Skip to main content
. Author manuscript; available in PMC: 2023 Jan 1.
Published in final edited form as: Med Image Anal. 2021 Nov 6;75:102288. doi: 10.1016/j.media.2021.102288

Table 5:

Patient-level evaluation on cohorts C1-test and C3-test (Total number of subjects N = 70, including 55 men with cancer from C1-test and 15 men with normal MRI from C3-test. Column “Final rank” represents rank of model based on sum of individual ranks (detailed in Supplementary material table S3). CorrSigNIA outperforms all other models in patient-level evaluation.

Model Sensitivity Specificity Precision NPV F1 score Accuracy Final Rank

SPCNet 0.71 0.80 0.93 0.43 0.80 0.73 3
U-Net 0.87 0.00 0.76 0.00 0.81 0.69 13
Branched U-Net 0.87 0.13 0.79 0.22 0.83 0.71 9

CorrSigNIA 0.78 0.87 0.96 0.52 0.86 0.80 1
SPCNet + CR-3-S 0.73 0.53 0.85 0.35 0.78 0.69 12
SPCNet + CR-123-I 0.71 0.80 0.93 0.43 0.80 0.73 3
SPCNet + CR-123-S 0.67 0.87 0.95 0.42 0.79 0.71 7
SPCNet + CR-4-I 0.67 0.80 0.93 0.40 0.78 0.70 10
SPCNet + CR-4-S 0.78 0.73 0.91 0.48 0.84 0.77 2
U-Net + CR-3-I 0.91 0.07 0.78 0.17 0.84 0.73 8
U-Net + CR-123-I 0.89 0.07 0.78 0.14 0.83 0.71 10
BrU-Net + CR-3-I 0.91 0.00 0.77 0.00 0.83 0.71 5
BrU-Net + CR-123-I 0.78 0.53 0.86 0.40 0.82 0.73 5