 1, Fig. 4 shows 

VGG-16 low-level features extracted from the T2w slice (column (a)), ADC slice (column 

(b)), histopathology slice (column (c)), correlated latent feature representations when 

projected from MRI (H(Ri) (column (d)), also known as the CorrNet representations), 

and when projected from histopathology (H(Pi)) (column (e)). Column (d) shows a linear 

combination of the 64 textural feature maps from the T2w image and the 64 textural feature 

maps from the ADC image, while column (e) shows a linear combination of the 64 textural 

feature maps from the histopathology image. The linear combinations were learned by 

the CorrNet model in a way that columns (d) and (e) are highly correlated in the latent 

space. Rows in Fig. 4 show the top feature maps from each modality (columns (a)-(c)) 

that contributes to the corresponding correlated representations (columns (d)-(e)). It may be 

noted that in the CorrNet representations (Column (d)), the cancerous lesion on the left side 

of the image (pointed by the red arrow, and corresponding to the black outline in Fig.1) 

shows less textural variations than the rest of the image, thus indicating how correlated 

representations help to emphasize cancerous regions over normal tissue.

It may also be noted that although pixel-level correlations were learned, the correlated 

feature maps still capture spatial relationships and maintain spatial integrity. For example, 

the correlated MRI features (Fig. 4 (d)) have different signatures for the peripheral zone 

and central gland of the prostate, which are visually distinguishable in the correlated MRI 

features. Another visual indication that spatial relationships are not lost is that the signatures 

of the cancerous lesion (shown by the red arrow) are very different from the rest of the 

prostate, and the entire lesion stands out visually from the normal prostate tissue.

3.1.2. Ablation studies—Ablation studies to determine the best way to learn and 

integrate correlated features to the baseline SPCNet model showed that the CorrNet 
representations CR-3-I, obtained by minimizing CorrNet objective function J3(θ) with 

identity activation functions f and g performed the best in cancer detection on a lesion-level 

(Table 3) and in distinguishing between men with and without prostate cancer (Table 5). The 

second-best correlated feature in lesion-level evaluation was CR-123-I, while the correlated 

feature CR-4-S also showed improvements over MRI-only SPCNet model in lesion and 

patient level evaluations (Tables 3, 4, and 5). The two best-performing correlated features for 

lesion-level analysis (CR-3-I and CR-123-I) were selected for building U-Net + correlated 

feature models described in Section 2.4, which were used for comparative evaluation.

3.2. Prostate cancer detection and characterization of aggressiveness

3.2.1. Qualitative evaluation—Fig. 5 shows all slices of a test set patient in cohort 

C1 from apex to base, with ground truth labels (column (d)) and CorrSigNIA predicted 

labels (column (e)). CorrSigNIA successfully predicted the majority of cancerous pixels, and 

identified the lesion as aggressive. CorrSigNIA predictions also had volumetric continuity 

in three dimensions. Fig. 6 shows all the slices of a test set patient in cohort C3 from apex 
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to base. CorrSigNIA correctly predicted the patient as normal, without any false positive 

cancer predictions.

Fig. 7 shows comparative performance among the MRI-only models SPCNet (column (d)), 

U-Net (column (e)), BrU-Net (column (f)) and CorrSigNIA (column (g)) in six different 

patients, two from the test set in each cohort. Rows 1 and 2 are patients from cohort 

C1. CorrSigNIA detected the lesions in both these patients, with the least number of false 

positive predictions. CorrSigNIA also correctly identified the general areas of aggressive 

(yellow) and indolent (green) pixels in both patients. Rows 3 and 4 are patients from cohort 

C2. While all models detected the aggressive lesion in row 3, CorrSigNIA achieved the 

best localization, with fewer false positives. The patient on row 3 had an indolent lesion, 

which was only detected and correctly identified as indolent by CorrSigNIA. Although for 

this patient, CorrSigNIA had false positive predictions, when compared to the other models, 

the false positives were the least for CorrSigNIA. Rows 5 and 6 are men from cohort C3, 

without cancer. Only CorrSigNIA could correctly identify these patients as normal, while all 

other models had false positive predictions.

3.2.2. Quantitative evaluation—Tables 3, 4, and 5 show the lesion-level and patient 

level evaluations of CorrSigNIA in comparison with other models. Tables S1, S2, and S3 in 

the Supplementary material show the detailed versions of these tables, with individual metric 

ranks and sum of ranks, that were used to derive the final rank for each model.

In cancer detection, CorrSigNIA outperformed all other methods in both cohorts C1-test 

and C2 (Table 3). A paired sample t-test on patients with cancer from cohort C2 (N=147) 

showed that CorrSigNIA significantly improved Dice coefficient in cancer detection over 

the baseline MRI-only SPCNet (p = 0.0001). In clinically significant cancer detection, 

CorrSigNIA ranked second in cohort C1-test, closely following the CorrSigNIA variant, 

SPCNet + CR-123-I. CorrSigNIA ranked first in clinically significant cancer detection in 

cohort C2 (Table 4). The average overlap of CorrSigNIA aggressive cancer predictions 

with aggressive ground truth pixels were 0.20±0.29 for cohort C1-test and 0.24±0.31 

for cohort C2. In patient-level evaluation, CorrSigNIA outperformed all other methods in 

differentiating between patients with and without cancer (Table 5).

Based on quantitative evaluation presented in Tables 3, 4, and 5, CorrSigNIA ranked first 

in 4 out of 5 evaluations. CorrSigNIA performed consistently better than all models across 

different metrics and cohorts, proving to be the best performing model and demonstrating 

the utility of adding correlated features to MRI-only models.

3.2.3. Analyzing false negative and false positive predictions—To assess the 

clinical applicability of CorrSigNIA in cancer detection and localization, false negative and 

false positive predictions were analyzed quantitatively and qualitatively. Cohorts C1-test and 

C3-test were used for this analysis as the ground truth labels in these two cohorts were the 

most complete (i.e., pixel-level annotations).

In patient-level evaluation, CorrSigNIA had false negative predictions in 12/55 patients 

in cohort C1-test. In lesion-level evaluation of clinically significant lesions, CorrSigNIA 
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could detect 29/37 lesions, missing 8 lesions in 7 patients from cohort C1-test. The median 

volume of the missed lesions was 627 mm3, whereas the median volume of all the clinically 

significant lesions in C1-test was 1262 mm3, suggesting that the missed lesions were 

relatively small in size. Experienced radiologists had also missed 4 out of these 8 lesions 

missed by CorrSigNIA, suggesting that some of the missed lesions are hardly visible on 

MRI. Figure S1 in the supplementary material shows a patient from C1-test with false 

negative predictions from CorrSigNIA.

In cohort C3, on a patient level, CorrSigNIA had false positive predictions in 2/15 normal 

men without cancer. Fig. S2 in the supplementary material shows the normal MRI of 

a man without cancer with false positive predictions from CorrSigNIA. False positive 

predictions in clinically significant cancer localization were assessed using the sextant-based 

lesion-level evaluation in cohort C1-test. Of the 124 negative sextants, CorrSigNIA correctly 

predicted 85 sextants as completely benign, while it generated false positive predictions in 

39 sextants. The false positive predictions in the 39 sextants had a median volume of 743.5 

mm3, of which false positive aggressive cancer volume was 291.7 mm3, suggesting that the 

false positive predictions were predominantly indolent. False positive aggressive predictions 

accounted for a median 9.4% of the sextant volumes, further suggesting that they were 

relatively small in size, and the majority of the sextant was still correctly predicted benign, 

although the sextant as a whole was considered false positive.

4. Discussion

In this study, we presented CorrSigNIA, a radiology-pathology fusion model to selectively 

identify and localize aggressive and indolent prostate cancer on MRI. Our experiments 

showed that CorrSigNIA successfully distinguished between men with and without prostate 

cancer, detected and localized cancer and clinically significant cancer. Moreover, unlike 

prior studies, CorrSigNIA identified aggressive cancer components in mixed cancerous 

lesions. These encouraging results are due in part to the inclusion of correlated features 

in our model, using a strategy defined via extensive ablation studies. The ablation studies 

showed that optimizing an objective function that minimizes the reconstruction errors of 

both radiology and pathology features, and maximizes the correlation error between their 

shared representations, with identity activations in the CorrNet model, enabled learning the 

best correlated features. These correlated features when combined with the baseline SPCNet 

ar chitecture achieved the best performance in aggressive and indolent cancer detection.

Moreover, we compared CorrSigNIA with prior studies on prostate cancer detection using 

MRI-only models. While a direct comparison with published results from prior studies is 

not possible due to unavailability of data, we retrained the prior methods on our cohort, 

and designed these comparison experiments as fairly as possible, while not repeating 

experiments already performed in our prior studies (Seetharaman et al., 2021; Bhattacharya 

et al., 2020). The MRI-only models used in prior studies on prostate cancer detection and 

aggressiveness characterization are the U-Net (Sanyal et al., 2020; Schelb et al., 2019; 

De Vente et al., 2020; Ronneberger et al., 2015), the HED (Sumathipala et al., 2018; Xie 

and Tu, 2015) and the DeepLabv3+(Cao et al., 2019; Chen et al., 2017). In contrast to 

our study, these prior studies classified entire lesions into Gleason grade groups, without 

Bhattacharya et al. Page 17

Med Image Anal. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



selectively identifying and localizing the aggressive components in mixed lesions. SPCNet 

(Seetharaman et al., 2021) was the only prior study that sought to selectively identify 

aggressive and indolent prostate cancer using pixel-level labels. We compared CorrSigNIA 

performance with three MRI-only models, the baseline SPCNet (Seetharaman et al., 2021), 

the vanilla U-Net (Ronneberger et al., 2015), and the branched U-Net (BrU-Net). Our 

experiments showed that CorrSigNIA performs consistently better than other models across 

different evaluation metrics and cohorts, suggesting robust and generalizable performance. 

This comparison proves the utility of correlated features over MRI-derived features alone in 

prostate cancer detection and in selective identification of indolent and aggressive cancer.

Although CorrSigNIA outperforms existing methods, we only found a moderate overlap 

between the ground truth and predicted aggressive pixels in mixed lesions. This moderate 

overlap is in part due to the pixelated nature of the histologic grade labels obtained by the 

automated Gleason scoring platform (Fig. 1(d)) when projecting them onto MRI. Despite 

these findings, CorrSigNIA enables identifying the aggressive cancer components of mixed 

lesions with a high confidence (Fig. 7, rows 1–2). Thus, CorrSigNIA may potentially help 

address the clinical unmet need of selectively identifying aggressive and indolent cancer and 

guiding targeted biopsies to aggressive cancer components in mixed lesions. Only one prior 

work, our SPCNet, sought to selectively identify the aggressive cancer components of mixed 

lesions, and was shown to be inferior to the proposed method, CorrSigNIA. We expect the 

overlap to improve as more training data is incorporated in our future work.

We chose a two-phase approach, that first identifies correlated features and second trains 

a detection model, as it allows us to solve the clinically relevant question of detecting 

aggressive cancer on pre-surgical MRI in the absence of histopathology images (e.g., prior 

to biopsy or surgery). Although training our two-step approach requires patients that have 

both MRI and histopathology images, in clinical settings (at test time) our CorrSigNIA 

network does not require the histopathology images. The ability of CorrSigNIA to operate 

with only MRI as input allows its usage to detect aggressive and indolent cancers on 

MRI before any pathology sample is collected. Thus, CorrSigNIA could be used to guide 

the clinical decision of whether to proceed with biopsy, radical prostatectomy, active 

surveilance, or any other form of treatment.

In comparison to existing methods of prostate cancer detection and characterization of 

aggressiveness, CorrSigNIA provides four important contributions. First, CorrSigNIA was 

trained using radical prostatectomy patients with accurate ground truth labels derived 

from registration between radiology and pathology images, enabling learning the complete 

cancer extent on MRI, including cancers that are invisible to most radiologists. Second, 

CorrSigNIA was trained using pixel-level cancer and histologic grade labels on prostate 

MRI, enabling selective identification of indolent and aggressive cancers in lesions that 

contain both histological subtypes (48% of all cancerous lesions, and 76% of index 

lesions). Third, CorrSigNIA used correlated feature learning to identify MRI features 

that are correlated with the corresponding histopathology features, enabling the formation 

of correlated feature maps capturing disease pathology characteristics on MRI. Fourth, 

CorrSigNIA combined the correlated features with MRI-derived features to selectively 

identify and localize normal tissue, indolent cancer and aggressive cancer on prostate MRI. 
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To the best of our knowledge, CorrSigNIA is the first approach that leverages radiology-

pathology fusion and correlated feature learning for both prostate cancer detection and for 

distinguishing aggressive from indolent cancer.

Our study has five notable limitations. First, the training cohort was relatively small (N 

= 98). This is a consequence of the uniqueness of cohort C1, which includes registered 

MRI and histopathology images of radical prostatectomy patients and pixel-level cancer and 

histologic grade labels for the entire prostate. The consistent performance of CorrSigNIA 

on the test set patients from all three cohorts demonstrate its generalizability, despite the 

limited number of training samples. Second, pixel-level histologic grade labels were derived 

from an automated method of grading on histopathology images (Ryu et al., 2019), rather 

than by expert genitourinary pathologists. However, automated methods of Gleason grading 

on histopathology (a) have excellent performance (Ryu et al., 2019; Bulten et al., 2020b), 

and (b) have shown to significantly improve Gleason grading by pathologists (Bulten et 

al., 2020a). The automated labels from (Ryu et al., 2019) have good overlap (Dice: 0.80 ± 

0.09) with the pathologist cancer labels on the histopathology images in our dataset. This 

is sufficient to label MRI scans which are much lower resolution than the histopathology 

images. Moreover, it is impractical for genitourinary pathologists to manually annotate 

all prostate pixels with Gleason patterns for a sufficiently large population of patients 

to train machine learning models. To obviate error introduced by the automated method, 

we only used automated Gleason pattern labels that overlap with cancer labels from the 

expert pathologist. The automated method also improves uniformity in grading by reducing 

inter- and intra-pathologist variation in Gleason Grade group assignment. Third, the MRI-

histopathology registration platform has registration errors (~2 mm on the prostate border 

and ~3 mm inside the prostate) (Rusu et al., 2020). These misalignment errors, which are 

more likely to affect small lesions, were diminished in our study by discarding these small, 

clinically insignificant lesions from our sextant-based lesion evaluation. Fourth, the data 

used for this study is from a single institution (Stanford University) and single manufacturer 

(GE Healthcare). We intend to include multi-institution and multiscanner data in future 

studies to test the generalizability of our models on external data. Fifth, our study used 

retrospective data and has not been validated in clinical settings. In future work, we plan to 

conduct prospective studies to assess the utility of CorrSigNIA in assisting radiologists in 

MRI interpretation.

The primary goals of prostate cancer diagnosis and treatment planning are to identify 

and treat aggressive cancer and to reduce over treatment of indolent cancer. Selective 

identification and localization of indolent and aggressive cancer on prostate MRI is an unmet 

clinical need. CorrSigNIA has the potential of improving prostate cancer care by (1) helping 

detect and target aggressive cancers that are currently missed (Ahmed et al., 2017), (2) 

eliminating unnecessary biopsies in men without cancer or with indolent cancers (Loeb et 

al., 2011; van der Leest et al., 2019), and (3) reducing the number of biopsy samples needed 

to detect aggressive cancers.
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5. Conclusion

We have demonstrated the utility and performance of CorrSigNIA, a radiology-pathology 

fusion based algorithm for prostate cancer detection and for distinguishing indolent and 

aggressive cancers. CorrSigNIA learns from patients who underwent surgery with registered 

radiology and pathology images, and performs well in new patients without pathology, 

thereby making it a useful tool for diagnosis in clinical settings. CorrSigNIA outperformed 

existing models in prostate cancer detection, localization, and in selective identification of 

indolent and aggressive components of prostate cancer. Clinically, CorrSigNIA may improve 

prostate cancer care by helping target biopsies to aggressive cancer, reducing unnecessary 

biopsies, and deciding treatment plans.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Distinguishing indolent from aggressive prostate cancer on MRI is a clinical 

need

• An automated method for distinguishing indolent from aggressive cancer is 

presented

• Correlated feature learning is used to capture pathology characteristics on 

MRI

• Deep learning is used for cancer detection and characterization of 

aggressiveness

• Our method can improve prostate cancer care by guiding treatment planning
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Fig. 1: 
Registered MRI and histopathology slices of a patient in cohort C1, with cancer labels 

mapped from histopathology to MRI. (a) T2w image, (b) ADC image, (c) Histopathology 

image, (d) T2w image overlaid with cancer labels from expert pathologist (black outline) 

and per-pixel histologic grade labels from automated Gleason grading (Ryu et al., 2019): 

aggressive labels (yellow), indolent labels (green), (e) Processed ground truth labels 

generated from (d) that were used for training and evaluation of the models (pre-processing 

of ground truth labels described in Section 2.3.2): aggressive (yellow), indolent (green), 

aggressive or indolent with equal likelihood (brown).
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Fig. 2: 
Schematic representation of our approach. (a) Complete flowchart for CorrSigNIA, (b) 

Correlated feature learning module which uses the CorrNet model to learn correlated 

feature representations from registered MRI and histopathology features, (c) Prostate 

cancer detection and characterization of aggressiveness module, which uses a modified 

HED architecture to selectively identify and localize normal tissue, indolent cancer, and 

aggressive cancer.
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Fig. 3: 
Sextants for lesion-level evaluation. (a) Axial, (b) Sagittal, and (c) Coronal views. The 

sextant-based approach for evaluating lesions was based on how biopsies are performed 

clinically. It is very common to do 12-core needle sampling with 2 cores from each sextant.
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Fig. 4: 
Learning correlated feature representations for prostate cancer for the slice shown in Figure 

1. Pre-trained features extracted from (a) T2w image, (b) ADC image, (c) histopathology 

image. Correlated latent representations formed by projecting (d) from MRI features, and 

(e) from histopathology features. Column (d) shows the learned correlated MRI feature 

representations (or CorrNet representations) that are used in the subsequent cancer detection 

task. Red arrow in column (d) points to cancerous lesion.
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Fig. 5: 
Detection and localization of aggressive cancer in a patient in cohort C1 shown from 

apex (top row) to base (bottom row). Registered (a) T2w image, (b) ADC image, (c) 

histopathology image, (d) T2w image overlaid with ground truth labels: cancer from expert 

pathologist (black outline), aggressive cancer (yellow) and indolent cancer (green) histologic 

grading from (Ryu et al., 2019), pixels within pathologist outline without automated 

histologic grade labels shown in brown, (e) T2w image overlaid with predicted labels from 

CorrSigNIA: predicted aggressive cancer (yellow) and predicted indolent cancer (green), 

black outline represents ground truth pathologist cancer outline.
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Fig. 6: 
Prediction in a man from cohort C3 (without cancer) shown in 4 consecutive slices in the 

mid gland. (a) T2w, (b) ADC, and (c) CorrSigNIA predictions.
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Fig. 7: 
Qualitative performance comparison between SPCNet (Seetharaman et al., 2021), U-Net, 

BrU-Net and CorrSigNIA in six different patients from the test set of cohorts C1, C2, 

and C3. (a) T2w image and (b) ADC image. T2w image overlaid with (c) ground truth 

(GT) labels: cancer from expert pathologist (black outline), aggressive cancer (yellow) and 

indolent cancer (green) histologic grade labels from (Ryu et al., 2019). Predicted labels, 

aggressive cancer (yellow) and indolent cancer (green) from (d) SPCNet, (e) U-Net, and (f) 

branched U-Net and (g) CorrSigNIA (ours).
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Table 2:

Models with MRI and correlated features as inputs.

Model name Baseline model CorrNet objective fn. CorrNet activation fn. CorrNet representation

CorrSigNIA SPCNet J3(θ) Identity CR-3-I

SPCNet + CR-3-S SPCNet J3(θ) Sigmoid CR-3-S

SPCNet + CR-123-I SPCNet J123(θ) Identity CR-123-I

SPCNet + CR-123-S SPCNet J123(θ) Sigmoid CR-123-S

SPCNet + CR-4-I SPCNet J4(θ) Identity CR-4-I

SPCNet + CR-4-S SPCNet J4(θ) Sigmoid CR-4-S

U-Net + CR-3-I U-Net J3(θ) Identity CR-3-I

U-Net + CR-123-I U-Net J123(θ) Identity CR-123-I

BrU-Net + CR-3-I BrU-Net J3(θ) Identity CR-3-I

BrU-Net + CR-123-I BrU-Net J123(θ) Identity CR-123-I

Note: CorrNet activation fn. refers to functions f and g in Equations 1 and 2. Abbreviation used: fn. = function.
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