
Multi-scale semi-supervised clustering of brain images: deriving 
disease subtypes

Junhao Wen1,*, Erdem Varol2, Aristeidis Sotiras3, Zhijian Yang1, Ganesh B. Chand4, 
Guray Erus1, Haochang Shou1,5, Ahmed Abdulkadir1, Gyujoon Hwang1, Dominic B. 
Dwyer6, Alessandro Pigoni7, Paola Dazzan8, Rene S. Kahn9, Hugo G. Schnack10, 
Marcus V. Zanetti11, Eva Meisenzahl12, Geraldo F. Busatto11, Benedicto Crespo-Facorro13, 
Romero-Garcia Rafael14, Christos Pantelis15, Stephen J. Wood16, Chuanjun Zhuo17, 
Russell T. Shinohara1,5, Yong Fan1, Ruben C. Gur18, Raquel E. Gur18, Theodore D. 

*Corresponding authors: Junhao Wen, PhD – junhao.wen89@gmail.com, Christos Davatzikos, PhD – 
Christos.Davatzikos@pennmedicine.upenn.edu, 3700 Hamilton Walk, Philadelphia, PA 19104.
Author contributions
Junhao Wen: Conceptualization, Methodology, Software, Writing - reviewing and editing;
Erdem Varol: Conceptualization, Methodology, Reviewing and editing;
Aristeidis Sotiras: Conceptualization, Methodology, Reviewing and editing;
Zhijian Yang: Conceptualization, Reviewing and editing;
Ganesh B. Chand: Conceptualization, Reviewing and editing;
Guray Erus: Conceptualization, Reviewing and editing;
Haochang Shou: Conceptualization, Reviewing and editing;
Ahmed Abdulkadir: Conceptualization, Reviewing and editing;
Gyujoon Hwang: Conceptualization, Reviewing and editing;
Dominic B. Dwyer: Data collection, Reviewing and editing;
Alessandro Pigoni: Data collection, Reviewing and editing;
Paola Dazzan: Data collection, Reviewing and editing;
Rene S. Kahn: Data collection, Reviewing and editing;
Hugo G. Schnack: Data collection, Reviewing and editing;
Marcus V. Zanetti: Data collection, Reviewing and editing;
Eva Meisenzahl: Data collection, Reviewing and editing;
Geraldo F. Busatto: Data collection, Reviewing and editing;
Benedicto Crespo-Facorro: Data collection, Reviewing and editing;
Romero-Garcia Rafael: Data collection, Reviewing and editing;
Christos Pantelis: Data collection, Reviewing and editing;
Stephen J. Wood: Data collection, Reviewing and editing;
Chuanjun Zhuo: Data collection, Reviewing and editing;
Russell T. Shinohara: Data collection, Reviewing and editing;
Yong Fan: Data collection, Reviewing and editing;
Ruben C. Gur: Data collection, Reviewing and editing;
Raquel E. Gur: Data collection, Reviewing and editing;
Theodore D. Satterthwaite: Data collection, Reviewing and editing;
Nikolaos Koutsouleris: Data collection, Reviewing and editing;
Daniel H. Wolf: Conceptualization, Reviewing and editing;
Christos Davatzikos: Conceptualization, Methodology, Supervision, Reviewing and editing
aData used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Declaration of interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

HHS Public Access
Author manuscript
Med Image Anal. Author manuscript; available in PMC 2023 January 01.

Published in final edited form as:
Med Image Anal. 2022 January ; 75: 102304. doi:10.1016/j.media.2021.102304.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


Satterthwaite1,18,19, Nikolaos Koutsouleris6, Daniel H. Wolf1,18,19, Alzheimer’s Disease 
Neuroimaging Initiativea, Christos Davatzikos1,*

1Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University 
of Pennsylvania, Philadelphia, USA

2Department of Statistics, Center for Theoretical Neuroscience, Zuckerman Institute, Columbia 
University, New York, USA

3Department of Radiology and Institute for Informatics, Washington University School of 
Medicine, St. Louis, USA

4Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of 
Medicine, St. Louis, USA

5Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, 
and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA

6Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany

7Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale 
Maggiore Policlinico, Milan, Italy

8Institute of Psychiatry, King’s College London, London, UK

9Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA

10Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands

11Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil

12LVR-Klinikum Düsseldorf, Kliniken der Heinrich-Heine-Universität, Düsseldorf, Germany

13Hospital Universitario Virgen del Rocio, University of Sevilla-IBIS; IDIVAL-CIBERSAM, 
Cantabria, Spain

14Department of Medical Physiology and Biophysics, University of Seville, Instituto de 
Investigación Sanitaria de Sevilla, IBiS, CIBERSAM, Sevilla, Spain

15Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and 
Melbourne Health, Carlton South, Australia

16Orygen, National Centre of Excellence for Youth Mental Health, Melbourne, Australia

17key Laboratory of Real Tine Tracing of Brain Circuits in Psychiatry and Neurology(RTBCPN-
Lab), Nankai University Affiliated Tianjin Fourth Center Hospital; Department of Psychiatry, 
Tianjin Medical University, Tianjin, China

18Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, USA

19University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, 
Switzerland

Abstract

Wen et al. Page 2

Med Image Anal. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Disease heterogeneity is a significant obstacle to understanding pathological processes and 

delivering precision diagnostics and treatment. Clustering methods have gained popularity for 

stratifying patients into subpopulations (i.e., subtypes) of brain diseases using imaging data. 

However, unsupervised clustering approaches are often confounded by anatomical and functional 

variations not related to a disease or pathology of interest. Semi-supervised clustering techniques 

have been proposed to overcome this and, therefore, capture disease-specific patterns more 

effectively. An additional limitation of both unsupervised and semi-supervised conventional 

machine learning methods is that they typically model, learn and infer from data using a basis 

of feature sets pre-defined at a fixed anatomical or functional scale (e.g., atlas-based regions of 

interest). Herein we propose a novel method, “Multi-scAle heteroGeneity analysIs and Clustering” 

(MAGIC), to depict the multi-scale presentation of disease heterogeneity, which builds on a 

previously proposed semi-supervised clustering method, HYDRA. It derives multi-scale and 

clinically interpretable feature representations and exploits a double-cyclic optimization procedure 

to effectively drive identification of inter-scale-consistent disease subtypes. More importantly, to 

understand the conditions under which the clustering model can estimate true heterogeneity related 

to diseases, we conducted extensive and systematic semi-simulated experiments to evaluate the 

proposed method on a sizeable healthy control sample from the UK Biobank (N=4403). We then 

applied MAGIC to imaging data from Alzheimer’s disease (ADNI, N=1728) and schizophrenia 

(PHENOM, N=1166) patients to demonstrate its potential and challenges in dissecting the 

neuroanatomical heterogeneity of common brain diseases. Taken together, we aim to provide 

guidance regarding when such analyses can succeed or should be taken with caution. The code of 

the proposed method is publicly available at https://github.com/anbai106/MAGIC.

Graphical Abstract
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1. Introduction

Statistical and machine learning (ML) methods have been widely applied to neuroimaging 

data to derive disease-specific imaging signatures (Davatzikos, 2019). Voxel-based analysis 

(VBA) techniques generally involve performing independent mass univariate statistical tests 

on all voxels (Ashburner et al., 1998; Ashburner and Friston, 2000; Davatzikos et al., 2001; 

Friston et al., 1994), aiming to unveil detailed spatial maps of brain structures that are 

associated with clinical variables of interest. However, VBA approaches suffer from limited 

statistical power since they ignore multivariate data interactions. In contrast, multivariate 

pattern analysis (MVPA) techniques have gained traction due to their ability to capture 

complex multivariate interactions in data. Classical multivariate models, such as support 

vector machine (SVM), have been extensively utilized in the neuroimaging community to 

reveal imaging signatures for several brain diseases and disorders (Cuingnet et al., 2011; 

Ecker et al., 2010; Gaonkar and Davatzikos, 2013; Habes et al., 2016; Koutsouleris et al., 

2015; Lao et al., 2004; Rathore et al., 2017; Samper-González et al., 2018; Varol et al., 

2018). More recently, highly nonlinear and multivariate deep learning models have also been 

applied to brain modeling (Bashyam et al., 2020; Schulz et al., 2020b; Wen et al., 2020a). 

However, due to possible over-fitting, these models’ interpretability and generalizability in 

low sample size regimes have been under scrutiny.

Whether performing mass univariate or multivariate analysis, it is typically assumed that a 

relatively pure pathological pattern exists in the disease population. The disease signature 

is often presented via a voxel-wise or region of interest (ROI)-wise statistical map of 

the case-control group differences, i.e., between healthy controls (CN) and patients (PT). 

However, in nature, disease effects are commonly heterogeneously presented across different 

subpopulations due to the diversity of underlying risk factors. Such model assumption 

violations may cause the statistical learning to yield underpowered or false-positive results 

(Dwyer et al., 2018). Tackling this issue is of great importance given ample evidence 

of disease heterogeneity (Murray et al., 2011; Noh et al., 2014; Whitwell et al., 2007) 

and increasing appreciation that this may undermine the precision of clinical treatment 

guidelines and obscure research findings (Insel and Cuthbert, 2015).

Disentangling disease heterogeneity elucidates the underlying pathological mechanisms 

and potentially enables clinicians to offer targeted treatment options to different patient 

subpopulations. Nonlinear methods, such as deep neural networks, implicitly handle 

heterogeneity. However, there still exists a gap between these models and human 

interpretability, especially for clinicians who frequently seek discrete disease subtypes 

(Miotto et al., 2018). Thus, many recent efforts to discover the heterogeneous nature of 

brain diseases have investigated different clustering algorithms (Chand et al., 2020; Dong et 

al., 2016a, 2016b; Dwyer et al., 2018; Ezzati et al., 2020; Filipovych et al., 2012; Honnorat 

et al., 2019; Jeon et al., 2019; Jung et al., 2016; Lubeiro et al., 2016; Nettiksimmons 

et al., 2014; Ota et al., 2016; Pan et al., 2020; Park et al., 2017; Planchuelo-Gómez 

et al., 2020; Poulakis et al., 2020, 2020, 2018; Sugihara et al., 2016; Ten Kate et al., 

2018; Varol et al., 2017; Young et al., 2018; Zhang et al., 2016). These methods can be 

divided into two categories depending on whether the clustering algorithm is unsupervised 

or semi-supervisedb. Unsupervised clustering techniques, such as K-means (Hartigan and 
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Wong, 1979), hierarchical clustering (Day and Edelsbrunner, 1984), and non-negative matrix 

factorization (NMF) (Lee and Seung, 2001), aim to directly cluster the patients based on 

their demographic information, clinical presentation, or imaging biomarkers. However, the 

results of these methods have often been confounded by non-pathologic processes, such as 

demographics. To cope with these covariate confounds, semi-supervised clustering methods 

(Dong et al., 2016a; Varol et al., 2017) leverage the group-level information and attempt 

to nullify the effect of nuisance variables. These methods generate clusters based on the 

pattern differences between the CN population and the subpopulations of patients (i.e., 

subtypes/clusters), hypothesizing that each pattern represents a distinct disease dimension or 

subtype. The main limitation of this family of methods is that they usually seek subtypes 

on a single scale set of features (e.g., atlas-based ROIs, voxels, networks), which makes the 

result heavily dependent on the level of granularity of the feature space. However, there has 

been abundant evidence that the brain is fundamentally constructed by multi-scale entities 

(Bassett and Siebenhühner, 2013; Betzel and Bassett, 2017). Therefore, it is beneficial to 

analyze disease heterogeneity on multiple spatial scales and seek a compatible clustering 

solution across scales, which will potentially better align with the brain’s multi-scale nature.

Despite the fact that these clustering analyses have always led to a cluster solution, there 

are no clear guidelines enabling the validity of the cluster solution to be determined, 

presumably due to the lack of the ground truth in clustering problems or the “curse of 

dimensionality” in brain imaging settings. A previous study (Varol et al., 2017) designed 

simulation experiments to validate the proposed model. However, the simulation data were 

generated by adding noise in the low-dimensional feature space under a specific distribution 

(i.e., Gaussian distribution), which was far less realistic than actual neuroimaging data. 

Thus, a more sophisticated and systematic simulation is needed to understand the conditions 

under which clustering succeeds or fails with high-dimensional brain imaging data. 

Specifically, in the current work, we performed an extensive and systematic evaluation 

of clustering performance using a large healthy control sample (UK Biobank, N=4403) 

in a semi-simulated setting. The term semi-simulated here refers to the fact that brain 

heterogeneity may stem from various sources, and the simulation was performed with 

data from real healthy control individuals. We simulated the heterogeneity due to disease 

effects by imposing abnormalities (i.e., increasing or decreasing voxel intensity) on specific 

regions of tissue images. Notably, the heterogeneity caused by normative brain aging was 

inevitably retained in the original data because this is biologically realistic and contributs 

to the semi-simulated variability (refer to Section 4.2 for more details). With known ground 

truth for the number of clusters (k) and the cluster/subtype membership assignment, we 

quantitatively investigated the clustering model’s performance under a variety of conditions, 

including varying degrees of brain atrophy, different levels of heterogeneity, overlapping 

disease subtypes, class imbalance, and varying sample sizes.

This work is a comprehensive extension of our preliminary results presented in Medical 

Image Computing and Computer Assisted Interventions (MICCAI) 2020 (Wen et al., 

2020b). The contribution is two-fold. First, to address the aforementioned multi-scale 

bThe term semi-supervised refers to the lack of subtype labels and the use of CN as a reference group to guide the clustering.
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limitations, we propose a data-driven and multi-scale semi-supervised method termed 

MAGIC for “Multi-scAle heteroGeneity analysIs and Clustering”. Specifically, MAGIC 

extracts multi-scale features, from coarse to fine granularity, via orthogonal projective 

non-negative matrix factorization (opNMF) applied for varying scales (i.e., number 

of components). opNFM has been a very effective unbiased, data-driven method for 

extracting biologically interpretable and reproducible feature representations in the context 

of neuroimaging datasets (Sotiras et al., 2015), leading to disease subtypes in an explainable 

space (Schulz et al., 2020a). A convex polytope classifier, based on principles of the method 

in (Varol et al., 2017), is applied to these multi-scale features through a double-cyclic 

optimization procedure to yield robust clusters that are consistent across different scales. 

Secondly, the results of our semi-simulated experiments allow us to compare MAGIC with 

previous standard clustering methods and provide future clustering analysis guidelines. 

Specifically, applying the proposed method to Alzheimer’s disease (AD) and mild cognitive 

impairment (MCI) and schizophrenia (SCZ) patients provides greater confidence regarding 

the validity of the subtypes claimed in actual clinical applications.

We organize the remainder of the paper as follows. In Section 2, we provide the details 

of the proposed algorithm. Section 3 details the primary datasets and image preprocessing 

steps. Section 4 presents the results of the experiments. Section 5 concludes the paper by 

discussing our main observations, method limitations, and future directions.

2. Methods

MAGIC builds upon the HYDRA formulation (Varol et al., 2017) and opNMF algorithms 

(Sotiras et al., 2015) to yield an inter-scale-consistent clustering solution. It generates an 

interpretable and spatially adaptive multi-scale representation via opNMF, which drives 

semi-supervised clustering. The schematic diagram of MAGIC is shown in Fig. 1.

We detail the mathematical formulation of the optimization routine in the following 

subsections. To establish notation, let N denote the number of subjects and D the number 

of voxels in each image. We denote the data as a matrix X that is organized by arranging 

each image as a vector per column (X = [x1, …, xN], xi ∈ RD). We use binary labels to 

distinguish the patient and control groups, where 1 represents patients (PT) and −1 means 

healthy controls (CN) (i.e., y ∈ {−1, 1}N). For subtype results, the subtype membership 

matrix (a.k.a., polytope) is denoted as S ∈ RN × k before consensus clustering and S* as the 

final subtype membership matrix after consensus clustering.

2.1. Multi-scale feature extraction via orthogonal projective non-negative matrix 
factorization

MAGIC utilizes opNMF, an unsupervised representation learning algorithm, to extract 

multi-scale and interpretable anatomical components covering the whole brain. The number 

of components (M) is optimized in opNMF and controls the granularity of the anatomical 

components (e.g., opNMF components at different granularities can be seen in Fig. 1C).

The opNMF aims to represent the input matrix X as a rank-M matrix that is the product 

of two non-negative matrices: i) C, termed as the component matrix, captures the groups 
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of voxels that covary most and offers an interpretable anatomical parcellation (C = [c1, …, 

cM], ci ∈ RD), and ii) L ∈ RM × N, termed as the loading coefficient matrix, captures the 

amount of each spatial component that makes up each subject. The opNMF objective is to be 

minimized as follows:

minc X − CL F
2  subject to C ≥ 0, L ≥ 0, CTC = I, L = CTX (1)

This formulation differs from the standard NMF in that the loading coefficient matrix is 

obtained by projecting the input data X to the estimated component matrix C (i.e., L = 

CTX), and the orthogonality constraint is imposed on the component matrix (CTC = I, where 

I denotes the identity matrix). Therefore, the opNMF searches only the parameters of the 

component matrix during optimization (Zhirong Yang and Oja, 2010).

The solution of minimizing the abovementioned objective is a non-convex problem and can 

be achieved by iteratively updating the multiplicative rule proposed in (Zhirong Yang and 

Oja, 2010):

C′ = C XXTC
CCTXXTC

(2)

Please refer to (Sotiras et al., 2015) for more details about opNMF and (Zhirong Yang and 

Oja, 2010) for convergence analyses. Once the algorithm converges, we recover the loading 

coefficients by the projective step: L = CTX. Moreover, this property allows us to readily 

apply the trained model to external unseen data.

2.2. Max-margin multiple SVM classifiers for clustering

Once the high dimensional imaging data is reduced to a lower-dimensional representation 

using opNMF, we apply the HYDRA algorithm (Varol et al., 2017) on the set of loading 

coefficients, L ∈ RM × N and the corresponding set of diagnostic labels y ∈ {−1, 1}N to 

perform clustering of the patients.

The HYDRA algorithm utilizes multiple large margin classifiers (e.g.., k SVMs) to estimate 

a nonlinear polytope that separates the two classes with maximized distance (or margin) 

from the decision boundaries for each sample, thus simultaneously serving for classification 

and clustering. The fundamentals of the HYDRA algorithm are presented in supplementary 

eMethod 1. Please refer to (Varol et al., 2017) for more details. In general, this algorithm 

solves for a convex polytope classification boundary that discriminates patients from 

controls with a maximum margin. In essence, the polytope is composed of the k hyperplanes 

of the k linear SVMs, and each face corresponds to one subtype/cluster. The objective of 

maximizing the polytope’s margin can be summarized as:
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min
wj, bj j = 1

k
∑
j = 1

k wj 2
2

2 + μ ∑
i ∣ yi = + 1

j

1
kmax 0, 1 − wjTLi

T − bj

+ μ ∑
i ∣ yi = − 1

j

Si, jmax 0, 1 + wjTLi
T + bj

(3)

where wj and bj are the weight and bias for each hyperplane, respectively. μ is a penalty 

parameter on the training error, and S is the subtype membership matrix of dimension NxK 
containing information regarding whether a sample i belongs to subtype j. In general, this 

optimization problem is non-convex and is jointly optimized by iterating on solving for the 

polytope faces’ parameters using standard SVM solvers (Chang and Lin, 2011) and solving 

for the cluster memberships as follows:

Si, j =
1, j = argmaxj wjTLT + bj

0, j ≠ argmaxj wjTLT + bj
(4)

2.3. Double-cyclic optimization procedure for scale-independent subtypes

MAGIC optimizes the clustering objective, i.e., Eq. 3, for each anatomical scale as a sub-

optimization problem. To fuse the multi-scale clustering solutions and enforce the clusters to 

be scale-independent, MAGIC adopts a double-cyclic procedure that transfers and fine-tunes 

the subtype membership matrix (S) between different scales of features, i.e., solving the 

sub-optimization problems with the single-scale feature representation in a loop (Fig. 1).

The double-cyclic fine-tuning procedure aims to offer scale-independent clustering solutions 

across multi-scale features. Cycle 1 (Fig. 1C components M1, M2, and M3 in a row) aims to 

derive a clustering solution that is informed by features across all scales. This is achieved by 

iteratively solving Eq. 2 using features derived at different scales. Specifically, the clustering 

membership matrix S is first solved for a particular set of features. It is then transferred 

to the next block, where it is used as initialization for fine-tuning driven by features from 

a different scale. This procedure is repeated till features from all anatomical scales have 

been used to inform the final clustering membership matrix (S1 in Fig. 1C). Since each 

optimization cycle starts at a pre-determined anatomical scale, an additional Cycle 2 (Fig. 

1C components M1, M2, and M3 in a column) is executed using all different anatomical 

scales to initialize the model. This eliminates any initialization biases (S1, S2, and S3 in Fig. 

1C) and results in multiple clustering solutions. To determine the final subtype assignment 

(S* in Fig. 1C), we perform consensus clustering. Consensus is achieved by grouping 

together samples that are assigned to the same cluster across the solutions estimated as part 

of Cycle 2 (Varol et al., 2017). Precisely, we first compute a co-occurrence matrix based on 

the clustering results of Cycle 2 and then use it to perform spectral clustering (Ng et al., 

2001).

MAGIC can be directly applied to unseen external data with the following procedure. First, 

opNMF is not required to be retrained to unseen data because multi-scale feature extraction 
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can be achieved via the projection L = CTX. Subsequently, each single-scale feature is fit 

to each polytope (S1, S2, and S3 in Fig. 1) to derive the single-scale clustering solution. 

Finally, a similar consensus procedure is used to derive the final membership (S* in Fig. 1).

3. Materials

3.1. Datasets

Three datasets are used in the current study: the UK Biobank (UKBB) study (Miller 

et al., 2016), the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study (Petersen 

et al., 2010), and the Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging 

(PHENOM) study (Chand et al., 2020; Rozycki et al., 2018; Satterthwaite et al., 2010; 

Schnack et al., 2014, 2014; Wolf et al., 2014; Wood et al., 2001; T. Zhang et al., 2015; Zhu 

et al., 2016; Zhuo et al., 2016).

The UKBB is a dataset of approximately 500,000 UK adults sampled via population-

based registries (http://www.ukbiobank.ac.uk). Participants were recruited from across the 

United Kingdom, and initial enrolment was carried out from 2006 to 2010. Participants 

provided socio-demographic, cognitive, and medical data via questionnaires and physical 

assessments. Starting in 2014, a subset of the original sample later underwent brain 

magnetic resonance imaging (MRI). The UKBB data used in this work comprises 4403 

CN participants whose T1-weighted (T1w) MRI was collected using Siemens 3T Skyra. 

The parameters of the 3D MPRAGE sequences are as follows: resolution=1.0×1.0×1.0 mm; 

field-of-view=256 mm ×256 mm; TR = 2000 ms; TE = 2.01 ms; TI = 880 ms; slices = 208; 

flip angle = 8 degrees (Miller et al., 2016).

The ADNI was launched in 2003 as a public-private partnership (https://www.adni-

info.org/). The primary goal of ADNI has been to test whether serial MRI, positron 

emission tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of MCI and early AD. The ADNI 

dataset used in our experiments comprises 1728 participants from ADNI 1, 2, 3, and GO, for 

whom a T1w MRI was available at baseline: 339 AD, 541 CN, and 848 MCI were finally 

included. ADNI T1w images were performed both on 1.5T and 3T scanners with similar 

protocol parameters: 256×256 matrix; voxel size=1.2×1.0×1.0 mm; TI=400 ms; TR=6.98 

ms; TE=2.85 ms; flip angle=11°.

The PHENOM dataset is an international consortium spanning five continents to 

better understand neurobiological heterogeneity in schizophrenia. The consortium aims 

to delineate schizophrenia brain subtypes with large sample sizes, enriched sample 

heterogeneity, and methodological advances that generalize across disparate sites and 

ethnicities. The PHENOM dataset used in this study includes 1166 participants (583 CN, 

and 583 SCZ patients). In the current study, we included T1w images from eight sites of the 

PHENOM consortium with diverse imaging protocols.

These datasets are described in detail in supplementary eMethod 2. Table 1 summarizes the 

basic demographics of all participants from the three datasets.
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3.2. Image preprocessing

Raw T1w MRIs were quality checked for motion, image artifacts, or restricted field-of-view. 

Images passing this quality check (QC) were corrected for magnetic field inhomogeneity 

(Tustison et al., 2010). A robust multi-atlas label fusion-based method, MUSE (Doshi et 

al., 2016), was applied for tissue segmentation of the brain. Voxel-wise regional volumetric 

maps (RAVENS) (Davatzikos et al., 2001) were generated for grey matter (GM) tissues by 

registering skull-stripped images to a population-based template residing in the MNI-space 

using a deformable registration method (Ou et al., 2011). Another QC procedure was 

performed to control the quality of the images further. Specifically, the images were first 

checked by manually evaluating for pipeline failures (e.g., poor brain extraction, tissue 

segmentation, and registration errors). Furthermore, a second-step automated procedure 

automatically flagged images based on outlying values of quantified metrics (i.e., ROI 

values), and those flagged images were re-evaluated.

4. Experiments and results

We first validated the proposed model using semi-simulated data in which we knew 

the ground truth for the number of clusters (k) and subtype membership assignment. 

In this setting, we quantitatively assessed how several key components influenced 

the clustering performance and compared our method’s performance to other common 

clustering approaches. Finally, we applied MAGIC to real clinical datasets for dissecting the 

heterogeneity of AD plus MCI and SCZ. In our experiments, different nuisance variables 

(i.e., age and sex or site) were controlled with a linear regression model in MAGIC for the 

multi-scale features. Specifically, the beta was estimated on healthy control subjects and 

then applied to all populations.

4.1. Evaluation strategy

We adopted a cross-validation (CV) procedure with repeated and stratified random splits for 

100 repetitions to determine the appropriate number of clusters. Specifically, during each 

repetition, 80% of the data was for training. The “optimal” number of clusters was guided by 

the clustering stability across the 100 repetitions. The Adjusted Rand index (ARI) was used 

for that purpose, which we denoted as ARIs during CV (ARI_CV). Moreover, for simulation 

experiments, where the ground truth for subtype membership was known, ARI was also used 

to quantify the clustering performance, referred to as ARIs for ground truth (ARI_GT).

After obtaining the assignment of subtype membership, we performed voxel-wise group 

comparisons for RAVENS GM maps between each subtype with CNs using the 3dttest++ 
program (Cox et al., 2017) in AFNI (Cox, 1996) to detect the distinct neuroanatomical 

patterns of the corresponding subtypes. The two-sample t-test T-value map of AFNI was 

further converted to a P-value map applying correction for multiple comparisons with the 

Benjamini-Hochberg procedure. Effect sizes can for some purposes be more useful than 

P-values, since P-values are highly dependent on the sample size (Sullivan and Feinn, 2012). 

Thus, we calculated the effect size, Cohen’s f2 (Selya et al., 2012), for voxels that are 

significantly different between subtypes after adjusting the confounding covariates (i.e., age 

and sex). We chose Cohen’s f2 over Cohen’s d because the formulation of Cohen’s f2 takes 
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into account the confounding covariates in a general linear model set-up, whereas Cohen’s 

d is simply the mean difference of two groups divided by the pooled standard deviation. We 

present the voxel-wise effect size maps to delineate the subtypes’ neuroanatomical patterns 

for all experiments. For reference, Cohen’s f2 ≥ 0.02, ≥ 0.15, and ≥ 0.35 represent small, 

medium, and large effect sizes, respectively (Selya et al., 2012).

4.2. Experiments using UKBB semi-simulated data

The UKBB RAVENS GM maps were used to generate semi-simulated data. We first divided 

all CN subjects (N=4403) into pre-defined number of splits. Part of the splits was regarded 

as the true CN, and the remainder (i.e., pseudo-PT) was further divided into another number 

of splits for subtype simulations. The sample size of each subtype was balanced. Brain 

atrophy was then imposed onto RAVENS maps of each of the subtypes within different 

patterns. To simplify the simulation, we assume that patterns across the k subtypes are 

orthogonal with each other (we further tested the influence of overlapping patterns between 

subtypes). These regions were chosen a priori based on the segmentation image of the 

template image in the MNI space. Different choices for the number of subtypes (k) and 

atrophy strength level (ASL) were tested. For instance, for experiments with k=2 and 

ASL=0.1, voxel intensity values inside the two pre-defined patterns were reduced by 10% 

compared to their original values. Moreover, the ASL varied by ±2% across images to 

add randomness. In total, nine experiments were performed and summarized in Table 2. 

The ground truth of the pre-defined atrophy patterns of each subtype is shown in Fig. 

3 (i.e., the first column). During simulation, we ensured that the subtype groups did not 

significantly differ in sex and age. Of note, the UKBB subjects were primarily diagnosed 

as neurodegenerative-speaking healthy controls, but they were also self-reported for various 

comorbidities (see https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=41202). Therefore, age or 

comorbidity-related heterogeneity already exist in the original data. This setting is more 

realistic because heterogeneity caused by brain aging and pathologies often intertwine with 

each other.

In sum, we sought to compare MAGIC’s clustering performance to other unsupervised 

or semi-supervised clustering methods. Since the influence of confounds on clustering 

performance may vary under different conditions, our second goal was to test under what 

conditions MAGIC can discover i) the true membership of the subtypes, ii) the true number 

of clusters (k); iii) its simulated atrophy patterns, and iv) its severity of the abnormal patterns 

(i.e., voxel-wise effect size map).

4.2.1. MAGIC discovers the correct number of clusters and corresponding 
simulated neuroanatomical patterns—MAGIC was able to discover the correct 

number of clusters for the following experiments: k=2 & ASL=0.1, 0.2 or 0.3 (Fig. 2A, 

B and C), k=3 & ASL=0.2 (Fig. 2E) or ASL=0.3 (Fig. 2F), and k=4 & ASL=0.3 (Fig. 2I). 

For other experiments, MAGIC failed to find the true k (Fig. 2D, G, and H), indicating that 

in the presence of high heterogeneity (K>2 or 3) and very subtle disease effect (10%−20%), 

the algorithm reaches a detection threshold.
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Voxel-wise effect size maps were generated to demonstrate whether MAGIC can find 

the ground truth of neuroanatomical atrophy patterns of subtypes. Of note, the actual 

neuroanatomical patterns revealed by the voxel-wise maps include heterogeneity due to 

both the simulation effects (i.e., disease effect) and normative brain aging, e.g., those voxels 

without any simulation in the P-value mask map (Fig. 3). To further support the normative 

brain aging heterogeneity, we derived the voxel-wise effect size map for the original images 

(without any simulation) of subjects from Sub1 and healthy control groups in Fig. 3A 

(supplementary eFigure 1), which showed specific abnormality patterns with small effect 

sizes. Moreover, we quantitatively evaluated how well MAGIC can recover the simulated 

voxels. For that purpose, we proposed a simulation accuracy metric (ACC): the proportion of 

the number of voxels that passed the statistical significance in the P-value mask maps over 

the number of voxels in the ground truth mask that was masked by the population-based 

RAVENS GM tissue mask (Fig. 3).

In short, MAGIC was able to find the ground truth for all experiments, except for k=4 & 

ASL=0.1 (Fig. 3G), in which small effects (Cohen’s f2<0.06) were detected in subcortical 

structures for all four subtypes. The voxels showing the largest effect sizes discovered by 

the effect size map were from the simulated regions. Furthermore, the P-value mask maps 

quantitatively showed that most of the simulated voxels could be detected by MAGIC (Fig. 

3). Lastly, the effect size of the subtype patterns increased with increasing ASL (refer to the 

effect sizes in each row of Fig. 3).

4.2.2. Comparison of MAGIC to other clustering methods—We compared 

MAGIC to other commonly used unsupervised clustering methods and HYDRA. 

Specifically, K-means is a vector quantification method that aims to partition the patient 

population into k clusters in which each participant belongs to the cluster with the nearest 

mean (Hartigan and Wong, 1979). GMM performs clustering by assuming that there are 

specific numbers of Gaussian distributions in patients, and each of these distributions 

belongs to one cluster (McLachlan and Basford, 1988). NMF aims to factorize the input 

matrix into two low-rank matrices with non-negative values. Intrinsically, the loading 

coefficient matrix conveys the clustering membership assignment (Lee and Seung, 2001). 

Lastly, the agglomerative hierarchical clustering (AHC) method is another unsupervised 

clustering method that seeks to build a hierarchy of clusters in a “bottom-up” fashion (Day 

and Edelsbrunner, 1984). Moreover, we fit the unsupervised methods and HYDRA with 

i) single-scale features (dotted curve lines in Fig. 4) and ii) multi-scale features (solid 

straight lines in Fig. 4) together for comprehensive comparisons, since MAGIC always take 

multi-scale features.

As displayed in Fig. 4, MAGIC obtained slightly better clustering results than HYDRA 

and substantially outperformed all other unsupervised clustering methods (i.e., K-means, 

GMM, NMF, and agglomerative hierarchical clustering). Specifically, MAGIC obtained 

higher ARI_GTs for the following experiments: k=2 & ASL=0.1 (Fig. 4A), k=3 & ASL=0.1 

or 0.2 or 0.3 (Fig. 4D, E and F), and k=4 & ASL=0.2 or 0.3 (Fig. 4H and I). All methods 

failed in clustering for experiment k=4 & ASL=0.1 (Fig. 4G). Furthermore, fitting all multi-

scale features for HYDRA did not always perform better than the single-scale features and 

performed worse than MAGIC. Of note, fitting all multi-scales features (i.e., 910 features) 
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for HYDRA took a much longer time to converge the model than single-scale HYDRA 

or MAGIC. For all experiments, we showed the consensus clustering performance and the 

standard deviation of the clustering performance across the 100 repetitions (Fig. 4). We 

decided not to report P-values because the “probability” of a false positive in this cross-

validation scenario tends to be inflated. After all, no unbiased estimator of the correlation 

between the results obtained on the different repetitions exists (Nadeau and Bengio, 2003).

4.2.3. Influence of the number of clusters—When the number of clusters k 
increased, MAGIC’s clustering performance gradually decreased (i.e., each column in Fig. 

4 represents the three experiments with the same ASL), except for experiments k=4 & 

ASL=0.3. For ASL=0.1, the ARI_GTs are 0.610, 0.368 and 0.091 for k=2, 3 and 4, 

respectively. For ASL=0.2, the ARI_GT decreased from 0.960 to 0.934 and to 0.713 for 

k=2, 3 and 4, respectively. For ASL=0.3, the ARI_GTs are 0.994, 0.995 and 0.966 for k=2, 3 

and 4, respectively.

4.2.4. Influence of atrophy strength levels—With the increase of ASL, MAGIC’s 

clustering performance gradually improved (i.e., each row in Fig. 4 represents the three 

experiments with the same k). For k=2, the ARI_GTs are 0.610, 0.960 and 0.994 for 

ASL=0.1, 0.2 and 0.3, respectively. For k=3, the ARI_GT increased from 0.368 to 0.934 and 

to 0.995 for ASL=0.1, 0.2 and 0.3, respectively. For k=4, the ARI_GTs are 0.091, 0.713 and 

0.966 for ASL=0.1, 0.2 and 0.3, respectively.

We visualized the subtypes/clusters in 2D space for all experiments using multidimensional 

scaling (Cox and Cox, 2008) (Fig. 5). With the increase of ASL at a given k, the clusters 

become more separable (i.e., each row in Fig. 5 represents the three experiments with the 

same k).

4.2.5. Influence of overlapping atrophy patterns—We generated overlapping 

atrophy patterns based on the original experiments for each k. For k=2, Sub2 had subcortical 

atrophy in the initial experiments (Fig. 3), and we additionally simulated parietal atrophy. 

Similarly, for k=3 and 4, global cortical atrophy was imposed within Sub1 (frontal atrophy 

subtype in the original experiments) and Sub3 (temporal atrophy subtype in the initial 

experiments) members, respectively. The ground truth of overlapping neuroanatomical 

patterns is detailed in supplementary eFigure 2.

As shown in Table 3, MAGIC obtained inferior clustering performance compared to the 

original experiments for i) k=2 & ASL=0.1, ii) k=3 & ASL=0.1, iii) k=3 & ASL=0.2 and iv) 

k=4 & ASL=0.2, and comparable results for experiments with ASL=0.3. The results for the 

ARI_CV, voxel-wise effect size maps and the 2D visualization of subtypes are presented in 

supplementary eFigure 2, 3 and 4, respectively.

4.2.6. Influence of larger regional brain volumes—Instead of simulating brain 

atrophy as in the original experiments (Fig. 3), we introduced larger brain volumes by 

increasing the voxel’s intensity value inside the pre-defined patterns for Sub2 members for 

experiments k=2, Sub3 members for experiments k=3 and Sub4 members for experiments 

k=4. The simulated neuroanatomical patterns are detailed in supplementary eFigure 5.

Wen et al. Page 13

Med Image Anal. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As shown in Table 3, MAGIC obtained comparable clustering performance to all settings’ 

original experiments. The results for the ARI_CV, voxel-wise effect size maps, and the 2D 

visualization of subtypes are presented in supplementary eFigure 5, 6, and 7, respectively.

4.2.7. Influence of data imbalance—We first evaluated the influence of data 

imbalance for CN vs. subtypes. The imbalance ratios were achieved by randomly 

subsampling from the groups of subtypes. As shown in Fig. 6 A, B, and C, clustering 

performance considerably increased when the groups became more balanced. With the 

highest imbalance ratio (8:1), all experiments obtained the lowest ARI_GTs. Generally, the 

ratios of 2:1 performed on par with the ratios of 1:1 and 1:2.

We then evaluated the influence of data imbalance among subtypes by assuming that CN 

and PT (sum of all subtypes) were balanced (Fig. 6D, E, and F). Similarly, clustering 

performance considerably increased with more balanced data. On the other hand, when ASL 

is large (i.e., 0.3), data imbalance showed a limited impact on clustering performance (e.g., 

Fig. 6D and E).

4.2.8. Influence of sample size—The influence of the sample size on clustering 

performance was assessed (Fig. 6G, H and I). For each experiment, MAGIC was run with 

data ranging from 10% to 100% of the sample size by keeping the original group ratios 

unchanged (i.e., CN vs. Sub1 vs. Sub2 vs …).

Generally, clustering performance improved with the increasing sample size. For 

experiments k=2 & ASL=0.3 and k=3 & ASL=0.3, clustering performance was almost 

perfect at all different sample size choices. For experiment k=4 & ASL=0.1 (Fig. 6I), 

MAGIC obtained poor clustering performance.

4.3. Experiments using Alzheimer’s disease data

When applied to ADNI data, ARI_CV was the highest at k=2 (<0.5), compared to other 

values of k (Fig. 7A). For k=2, The effect size maps revealed two distinct neuroanatomical 

patterns: i) Sub1 (N=396) showed relatively normal brain anatomy, except for focalized 

brain atrophy in subcortical regions. In contrast, Sub2 (N=791) had diffuse atrophy with 

the largest effect size (Cohen’s f2 = 0.45) in the hippocampus, amygdala, and temporal 

regions (Fig. 7B). For k=3, the three subtypes all presented diffuse brain atrophy (Fig. 7C). 

For k=4, Sub1 (N=363) showed only focal atrophy in temporal regions. Sub2 (N=416) is 

the typical AD pattern showing whole-brain atrophy and most severe atrophy in temporal 

and hippocampus regions. Sub3 (N=210) showed atypical AD patterns without affecting the 

hippocampus and temporal lobes (Fig. 7D). Sub4 (N=198) preserved relatively normal brain 

anatomy. Large effect sizes were detected in all subtypes but the neuroanatomical patterns 

overlapped and were focalized.

The CV procedure obtained consistently higher ARI_CV for k=2. It generally divides the 

patients into mild and severe atrophied groups, which might not be clinically interesting. 

Using different semi-supervised clustering techniques but similar populations (AD and MCI 

from ADNI), we previously found four distinct subtypes (Dong et al., 2016b; Yang et al., 

2021). Moreover, these subtypes have been previously reported in the works from other 
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groups (see the Discussion section). To sum up, the results of ARI_CV, together with our 

semi-simulated experiments (Fig. 2D), might indicate that the CV procedure does not detect 

the true k due to unfavorable clustering conditions (e.g., the focalized effects or small 

sample size). Taken all together, we focused on k=4 for subsequent ADNI analyses.

To support our claims, we compared the clinical characteristics of the four subtypes (Fig. 

7E). Details are presented in supplementary eTable 1 for statistics and data availability. In 

general, Sub2 showed the highest TTau (127.62) and PTau (45.16), the highest ApoE Ɛ4 

carrier rate (68%), and the most deficient cognitive performance across the four domains, 

whereas Sub4 showed the opposite trend and represented a more normal-like clinical and 

neuroimaging profile.

We demonstrated the utility of MAGIC for a binary classification task (541 CN vs 339 

AD) using ADNI data and compared it to HYDRA and a linear SVM. We adopted the 

same cross-validation (CV) procedure as MAGIC for all models for a fair comparison. 

The constructed polytope was used for classification with MAGIC and HYDRA. MAGIC 

(0.85±0.03) obtained slightly better performance than HYDRA (0.84±0.04) and a linear 

SVM (0.82±0.04) (supplementary eFigure 8).

4.4. Experiments using schizophrenia data

We then applied MAGIC to PHENOM data. For model selection, the CV procedure showed 

consistently higher ARI_CV values for k=2 (ARI_CV>0.6) compared to other resolutions 

(Fig. 8A). For k=2, the effect size maps revealed two distinct neuroanatomical patterns: 

Sub1 (N=383) showed widespread brain atrophy compared to CN, with the highest effect 

size (Cohen’s f2=0.35) in the thalamus and insula. In contrast, Sub2 (N=200) exhibited no 

brain atrophy but larger brain volumes than CN in the pallidum and putamen (Fig. 8B). For 

k=3, the first two subtypes [Sub1 (N=302) and Sub2 (N=185)] persisted, and Sub3 (N=96) 

showed atrophy in frontal lobe and insula regions (Fig. 8C). For k=4, Sub4 (N=109) showed 

diffuse atrophy patterns with a small effect size (Cohen’s f2<0.07) (Fig. 8D).

For k=2, MAGIC validated the two subtypes revealed in our previous work, in which 

HYDRA and a smaller sample size (364 CN and 307 SCZ) were used to derive the two 

subtypes (Chand et al., 2020). Subsequently, we compared the clinical characteristics of the 

two subtypes (Fig. 8E). Details are presented in supplementary eTable 2. Sub2 showed better 

performance in the global assessment of functioning (GAF) scale.

5. Discussion

Synopsis

This paper presents MAGIC, a novel multi-scale semi-supervised clustering method for 

dissecting disease heterogeneity. The proposed method seamlessly integrates multi-scale 

representation learning and semi-supervised clustering in a coherent framework via a 

double-cyclic optimization procedure to yield scale-agnostic delineation of heterogeneous 

disease patterns. In contrast to existing unsupervised approaches presented in (Ezzati et al., 

2020, 2020; Jeon et al., 2019, 2019; Jung et al., 2016; Lubeiro et al., 2016; Nettiksimmons 

et al., 2014; Ota et al., 2016; Pan et al., 2020; Park et al., 2017; Planchuelo-Gómez 
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et al., 2020; Poulakis et al., 2020, 2020, 2018; Sugihara et al., 2016; Ten Kate et al., 

2018), MAGIC is a semi-supervised approach, leveraging the patient-control dichotomy 

to drive subtypes that reflect distinct pathological processes. In contrast to the existing 

state-of-the-art semi-supervised clustering method (i.e., HYDRA), MAGIC can accurately 

delineate effect patterns that are both global and focal, thanks to its multi-scale optimization 

routine. The validity of MAGIC is demonstrated in semi-simulated experiments. We show 

MAGIC’s ability to discern disease subtypes and their neuroanatomical patterns under 

various simulated scenarios constructed by varying the ASL, sample size, and sample 

imbalance, respectively. More importantly, we showcased that the results of the analyses 

on ADNI and PHENOM datasets and the semi-simulated experiments exquisitely echo each 

other. Two clinically distinct subtypes of SCZ patients are established with high confidence, 

corresponding to the simulation where the clustering conditions are favorable. In contrast, 

the four subtypes in AD and MCI are less convincing, reflecting the simulation where the 

conditions are hard to disentangle.

MAGIC outperforms comparable heterogeneity analysis methods

Concerning clustering performance, MAGIC outperformed competing methods. On the one 

hand, compared to HYDRA, the minor gain in clustering accuracy in MAGIC is likely 

driven by multi-scale features that can better explain the variance due to heterogeneity. We 

hypothesize that the opNMF multi-scale components accurately reflect multi-scale brain 

organization that has previously been demonstrated in network analysis (Betzel and Bassett, 

2017), brain modeling (Schirner et al., 2018), and signal processing (Starck et al., 1998) 

in the literature. Furthermore, multi-scale learning has shown great potential in medical 

imaging for different tasks, such as segmentation (Doshi et al., 2016; Kamnitsas et al., 

2017) or classification (Cui et al., 2016; Hu et al., 2016). On the other hand, MAGIC 

substantially outperforms unsupervised clustering methods. Since unsupervised clustering 

methods directly partition patient samples into clusters based on similarity/dissimilarity or 

distance (Altman and Krzywinski, 2017), they may be more likely driven by confounding 

factors such as brain size, age, and sex instead of pathology-related variations, which is 

partially addressed by MAGIC. Namely, MAGIC can derive pathology-driven subtypes in a 

multi-scale manner by leveraging the reference label (i.e., CN) and the fuzzy patient labels 

(i.e., PT).

Under what conditions does MAGIC succeed or fail?

The critical yet challenging choice to be made in all algorithms related to clustering is to 

choose the appropriate number of clusters (Climescu-Haulica, 2007; Fu and Perry, 2020; 

Mirkin, 2011), since all clustering methods find patterns in data - whether they are real or 

not (Altman and Krzywinski, 2017). In addition to providing a new clustering method, we 

provided guidelines to these heterogeneity analysis algorithms’ practitioners. Specifically, 

our experiments shed light on selecting the number of clusters and provide criteria when 

the clustering analysis is reliable and when it needs to be approached with caution. In 

general, we suggest performing model selection using a cross-validation strategy based on 

clustering stability. In our experiments, ARI reliably recovered the ground truth number 

of clusters when the ASL and sample size were large and data was reasonably balanced. 

However, one should note that a lower number of clusters intrinsically gives more stable 
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results (i.e., higher ARI_CV). In such cases, in actual clinical applications, other insights 

may be required to support further the subtypes found, such as the effect size map or prior 

clinical knowledge.

Different choices of the key components (e.g., sample size or data imbalance) have 

detrimental or positive influences on clustering. With the increase of the complexity of 

clustering (e.g., increasing the number of clusters or decreasing ASL), MAGIC’s clustering 

performance degrades gradually. This is to be expected as the boundaries between clusters 

become increasingly blurred and indivisible. Moreover, imbalanced data have adverse 

effects on clustering results. This is in line with previous findings (Dubey et al., 2014; 

Samper-González et al., 2018). The authors found that balanced data obtained better 

classification results than the imbalanced using T1w MRI from ADNI. Note that MAGIC 

essentially performs clustering and supervised classification simultaneously. Unsurprisingly, 

increased sample size leads to better clustering performance, consistent with the findings 

from previous studies (Abdulkadir et al., 2011; Chu et al., 2011; Franke et al., 2010; 

Samper-González et al., 2018; Schulz et al., 2020b). The rule of thumb in semi-supervised 

clustering is to collect moderately balanced data and large samples in practice. Finally, 

instead of larger brain patterns, adding overlapping patterns made it more difficult to 

disentangle these effects. The former situation is more commonly present in practice. In 

these cases, larger sample cohorts may be needed to unravel the overlapping heterogeneity.

Our semi-simulated experiments are of great value for assessing clustering results. They 

enable us to understand potential false-positive results. Namely, suppose the sample size, 

ARI_CV, and/or the effect sizes are low. In that case, none of the existing methods may 

uncover the true heterogeneity or may reveal a lower number of subtypes than what is 

present.

Subtypes in AD and MCI

Applying the proposed method to structural imaging data from ADNI indicates that the 

current sample size or technique cannot detect the “true” number of clusters. This result is 

consistent with the semi-simulated experiment, in which the resolution of k=2 intrinsically 

tends to be higher when the clustering conditions are less favorable (Fig. 2D). In such 

cases, clinical priors and external validation of the claimed subtypes are highly demanded. 

Furthermore, neurodegenerative diseases are highly heterogeneous, and the neuroanatomical 

patterns might be highly overlapping. For instance, previous autopsy studies (DeTure and 

Dickson, 2019; Perl, 2010) have shown that pure AD cases are relatively infrequent, as AD 

and other comorbid conditions (e.g., vascular disease or Lewy body disease) often co-exist 

(Rabinovici et al., 2016).

Among the four subtypes, Sub4 displays normal brain anatomy (Fig. 7D). This was 

supported by the distribution of AD/MCI. Sub4 (164 MCI & 34 AD) has the highest 

proportion of MCI. The normal anatomy subtype has been confirmed in previous works both 

from semi-supervised and unsupervised methods (Dong et al., 2016b; Ezzati et al., 2020; 

Jung et al., 2016; Nettiksimmons et al., 2014; Ota et al., 2016; Poulakis et al., 2020, 2018; 

Ten Kate et al., 2018; Yang et al., 2020). Sub2 showed typical AD-like neuroanatomical 

patterns with diffuse atrophy over the whole brain, with the largest effect size in the 
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hippocampus and medial temporal lobe. Those affected regions have been widely reported 

as hallmarks of AD in case-control studies (Hanyu et al., 1998; Müller et al., 2005; Varghese 

et al., 2013) and have been confirmed in previous clustering literature (Dong et al., 2016b; 

Nettiksimmons et al., 2014; Noh et al., 2014; Poulakis et al., 2018; Ten Kate et al., 2018; 

Varol et al., 2017; Yang et al., 2020; Young et al., 2018). Conversely, Sub3 showed an 

atypical widespread atrophy pattern that did not include the hippocampus and the temporal 

lobe (Dong et al., 2016b; Poulakis et al., 2018; Yang et al., 2020).

The clinical characteristics of the four subtypes are in line with their neuroanatomical 

patterns (Fig. 7E). The normal-like subtype had the lowest level with respect to CSF 

amyloid-b 1–42, CSF-tau levels, most minor cognitive impairment. Moreover, despite the 

methodological differences across studies, the resulting subtypes’ agreement emphasizes 

that AD should be considered a neuroanatomically heterogeneous disease. These distinct 

imaging signatures or dimensions may elucidate different brain mechanisms and pathways 

leading to AD and eventually contribute to the refinement of the “N” dimension in the 

“A/T/N” system (Jack et al., 2016).

Subtypes in schizophrenia

MAGIC discovered two highly reproducible and neuroanatomically distinct subtypes in 

schizophrenia patients. MAGIC obtained consistently higher clustering stability for k=2 

(ARI_CV>0.6) and large effect size for subtypes’ neuroanatomical patterns. Furthermore, 

these two subtypes were retained for a higher resolution of the number of subtypes 

(k>2). Sub1’s neuroanatomical patterns are in line with previous case-control literature, 

demonstrating widespread GM atrophy (Okada, N et al., 2016; Rozycki et al., 2018; van Erp 

et al., 2016). In contrast, Sub2 showing larger brain volume in basal ganglia corresponds to 

previous works reporting subcortical GM increases (Brugger and Howes, 2017; Okada, N et 

al., 2016, 2016; W. Zhang et al., 2015). Moreover, Sub2 showed less functional disability 

(higher GAF). The two subtypes found by MAGIC reinforce the need for the refinement of 

the neuroanatomical dimensions in schizophrenia.

Potential and challenges

The application of clustering methods to neuroimaging data has recently drawn significant 

attention and has led to several key publications in recent years. Herein we demonstrated 

MAGIC’s potential for dissecting the neuroanatomical heterogeneity of brain diseases, 

indicating that the current “all-in-one-bucket” diagnostic criteria may not be appropriate 

for certain neurodegenerative and neuropsychiatric disorders. On the other hand, clustering 

methods always end up with clusters, even if there are no natural clusters in the data 

(Altman and Krzywinski, 2017). If they indeed exist, the disease subtypes often present 

neuroanatomically overlapping patterns, unlike the semi-simulated conditions with purely 

defined orthogonal patterns. None of the heterogeneity analysis tools were sufficiently 

powered to accurately disentangle heterogeneity in small sample cohorts or with weak 

discriminative power of pattern identifiability in our experiments. In this case, care must be 

taken to provide additional information, such as external validation of subtypes to clinical 

profiles, to substantiate any clinical interpretation of the identified subtypes.
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To sum up, our semi-simulated results and the application to ADNI and PHENOM datasets 

emphasize the value of the current work. We provide the semi-simulated experiments and 

the proposed model to the community and offer new vistas for future research in refining 

subtypes in brain diseases. The reproducibility of clustering, effect size maps of subtypes, 

and sample imbalance should be carefully examined. Ultimately, good practices, such as 

extensive reproducibility analyses, including permutation tests (Chand et al., 2020), should 

be performed to support the subtypes’ stability and robustness. However, we observed 

a steady improvement of clustering performance with increased sample sizes even with 

overlapping anatomical patterns. This is a promising sign for the utility of these machine 

learning-based clustering tools with the increasing demand for large neuroimaging consortia.

Our model nevertheless has the following limitations. First, MAGIC is designed for “pure” 

clustering tasks that seek the disease’s subtypes without considering the disease progression 

factors or stages (Young et al., 2018). A future direction is extending MAGIC to assign 

subtypes to longitudinal scans and study disease progression. Moreover, the sample size of 

AD necessary to draw a solid conclusion for those subtypes may be larger than analyzed. 

Clustering performance was positively associated with sample size in our simulation. 

Moreover, a possible extension of the proposed method is integrating clinical or genetic 

data to derive subtypes that show consistency across different modalities. Lastly, external 

validation of the claimed AD subtypes to an independent dataset, such as the Dementias 

Platform UK (DPUK) (Bauermeister et al., 2020), is another future direction.
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SCZ Schizophrenia

GM Grey matter

MCI Mild cognitive impairment

CN Healthy control

ML Machine learning

ARI Adjusted Rand index

ASL Atrophy strength level

PT Patients

Sub Subtype

CV Cross-validation

QC Quality control

ARI_CV ARIs during CV

ARI_GT ARIs for ground truth

T1w MRI T1-weighted MRI

MRI Magnetic resonance imaging

NMF Non-negative matrix factorization

VBA Voxel-based analysis

MVPA Multivariate pattern analysis

SVM Support vector machine

Table of variables

k 
Number of clusters/subtypes

M 
Number of components

N 
Number of subjects

D 
Number of voxels

X 
Input matrix
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C 
Component matrix

L 
Loading coefficient matrix

y 
Input label

w 
SVM weight

b 
SVM bias

S 
Subtype membership matrix

S*
Final subtype membership matrix after consensus clustering

i 
Index of number of subjects

j 
Index of number of clusters/subtypes
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Highlights

• We propose a novel multi-scale semi-supervised clustering method, termed 

MAGIC, to disentangle the heterogeneity of brain diseases.

• We perform extensive semi-simulated experiments on large control samples 

(UK Biobank, N=4403) to precisely quantify performance under various 

conditions, including varying degrees of brain atrophy, different levels of 

heterogeneity, overlapping disease subtypes, class imbalance, and varying 

sample sizes.

• We apply MAGIC to MCI and Alzheimer’s disease (ADNI, N=1728) and 

schizophrenia (PHENOM, N=1166) patients to dissect their neuroanatomical 

heterogeneity, providing guidance regarding the use of the semi-simulated 

experiments to validate the subtypes found in actual clinical applications.
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Figure 1. 
Schematic diagram of the MAGIC algorithm. MAGIC first generates multi-scale feature 

representations of the brain anatomy from coarse to fine resolutions and then cyclically 

solves semi-supervised clustering subproblems with each of these feature representations. 

Generally, it consists of three key components. A) opNMF enables the extraction of 

multi-scale, biologically interpretable feature representations in a data-driven manner. 

B) max-margin multiple SVM classifiers are utilized to construct a nonlinear polytope 

for simultaneous classification and clustering. In this fashion, the patients’ subtypes or 

subpopulations are clustered based on their distance from the polytope. C) the double-cyclic 

optimization procedure is adopted to fuse the knowledge from multi-scale features for 

inter-scale consistent clustering solutions. Specifically, the cluster polytope is first initialized 

at a specific representation scale. After optimization, the cluster polytope is transferred to 

the next representation scale, allowing the clustering routine to be guided by all anatomical 

scales. Furthermore, the polytope initialization is performed at different anatomical scales to 

further remove bias from the clustering solutions. Lastly, the resulting multi-scale clustering 

solutions are fused through consensus clustering to yield a final stable subtype membership 

assignment. X: input matrix; C: component matrix; L: loading coefficient matrix; CN: 

healthy control; Sub: subtype; M: number of components. S is the initial polytope solution. 

S1, S2, and S3 are the fine-tuned polytope for different initialization models, and S* is the 

final polytope after the consensus clustering procedure.
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Figure 2. 
MAGIC finds the ground truth of the number of clusters (k) when the clustering conditions 

are favorable, i.e., higher ASL or lower k. The “optimal” k was determined by ARI_CV. A) 

k=2 & ASL=0.1; B) k=2 & ASL=0.2; C) k=2 & ASL=0.3; D) k=3 & ASL=0.1; E) k=3 & 

ASL=0.2; F) k=3 & ASL=0.3; G) k=4 & ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3. 

The bold lines represent the ground truth of k for each experiment.
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Figure 3. 
MAGIC finds the ground truth of subtype’s neuroanatomical patterns when the clustering 

conditions are favorable, i.e., higher ASL or lower k. Neuroanatomical patterns are 

displayed using effect size maps based on voxel-wise group comparisons between CN 

and subtypes. Positive values denote brain atrophy (CN > Sub), while negative values 

correspond to larger brain volume in subtypes (CN < Sub). The ground truth of the 

subtypes pattern is presented with a binary mask (white) for each k in the first column. 

Moreover, we proposed a simulation accuracy metric (ACC): the proportion of the number 

of voxels that passed the statistical significance in the P-value mask maps over the number 

of voxels in the ground truth mask that was masked by the population-based RAVENS 

GM tissue mask. A) k=2 & ASL=0.1, Sub1: ACC=0.77, Sub2: ACC=0.81; B) k=2 & 

ASL=0.2, Sub1: ACC=0.78, Sub2: ACC=0.84; C) k=2 & ASL=0.3, Sub1: ACC=0.78, Sub2: 

ACC=0.89; D) k=3 & ASL=0.1, Sub1: ACC=0.67, Sub2: ACC=0.70, Sub3: ACC=0.82; 

E) k=3 & ASL=0.2, Sub1: ACC=0.73, Sub2: ACC=0.74, Sub3: ACC=0.87; F) k=3 & 

ASL=0.3, Sub1: ACC=0.76, Sub2: ACC=0.72, Sub3: ACC=0.89; G) k=4 & ASL=0.1, 

Sub1: ACC=0.55, Sub2: ACC=0.54, Sub3: ACC=0.66, Sub4: ACC=0.59; H) k=4 & 
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ASL=0.2, Sub1: ACC=0.66, Sub2: ACC=0.64, Sub3: ACC=0.65, Sub4: ACC=0.77; I) k=4 

& ASL=0.3, Sub1: ACC=0.63, Sub2: ACC=0.66, Sub3: ACC=0.64, Sub4: ACC=0.79. For 

reference, Cohen’s f2 ≥ 0.02, ≥ 0.15, and ≥ 0.35 represent small, medium, and large effect 

sizes, respectively.
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Figure 4. 
MAGIC outperforms other common clustering methods. Comparisons of clustering 

performance between different methods: MAGIC, HYDRA, K-means, GMM, NMF, and 

agglomerative hierarchical clustering (AHC) (M=40 to 100 with a step as 5). The solid 

straight lines show clustering results for models that take multi-scale features as input and 

are drawn over all Ms only for visualization purposes. The dotted curve lines represent 

clustering results for models that take single-scale features as input. A) k=2 & ASL=0.1; 

B) k=2 & ASL=0.2; C) k=2 & ASL=0.3; D) k=3 & ASL=0.1; E) k=3 & ASL=0.2; F) k=3 

& ASL=0.3; G) k=4 & ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3. We report the 

final consensus clustering performance (ARI_GT) for all models, together with the standard 

deviation of the 100-repetition clustering results during CV. For models using single-scale 

features, we show the results with the single-scale obtaining the highest ARI_GT.
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Figure 5. 
Clusters found by MAGIC become more distinguishable when the clustering conditions 

are favorable, i.e., higher ASL or lower k. The clusters were projected into 2D space 

for visualization. Dimension 1 and Dimension 2 represent the two components projected 

by multidimensional scaling methods. A) k=2 & ASL=0.1; B) k=2 & ASL=0.2; C) k=2 

& ASL=0.3; D) k=3 & ASL=0.1; E) k=3 & ASL=0.2; F) k=3 & ASL=0.3; G) k=4 & 

ASL=0.1; H) k=4 & ASL=0.2; I) k=4 & ASL=0.3.
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Figure 6. 
The influence of different ratios of imbalanced data between CN vs. subtypes is presented 

in Fig. A, B, and C, among subtypes in Fig. D, E and F. The influence of sample size is 

displayed in Fig. G, H, and I. A) influence of data imbalance between CN and subtypes 

for k=2; B) influence of data imbalance between CN and subtypes for k=3; C) influence of 

data imbalance between CN and subtypes for k=4; D) influence of data imbalance among 

subtypes for k=2. Clustering performance improves with the increase of the sample size. E) 

influence of data imbalance among subtypes for k=3; F) influence of data imbalance among 

subtypes for k=4; G) influence of sample sizes for k=2; H) influence of sample sizes for 

k=3; I) influence of sample sizes for k=4.
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Figure 7. 
Applying MAGIC to AD and MCI patients of ADNI. A) Cross-validation for choosing 

the “optimal” k. In general, the ARI_CV is low for all different choices of k and with 

the highest for k=2. B) Voxel-wise effect size (Cohen’s f2) maps for the neuroanatomical 

patterns between the two subtypes and CN. C) Effect size maps for the three subtypes 

and CN neuroanatomical patterns. D) Effect size maps for the neuroanatomical patterns 

between the four subtypes and CN. E) Clinical characteristics for the four subtypes and CN. 

Mann–Whitney–Wilcoxon test was used for continuous variables and the Chi-square test 

of independence for categorical variables. The significance threshold is 0.05 and * denotes 

statistical significance. All continuous variables were normalized for visualization purposes. 

We harmonized the low-dimensional components using the Combat-GAM model (Pomponio 

et al., 2019) to mitigate the site effect.
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Figure 8. 
Applying MAGIC to schizophrenia patients from PHENOM. A) Cross-validation for 

choosing the “optimal” k. B) Voxel-wise effect size maps for the neuroanatomical patterns 

between the 2 subtypes and CN. C) Effect size maps for the neuroanatomical patterns 

between the three subtypes and CN. D) Effect size maps for the neuroanatomical patterns 

between the four subtypes and CN. E) Clinical characteristics for the two subtypes. Mann–

Whitney–Wilcoxon test was used for continuous. The significance threshold is 0.05 and * 

denotes statistical significance. All continuous variables were normalized for visualization 

purposes. GAF: global assessment of functioning. We harmonized the low-dimensional 

components using the Combat-GAM model (Pomponio et al., 2019) to mitigate the site 

effect. Disease onset: age at onset.
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Table 1.

Summary of participant demographics for UKBB, ADNI, and PHENOM datasets. Values for age are 

presented as mean ± SD [range]. M: male, F: female.

Study Diagnosis Subjects Age Gender

UKBB CN 4403 63.21±7.41 [45, 80] 2068 M / 2335 F

CN 541 74.02±5.79 [56, 90] 253 M / 288 F

ADNI MCI 848 73.15±7.56 [54, 89] 504 M / 344 F

AD 339 74.78±7.87 [55, 90] 186 M / 153 F

PHENOM CN 583 32.20±11.98 [13, 86] 302 M / 281 F

SCZ 583 33.70±11.04 [14, 78] 392 M / 191 F
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Table 2.

Summary of the original semi-simulated experiments. The number of subjects for each group is shown in 

parentheses. ASL: atrophy strength level; k: the number of clusters. Sub: Subtype.

Experiment Subtype and sample size

k=2 & ASL=0.1 CN (2201), Sub1 (1101), Sub2 (1101)

k=2 & ASL=0.2 CN (2201), Sub1 (1101), Sub2 (1101)

k=2 & ASL=0.3 CN (2201), Sub1 (1101), Sub2 (1101)

k=3 & ASL=0.1 CN (1103), Sub1 (1100), Sub2 (1100), Sub3 (1100)

k=3 & ASL=0.2 CN (1103), Sub1 (1100), Sub2 (1100), Sub3 (1100)

k=3 & ASL=0.3 CN (1103), Sub1 (1100), Sub2 (1100), Sub3 (1100)

k=4 & ASL=0.1 CN (883), Sub1 (880), Sub2 (880), Sub3 (880), Sub4 (880)

k=4 & ASL=0.2 CN (883), Sub1 (880), Sub2 (880), Sub3 (880), Sub4 (880)

k=4 & ASL=0.3 CN (883), Sub1 (880), Sub2 (880), Sub3 (880), Sub4 (880)
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Table 3.

Comparison of the original clustering performance (left column) to the influence of overlapping atrophy 

patterns (middle column) and the larger brain volume (right column). Compared to the original experiments, 

overlapping atrophy patterns result in lower clustering performance, while larger brain volume shows no 

extensive clustering performance effects.

Experiment Original experiments Overlapping atrophy patterns Larger brain volume

k=2 & ASL=0.1 0.610 0.501 0.562

k=2 & ASL=0.2 0.960 0.946 0.947

k=2 & ASL=0.3 0.962 0.962 0.962

k=3 & ASL=0.1 0.368 0.281 0.393

k=3 & ASL=0.2 0.934 0.879 0.926

k=3 & ASL=0.3 0.995 0.977 0.976

k=4 & ASL=0.1 0.091 0.111 0.210

k=4 & ASL=0.2 0.713 0.628 0.731

k=4 & ASL=0.3 0.966 0.967 0.965
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