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Abstract

Purpose: In the multi-atlas segmentation (MAS) method, a large enough atlas set, which can
cover the complete spectrum of the whole population pattern of the target object will benefit

the segmentation quality. However, the difficulty in obtaining and generating such a large set of
atlases and the computational burden required in the segmentation procedure make this approach
impractical. In this paper, we propose a method called SOMA to select subject-, object-, and
modality-adapted precision atlases for automatic anatomy recognition in medical images with
pathology, following the idea that different regions of the target object in a novel image can be
recognized by different atlases with regionally best similarity, so that effective atlases have no
need to be globally similar to the target subject and also have no need to be overall similar to the
target object.

Methods: The SOMA method consists of three main components: atlas building, object
recognition, and object delineation. Considering the computational complexity, we utilize an
all-to-template strategy to align all images to the same image space belonging to the root image
determined by the minimum spanning tree (MST) strategy among a subset of radiologically
near-normal images. The object recognition process is composed of two stages: rough recognition
and refined recognition. In rough recognition, subimage matching is conducted between the test
image and each image of the whole atlas set, and only the atlas corresponding to the best-matched
subimage contributes to the recognition map regionally. The frequency of best match for each atlas
is recorded by a counter, and the atlases with the highest frequencies are selected as the precision
atlases. In refined recognition, only the precision atlases are examined, and the subimage matching
is conducted in a nonlocal manner of searching to further increase the accuracy of boundary
matching. Delineation is based on a U-net-based deep learning network, where the original gray
scale image together with the fuzzy map from refined recognition compose a two-channel input to
the network, and the output is a segmentation map of the target object.
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Results: Experiments are conducted on computed tomography (CT) images with different
qualities in two body regions — head and neck (H&N) and thorax, from 298 subjects with nine
objects and 241 subjects with six objects, respectively. Most objects achieve a localization error
within two voxels after refined recognition, with marked improvement in localization accuracy
from rough to refined recognition of 0. 6-3 mm in H&N and 0. 8-4. 9 mm in thorax, and also in
delineation accuracy (Dice coefficient) from refined recognition to delineation of 0. 01-0. 11 in
H&N and 0. 01-0. 18 in thorax.

Conclusions: The SOMA method shows high accuracy and robustness in anatomy recognition
and delineation. The improvements from rough to refined recognition and further to delineation,
as well as immunity of recognition accuracy to varying image and object qualities, demonstrate
the core principles of SOMA where segmentation accuracy increases with precision atlases and
gradually refined object matching.
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INTRODUCTION

1.1| Background

Prior knowledge-based anatomy segmentation methods have shown their strength and
robustness in the field of medical image analysis. Typical methods include those based

on shape and geographic models, 1> atlases,®-11 and deep neural network models.12-16 The
models, whether generated directly from the consensus of shapes among a set of samples
or based on deep learning networks, all suffer from the problem that information is blurred
when models are created, affecting decision making. Compared to shape and geographic
model-based methods, which first determine models and then match target objects, some
atlas-based methods directly use raw intensity images for decision making on specific
patient images, which is the basis of precision medicine.

Most applications of the multi-atlas segmentation (MAS) approach® lie in automatic
structural segmentation in brain magnetic resonance imaging (MRI) data,1’-23 while MAS
has also shown usefulness in the segmentation of objects in images of different modalities2*
such as MRI, computed tomography (CT), ultrasonography, and in different body regions
such as head and neck (H&N),25-30 thorax,3! abdomen,32:33 and multiple body regions.34-3
An implicit assumption in the MAS method is that there should be a large enough atlas

set, which has complete and perfect segmentations of target objects and which covers the
object shape and geographic layout patterns and image intensity appearance patterns of the
whole population of subjects under study. Also, when segmenting an object from an unseen
input image, it assumes that there exists a subset of the atlases that closely resembles the
pattern for this specific input case.36 These assumptions are usually not satisfied, which
result in suboptimal segmentation. It is also unrealistic to obtain an infinitely large atlas set
with complete reference delineations of objects that can account for all kinds of individual
variations.3” The basic question of the minimum number of atlas images needed to be able
to cover the subject-specific patterns of variation is only now beginning to be addressed.38
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To further develop the precision idea as applicable to MAS methods, we propose an atlas
selection approach named SOMA, utilizing subject-, object-, and modality-adapted precision
atlases, which largely increases the implicit patterns included in the atlas set by recognizing
different parts of the target object in a novel image from different atlases, where the atlases
with the highest frequencies of partial similarity comprise the sample-specific precision
atlases.

Related works

The basic steps of atlas-based segmentation methods include registration, atlas selection,
and label fusion, and numerous strategies are proposed to improve one or more of them
specifically adapted to their application and increase the segmentation accuracy. Registration
is a fundamental preprocessing step through which the target image and atlas images are
adjusted into a same image space where the atlas labels can be spatially propagated properly.
Registration can be group-wise3? via tree-based strategies??41 or template strategies,*? and
can be target-specific#3 where all atlases are registered to the target image. Based on the
computational complexity, registration can be a simple rigid transformation or a nonrigid
deformation.1044 Besides simply taken as a preprocessing step, registration can further
provide evidence where deformation can be taken as a similarity measure of ranking atlases
for atlas selection and assigning weights for label fusion.45:46

Proper strategies of atlas selection will help to improve the computational efficiency and the
segmentation quality.*# In Ref36 the best segmentation quality was estimated by the extreme
value theory under the assumption of a given large enough atlas set (up to 5000 atlases).
Although larger atlas sets can contain more patterns for tolerating individual variations,
computational burden caused by registration*’ could not be afforded in clinical practice.
Moreover, the quality of the atlases fundamentally influences segmentation quality,*8 and
therefore atlas selection®49 is introduced into the atlas-based segmentation methods to yield
more accurate segmentation and to reduce the computational load of registration.>0

Atlas selection can be and is usually conducted in an offline manner before considering the
target image.*4 In Ref>0 a strategy was provided of initially clustering all atlases and then
choosing the most representative cluster to fully register to the target image. The selection
can also be conducted for each specific target image in an online manner#* according

to image-based similarity metrics such as intensity-based metrics, features, and degree of
overlap,®! and/or meta-information such as patient age and gender.1” In Ref52 a generic
algorithm was proposed, where the intensity-based metric and Dice coefficient (DC) are
used to measure similarity in a two-stage atlas selection process. In Refl’ rigid and all-to-
template registration is conducted to align all images into a same image space, and after
atlas selection, nonrigid and target-specific registration is conducted on the most similar
atlases to reach a higher accuracy of alignment. A hierarchical strategy is used in Ref32
where registration, atlas selection, and atlas weighting are sequentially refined at the global,
organ, and voxel levels. As opposed to selecting target-specific atlases, Ref?! selected
representative atlases in the low-dimensional data space via a sparsity-based strategy.

Label fusion is another key element of the MAS approach. The most straightforward
strategy for label fusion is majority voting,>3 where labels on target voxels are determined
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by the most common agreement from atlases. As an evolution of majority voting,
intensity-based,32 deformation-based, and overlappingbased similarity measures are also
often used to determine weights in voting. Another series of commonly used strategies
are expectation-maximization-based STAPLE®# and its extensions,*8:5% which introduce
probabilistic models into label fusion.

The explosive use of machine learning and deep learning strategies also contribute

to atlas-based methods in different applications, including image registration and label
propagation,6 atlas ranking and selection,33:51.57 and feature extraction and/or label
fusion,58-61

Although numerous strategies have been proposed to improve performance of atlas-based
segmentation, and the importance of atlas selection has been emphasized from different
aspects, the criteria for atlas ranking are all purely based on different kinds of similarity
measures proposed in the literature. Besides, current methods are mainly based on the
statistical decision from all available or selected atlases, where the pattern information from
each single atlas is mixed up and is not fully utilized. In this work, we propose the SOMA
approach starting from a novel viewpoint that different parts of a target object in the novel
image can be recognized (matched) by different atlases, and that the frequencies of regional
best match, instead of similarity itself, will be an effective strategy in selecting precision
atlases. Furthermore, this strategy can be employed recursively to refine the “precision” of
the atlases.

An early version®2 of this work has been published in the SPIE 2021 Medical Imaging
conference. In the present paper, we make several major extensions:(i) The conference
version focused on the recognition of organs in H&N region, whereas the present work
contains, in addition to the H&N organs, the organs in the thorax region that have

more varying shapes, sizes, and intensity and contrast distributions. (ii) Deep learning-
based delineation (DLD) is conducted based on recognition maps, and thus the complete
improvement of boundary interpretation can be observed through the whole process

of anatomy segmentation. (iii) Extended experiments are conducted to demonstrate the
effectiveness of the selected recognition parameters. (iv) A full presentation of methods,
results, discussions, and background literature is also contained in this work.

Outline of approach

The SOMA approach is depicted in Figure 1 and is described in detail in Section 2. There
are three main components in this method: atlas building, object recognition, and object
delineation. In atlas building, we align all atlas images into a unified image space, which
belongs to a template image determined by the minimum spanning tree (MST) algorithm°
among a set of preselected radiologically near-normal images. Then, a two-stage recognition
process, involving rough recognition (RoR) and refined recognition (ReR), is conducted

to generate fuzzy maps for object localization. Only the atlas images with subimage-level
best match contribute to the membership map for recognition in the same subimage region.
In ROR, all images in the atlas set are examined on each pixel-centered subimage, and

the frequency of best match is counted for each of the atlases. The atlases with highest
frequency are selected as precision atlases and utilized in ReR. Refined region of interest
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(ROI) and nonlocal searching are also applied to generate fuzzy membership maps with
better localization and more precise boundary matching. Lastly, the fuzzy map from ReR is
further refined to the delineation mask via a deep learning model, where the original gray
scale image and the fuzzy map compose a two-channel input to a U-net83 based network,
and the output is the delineation mask for the target object.

Section 3 describes experiments conducted for verifying the SOMA method by the datasets
of CT images in the H&N and thorax body regions from the Hospital of the University

of Pennsylvania. Comparisons, gaps remaining in this work, and avenues for potential
improvements are discussed in Section 4. Our conclusions are given in Section 5.

METHOD

Notation:
B. Human body region studied.
. Number of image modalities considered.

Ny, Ny, ..., Ny Number of images in modalities 1, ..., m, respectively, available
for atlas building.

0 =1{0y,...,0r}: L objects considered in body region B.

=1 IR IR 11 IR Ny IR 4 e 1 N, |2 A Set of images of

body region Bavailable from /m modalities.

I ={I s INDIN 415 INy 4+ Nos - IN| 4 -+ N, | IMages of 7% after they

have been registered to a template determined by the MST algorithm.40

0=l IR IR 1 IR 4 N IR £ 4 Ny, BiNATY images
representing true segmentations of object Oyn the images in .7. Note that when
segmentations are obtained from images in .#?, the same registration operations
applied to images in .#* to produce .7 are assumed to have been applied to these
segmented binary images to obtain 7.
For simplicity, below we will assume that the number of modalities /7= 1 and that Aj = V.
All that is described generalizes readily to the case of 77> 1. With these assumptions, let .7
and 77 be defined as .7 = {1y,.... Iy}, 77 = {J{,...,J}f;}, A1, .., L

Vo, AV): A o x w 2D subimage centered at pixel vof /.

The SOMA approach consists of an initial atlas building step, which is followed by object
recognition and delineation steps.

Atlas building

The atlas set is built by aligning all atlas images into the same image space, and the
corresponding binary masks of target objects are geometrically transformed in the same
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manner. For the target image under investigation, it should also be transformed to the

same image space before the subsequent processes of recognition and delineation are
performed. Considering the computational limitations and the time-consuming nature of the
problem, all-to-template registration is utilized in SOMA, although this does not guarantee
global optimality. Specifically, following SOMA’s spirit of selecting precision atlases, the
intersubject variations are preserved. As such, a seven-parameter transformation is applied in
the SOMA approach, where only global shift, rotation, and isotropic scaling are applied to
adjust the overall position, pose, and scale of each subject during registration, instead of the
nonrigid registration® that is commonly used in atlas-based segmentation but which seems
to be less effective for anatomical objects in body regions outside of the brain.10

To choose a constant template image from the atlas set .7¢, we first determine a subset of
candidate images of .#¢, denoted by 7%, which are radiologically near-normal, with the
least amount of artifacts and pathological abnormalities. The template is determined from
% by an MST algorithm.40 A complete weighted directed graph is first established where
the nodes are the candidate images in .7% and the arc weights/costs are assigned by the
dissimilarity between the node images. Mean absolute difference (MAD) is used as a metric
to measure the dissimilarity between two candidate images, or weight for arc (7%, .7%), as
shown in Equation (1):

Yve gy 1 [ I5(0) = 17 (0)|

wI”,Ia = s 1)
s 17) |5 U 1%

where the source image 1% is registered to the target image 1% and transformed into 1%,
and where I's; and 1{, represent the binary foreground regions inside of the outer skin

boundaries of I's and 14, respectively, to exclude the influence of background information,

such as the scanner table, on the dissimilarity measure. After the graph is set up, an MST of
the graph with least total cost is found.

The root image I%,,;-0f the MST is used as the template target image for the registration

of all other images, including all atlases and future coming test images. In this way, all
images are registered to the same image space with unified global position, pose, and scale.

The set of atlases with obvious pathological abnormalities or artifacts is denoted by .74

Zero-padding in the z (craniocaudal) direction is necessary so that after registration, the
images are properly and consistently represented in all studies. Otherwise, studies with
shorter superior to inferior dimension may be cut off after registration at their ends in the
craniocaudal direction. After registering all images to the root image, we will have sets

J, IR and 7 4(.F = I g+ .7 4) corresponding to sets .7%, .7%, and .7%(.5% = Ik + .7}4),
respectively. Although the root image /%,,, does not change after the entire registration
process, to make notation uniform, we will denote it simply by /g, The subset .7 g is used

for estimating the parameters of the SOMA-R approach, while the whole set .7 is employed
for building the atlas.

Med Phys. Author manuscript; available in PMC 2021 December 17.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Page 7

Object recognition

In the SOMA approach, objects are recognized one at a time. The SOMA recognition
procedure, SOMA-R, is composed of two stages, RoR and ReR. In the RoR stage, an object
Opgs localized (recognized) in a given image /by examining all atlas images in .7 and
identifying an atlas subset £ from .# that can be best associated with Ozn /. In the ReR
stage, the locality of Ogs sharpened by examining the atlas images in only ~.

As mentioned previously, different parts of the segmentation can come from different
atlases. Only the atlas with best local similarity with the target image contributes to the
recognition map of the target object Ozand is determined as the precision atlas in this local
region. The similarity is locally measured in sliding w % w 2D windows. The frequency
of local best match over the image domain is the measure used to determine the overall
precision atlases for Og

For describing SOMA-R, we will slightly modify the representation of binary images

in #° by changing background voxel values 0 to —1, but will still maintain the binary
representation. The reason for making this change is that we wish to add up the contributions
from the object parts (represented by voxels with value 1) and background parts (represented
by voxels with value —1) from all precision atlases for each voxel vof /to develop a fuzzy
map of Oy Correspondingly, the subimage V,, (1) will also be comprised of only elements 1
and -1.

2.2.1| Procedure SOMA-R

Input. A test image £, atlas set .7 and binary images 70 =1, Lafter registration;
an image similarity function y (sum of squared difference [SSD] in this procedure);
a threshold @ for the similarity function y; a subimage size w; a ratio &% of the
precision atlases selected for ReR with respect to the whole atlas set; and a nonlocal
floating window searching range £

Auxiliary variables. Atlas maps AMfor RoR and am/for ReR for recording the
atlas index of the local best-match atlas; counters Cr) and cfr) for counting the
frequency of atlas image 1,, € .7 selected as the local best-match atlas in RoR and

ReR, respectively.

Output. Fuzzy membership maps FMysand fmcorresponding to RoR and ReR,
respectively.

Begirr.

RO. Register /to the template root image /g, Let the transformed version of /2
be /.

Foreach object Oydo

R1. Determine an initial ROI, denoted R;,, by dilating the union of the
foreground regions of the images in 7.

Rough recognition.
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R2. Set all voxels of FMand AMao 0 and so also all elements of Cfn), n=1,
e N
R3. Foreach voxel vof /inside region R;, do
R4. Determine subimage V,, (V) at v.

R5. Determine image 7* € .7 such that I* € argmin{y(V, (V). V4, x(V))}. Let
Kes

J* e 7% be the binary image representing O/n /*.

R6. /f y(V, (V), Vi, (V) < 6, thenadd V,, »(V) to FMyand set value of AMy
(v) to the index associated with /*.

R7. EndFor
R8. Threshold the fuzzy map FMyinto a binary map BM,
R9. Determine a refined ROI, R, by dilating foreground region of BM,
R10. Foreach voxel vof /inside region R, do
R11. Increment counter C¢.AMf V) by 1.
R12. EndFor
R13. Normalize and output FMyand output Cfn), n=1, ..., N.
Refined recognition:.

R14. Set all voxels of fmsand am#o 0 and so also all elements of cfn), n=1, ...,
N.

R15. Rank Cgn), n=1, ..., N, in descending order. Top &% x N atlases with
highest counter values Cfr) compose the precision atlas set .7 p and ij for /and
object Oy

R16. Foreach voxel vof /inside region R, do

R17. Determine subimage V/,, (V) at v.

R18. Determine nonlocal floating window searching range RAV) at v.

R19. Determine image /* € .7 p and nonlocal best-match position 1* € R¢(V)
such that /*, v* e Ke ja,rf/l?z Rf(u){w(V“” 1(0). Ve, k(v))}. Let J* € 7% be the
binary image representing Ozn F*.

R20. Ify( Vi, AV, Vi, (V¥)) < 6, thenadd V,, »(v*) to fmyon the subimage
with the center vand set value of amgV) to the index associated with /*.

R21. EndFor

R22. Foreach voxel vof /inside region R, do
R23. Increment counter ckamfV)) by 1.

R24. EndFor
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R25. Normalize and output fmyand output cgn), n=1, ..., N.
EndFor
End

Details of the SOMA-R procedure are as follows. In Input, the SSD is used as

the function y to evaluate similarity (dissimilarity) between subimages of /and

atlas images in .#. Pearson correlation coefficient (PCC) and normalized mutual
information’:52 (NMI) may also be suitable similarity metrics in different situations.
As we use a dissimilarity function, the local best-match atlas should have the least
SSD, and the threshold @is used to avoid cases where no atlas is locally similar to the
target subimage.

Atlas maps AMsand amgand counters Cfr) and c4n) are auxiliary variables for determining
the precision atlas set 2. After RoR, the initial ROl (R;y) is refined into R, (target specific),
and the counters are generated from atlas maps after excluding counts in the unrelated
region. While Cfrj) can produce nonzero counts for any atlas image 1, € .7, cfr) will

produce nonzero counts only for 1, € .7 p. When the whole recognition process is iteratively

refined, the ROI has the potential to undergo continued refinement based on the counters and
fuzzy maps.

The outputs of SOMA-R are fuzzy maps FMyand fmywhich map the location of object Oy
roughly as a fuzzy mask over image /. The map values FMf{V) and fmfV) at voxel vindicate
the cumulative votes of membership on vfrom all best-match atlas subimages going through
V. This is not intended to be a precise delineation of Out instead a rough indicator of the
whereabouts of Ozn /.

Steps R3—R7 compose the core of RoR where, at each voxel v first a w x w 2D subimage
Ve, AV) of /centered at vis found (R4), and then a homologous subimage V,, (V) over

all atlas images in | that best matches with V,, (V) as per the similarity function y is
determined (R5). If this match is at or above a certain confidence level (y{.) < 6), then the
evidence for the location of Ozt vin FMzs updated, and AMgV) is also updated with the
index of the atlas corresponding to /* (R6). The updating of FMs accomplished by adding
to the current FMmap the entire subimage V/, »(1) of the binary image J*, corresponding
to /*, with all of its —1 and 1 values (see Figure 2). At the end of this loop (R7), two
outcomes are expected: a rough location of Ozn /to emerge in the FMmap, and an atlas
index map AMshowing the index of the best-match atlas for each voxel location, where
C¢n) will be accumulated from AMfor each atlas in R10-R12.

In steps R8-R9, the refined ROl R, is dilated from BMto focus on the specific target image
/. The fuzzy map FM s converted to the binary map BMay the threshold value 1, where
the FMmap values can range from —w x w10 +w x w, and the threshold value 1 indicates
that there is at least one more subimage from best-match atlas that votes on the foreground
than on the background. In Step R13, the FMmap can be normalized to the range [-1,

1] without affecting the 0 values in the map. A desirable property of SOMA-R is that the
membership for not just the object, but also for surrounding background, is determined.
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ReR starts from Step R14. Although the implementation details are similar to those of RoR,
ReR shows its strength in pursuing better localization by considering the refined set of
precision atlases, refined target-specific ROI, and the nonlocal best-match searching strategy.

Step R15 constitutes the heart of the ReR strategy. If the atlas building stage has collected
enough images to capture within the precision atlas set (and not necessarily in the whole
atlas set without the precision atlas concept), the particular object layout and intensity
distribution pattern presented in image /, then we expect counters C¢n) to yield evidence of
images that maximally match with /for Oy The counters show the frequency of each atlas
being the best match atlas for subimages, which imply that atlases are not necessarily overall
similar to /for Oy but are frequently similar in parts. The atlases are ranked according to the
counters, and the top &% atlases among the whole atlas set compose the precision atlas set

7 p, in which the atlas quality is outstanding compared to remaining atlases in .7, and the

corresponding binary masks are denoted by f’;@.

In Step R19, a nonlocal searching strategy is used to alleviate regional individual differences
and misregistrations, which are difficult to consider in imagelevel registration. The target
subimage V,, (1), like a floating window, searches the best-match atlas simultaneously
within the 3D searching range R4 V) and among the atlases in .# p. Let f,refer to the radius

of the searching range in voxels in the dimension with lowest resolution where rrefers to the
ratio between slice spacing and 2D pixel length. The searching range should be an isotropic
region with (2rx £+ 1) x (2rx f,+ 1) x (2 x f,+ 1) voxels centered on the target position v.
Given a typical situation where the voxel size ina CT image is 1 x 1 x 2 mm and 7 is set as
2, the searching of best match should be restricted inside a range of 9 x 9 x 5 voxels.

2.2.2| Parameter determination—Four parameters are involved in the SOMA-R
process, namely the threshold &for the (dis)similarity function y, the subimage size w, the
ratio &% for selecting precision atlases, and the nonlocal floating window searching range
f. Among these parameters, the threshold @and the window size w are object-dependent
parameters, and the ratio 6% and the searching range 7,are empirically decided upon
according to the representability of the atlases. Intuitively, when the atlas set has perfect
representability, the target object in the specific test image can be well represented by very
few atlases. Conversely, the ratio 8% should be large if the atlas set does not contain that
many patterns, such that the best-match subimages scatter widely among different atlases.
If only a limited atlas set is available, the searching range £-should also be large to provide
more chances for subimage matching, although a large £, may also lead to the problem of
mismatching with surrounding confounding objects.

The threshold @and the window size w are object-specifically decided by experiments using
the near-normal atlas subset .7 g. A leave-one-out strategy is used in RoR with different

combinations of &and w. The combination yielding the best average DC on binary masks
BM s utilized in the actual SOMA-R procedure.
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Object delineation

If we binarize fmznto bmywe can observe that bmzapproaches a delineation mask after
utilizing precision atlases and the floating window strategy. However, it will still show
scattered points, which are located appropriately in the vicinity of the location of object
O/in [, but which cannot contour the object accurately. Thus, postprocessing is needed.
Deep learning-based methods are under explosive development in semantic segmentation in
medical images, and U-net is one of the most used fully convolutional end-to-end networks.
In the SOMA delineation (SOMA-D) procedure, we use a 2D U-net based network, where
inputs are the two-channel images composed of the original gray scale image /and the fuzzy
map fmoutput by SOMA-R ReR, and output is the corresponding semantic segmentation
mask for Oy

2.3.1| Network architecture—The network architecture is illustrated in Figure 3.
Binary cross-entropy is taken as the loss function and Adam optimizer is used. Batch
normalization is conducted, and batch size is determined according to ROI size and memory
capacity. ReLUs in the encoder path are leaky with slope 0.2, and ReLUs in the decoder path
are not leaky.%°

As in the definition of Rj, the network input is trimmed by an ROI determined from fmy

of training samples. The bounding boxes of voxels where fmfVv) > —0.4 for each training
sample is first determined. Then, a larger box fully covering all of the bounding boxes is
taken as a proper 2D ROI. To satisfy the input size of the network, where there are three
convolutional layers with stride 2, the ROI is further expanded to a slightly larger size of
multiples of eight. As all images are aligned to the same image space at the beginning of the
SOMA method, the target object will be contained properly inside this ROl with very high
likelihood. This also improves delineation specificity of the U-net.

2.3.2| Training images—Atlas images in .7 are employed for training, where a
leave-one-out strategy is used in the complete SOMA-R procedure to generate the ReR
map fm/for them. Each atlas image is taken as the target image while other images are
taken as atlases. Slices of the fuzzy map fmaogether with the original intensity slices

in /are trimmed by ROI and concatenated into two-channel 2D inputs to the network.
Data augmentation is conducted to mimic different recognition qualities by shifting and
strengthening (sharpening) or weakening (blurring) the fuzzy maps for localization error
(LE) and scaling error (SE) as in Equations (2) and (3), respectively.

fmEE@) = fme(v"), @

Sm2E(v) = max(min(fm(v) + p, 1), — 1), ®

where in Equation (2), V' is spatially shifted from the original voxel vwith deviation s,
thatis, v=(i, K,V =(ixrxs jxrxs KorV = (i k+s),and rshows the

ratio between slice spacing and pixel width as in determining the floating window range in
the section describing ReR. The deviation sis also able to mimic the potential error, which
cannot be overcome by or is introduced by floating windows. In Equation (3), p stands for

Med Phys. Author manuscript; available in PMC 2021 December 17.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Lietal.

3]
3.1

Page 12

the membership value added to or subtracted from the original fuzzy membership value
fmgv), and intuitively indicates the situation where more or less atlases among neighboring
w x w atlases agree with the membership of voxel vas foreground.

2.3.3| Testing images—For testing images, fuzzy maps and the original images are
trimmed into an ROI using the same size and position as for the training samples. The output
is the segmentation mask with the trimmed ROI size, which can then be restored back to the
original image size.

EXPERIMENTAL RESULTS

Datasets and experiments

3.1.1| Datasets—This retrospective study was conducted following approval from the
Institutional Review Board at the Hospital of the University of Pennsylvania (HUP) along
with a Health Insurance Portability and Accountability Act waiver. Experiments were
conducted on CT images of two body regions, H&N and thorax, from 298 and 241 patients,
respectively. The routine clinically acquired images are for radiation therapy planning of
patients with cancer in the two body regions. Nine objects in the H&N region and six objects
in the thorax region as defined in® are considered: CtEs, CtSC, Mnd, OHPh, SPGLX, RPG,
LPG, RSmG, and LSmG in the H&N region; TSC, TEs, TB, Hrt, RLg, and LLg in the
thorax region. The full names and acronyms for these objects are listed in Table 1 for ease
of reference. Object-level quality (OQ) is manually evaluated by experts in terms of whether
the object and its surrounding tissue are involved by pathology or whether the imaging
quality is affected by artifacts,67 based upon which the object samples are divided into
groups of good quality (GQ) and poor quality (PQ). Thirty-six subjects in the H&N region
and 39 subjects in the thorax region show overall GQ on all considered objects and hence
are selected as radiologically near-normal images comprising set .#%. As described in%6, a

GQ study of an object contains deviations due to artifacts, abnormalities, and so forth in not
more than three slices through the object, and a study that is not GQ is considered PQ for
that object.

The voxel size varies from 0.93 x 0.93 x 1.5 to 1.6 x 1.6 x 3 mm3. The root images
determined by SOMA have a resolution of 1 x 1 x 3 and 0.97 x 0.97 x 3 mm?3 in H&N and
thorax regions, respectively, and the sizes of all images are unified to 512 x 512 x 92 and
512 x 512 x 128 voxels, respectively, after registration.

3.1.2| Experiments—The SOMA method is N-fold cross-validated on samples in the
whole datasets excluding the near-normal set .7 g, from which parameters are determined for
SOMA-R as explained above. As not all samples are with complete reference masks of all
considered objects, the division of folds is also different as shown in Table 1, where Ngis
the number of folds, Agz denotes the number of atlases contained in .7 in each fold, and 7.¢
stands for number of test samples in each fold.

There are four parameters contained in the SOMA-R procedure, which include 2D subimage
size w (in pixels), similarity threshold 6, ratio 8% for precision atlas selection, and £, for
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floating window searching, among which &% = 20% and £.= 2 are empirically determined
according to the representability of the atlases, and w and & are experimentally determined
for each object by testing different combinations of them on .7 . 6 was selected from the

values of {200, 400, 800, 1200}, and w was initially selected from the values of {5, 11, 17}
for objects in the H&N region and from {23, 33, 43, 53, 63} for objects in the thorax region.
These initial candidate w values are determined based on object thickness in different body
regions (objects in H&N are generally much smaller than those in thorax), and larger values
are tested until the highest DC has been reached for BMyn .7 r. Parameters obtained for all

considered objects are listed in Table 2.

To quantitatively assess the performance of the SOMA method, we analyze the LE and

SE for the RoR and ReR results, and DC and average symmetric distance8 (ASD) for

the delineation results. Although FMand fmzare fuzzy maps, they do not represent the
probability values of image voxels belonging to the object or background, but instead show
the membership from agreement over all atlases, and so the binary masks BMsand bm sre
used in evaluation. LE is defined as the distance between geometric centers of the reference
mask and BMor bmy SE is the ratio of the recognized object size to its true size. The size of
an object represented by the binary mask is calculated by the root of the sum of eigenvalues
corresponding to the principal components of the object.® LE and ASD are measured in
millimeters, and SE and DC are unitless, where cases with perfect overlap should show 0
mm for LE and ASD, and 1 for SE and DC.

Results

3.2.1| Image examples—Image examples are illustrated in Figures 4 and 5 for all
considered objects in the two body regions separately. Reference masks (first column),
fuzzy maps from RoR and ReR procedures (second and third columns), and delineation
masks (fourth column) are overlaid on 2D slices of gray scale images (first row) and
overlapped by reference contours (second row). The corresponding surface renditions (for
binary masks) and fuzzy volume renditions (for fuzzy masks) are shown as well (third

row). From the comparisons of the results from recognition to delineation, we observe
gradual improvement, including improvement from RoR to ReR, where the fuzziness of the
membership maps is reduced and the interpretation of boundaries is improved, as the latter
takes advantage of more precision atlases for the specific target object sample and the better
matching introduced by the nonlocal floating window strategy; and from ReR to delineation,
where the fuzziness is further reduced and binary masks are produced.

It should be noted how RoR captures the whereabouts of the objects quite sharply and

how ReR already appears to demonstrate delineation, albeit fuzzily, quite well. The details
captured by ReR are well portrayed in the fuzzy volume renditions, especially for objects
with subtle surface details like for CtSC, CtEs, Mnd, SpGLX, TB, TSC, and TEs, sometimes
notwithstanding the accompanying false positive regions.

3.2.2| Quantitative evaluation—Quantitative evaluation results are summarized in
Tables 3 and 4, where results of samples with different object quality (OQ) are separately
evaluated in terms of RoR, ReR, and DLD.
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We make the following observations from the results shown in the tables.

Having observed gradual improvement in the results moving from RoR to ReR
and to delineation for the image samples shown in Figures 4 and 5, we observe
a similar improvement in the quantitative results in terms of decreasing LE
values and bringing SE closer to 1 for recognition, and increasing DC values
for delineation. By considering only precision atlases and utilizing a floating
window searching strategy, the ReR advances from RoR in a manner of better
boundary matching. Most of the improvements on results from RoR to ReR and
from ReR to delineation are statistically significant with p-value <0.05. Only
OHPh, RPG with GQ, RLg with GQ, and TSC with PQ slightly decreased in
mean SE from RoR to ReR, and only CtSC with PQ slightly decreased in mean
DC from ReR to delineation, although with corresponding decreases in standard
deviation.

In RoR, most objects yielded LE around or less than 6 mm, which is twice

the unified slice spacing in both body regions (roughly equating two voxels),
and the error is further decreased in ReR. The long sparse objects in the thorax
region, that is, TB, TSC, and TEs, are more challenging, while TB and TSC

are refined toward or under 6 mm in LE. However, TE has a larger LE of

up to 14 mm even after ReR. Such a large error may be explained by two
reasons: (a) the difficulty in consistently defining the two ends of certain long
sparse objects, leading to large errors in the z-direction, and (b) the difficulty in
segmenting soft tissue objects with low contrast. Both reasons lead to challenges
for segmentation of TEs, especially along its inferior aspect where it joins the
stomach at the gastroesophageal junction. Further analysis demonstrates that the
average in-plane LE for TEs is 4.489 and 4.523 mm for GQ and PQ samples,
respectively, in RoR, which improve to 3.605 and 3.862 mm, respectively, in
ReR, showing that the large LE for TEs indeed is mainly attributable to error in
the z-direction.

The evaluation results on GQ and PQ samples are similar in all RoR, ReR, and
DLD stages, while the model-based method, such as our previously proposed
AAR-RT method,®8 shows obvious differences in recognition and delineation
results for samples with different qualities as compared in Table 6. This
phenomenon indicates that the SOMA method is less influenced by OQ and
demonstrates one of the core principles of the precision atlases that the target
object sample is only recognized by atlases with local-level best match and will
not be influenced by atlases with less similarity. Hence, the samples of various
qualities can be well recognized by a sample-specific precision atlas subset if the
whole atlas subset can cover different object qualities.

DISCUSSIONS

Recognition based on regional similarity

One of the strengths of the proposed method is its ability to recognize different regions
of the target object in a novel image via subimage matching with different atlases. Then,
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atlases with the highest frequencies of regional best match are selected as the subset of
precision atlases. In other words, our method always focuses on each object-level image
sample, and that’s why we call it a subject-, object-, and modality-adapted method, which

is not a progressive strategy sequentially conducted in subject, object, and modality levels,
but to consider the three elements as a whole simultaneously. Although we present results
only on CT images in this work, the method directly transfers to other modalities or multiple
modalities used simultaneously. These extensions will be reported in our future papers.

Figure 6 gives an example of RoR of left lung (LLg) in a novel image to demonstrate that
the recognition process should not be conducted at subject level. In the figures, the novel
image under consideration is taken as the base (in grey) and overlayed by intermediate
results (in orange). Figure 6a—c shows three representative slices of the novel image going
in the craniocaudal direction, which are overlayed on the atlas image with least overall
SSD. As there is huge anatomic population variation, although the overall relationship and
location of anatomy is the same with respect to each person, the subject-level similarity
can only guarantee the rough alignment of scale, position, and posture of the whole-body
region. Figure 6d shows the initial ”;, which is determined by all atlases and taken as

the range to conduct subimage matching. Figure 6e is the atlas map (AM) representing the
indexes of atlases, which reach regional best match, where the intensities 0-199 represent
the 200 atlases under consideration, and the intensity 200 represents the region outside
R, Quantitative statistics show that the 10 atlases with best subject-level similarity rank
29th in average in the frequencies of regional best match, and conversely, the 10 atlases
with most frequent best-match rank 28th in average in overall similarity. This demonstrates
that subject-level matching is much inferior to regional best match. Figure 6f portrays

the detailed recognition process where regions of the target object (LLg) are matched by
different atlases based on regional similarities, and the recognition map is generated from
binary masks of atlases with regional best match, as shown in Figure 6g.

Comparison on different empirical parameters

There are two empirical parameters in the SOMA method, namely, the ratio &% for selecting
precision atlases with the highest frequency of best match and the floating window search
range 7-in the nonlocal matching strategy. Another implicit empirical factor is that the ReR
is conducted only once in all experiments above. Whether continuous refinement following
the current strategy will further improve the recognition accuracy is still under investigation.
Experiments on these three empirical parameters are conducted as follows: (i) After RoR
and ReR, refinement is continued where ReR,, ReR3, and ReR, stand for iterative refined
recognition with ratio 6% = 50%, such that 5% = 20% x 50% = 10% for ReR,, &% = 10%
x 50% = 5% for ReRg3, and finally §,% = 5% x 50% = 2.5% for ReR,. At the same time,

the ROl is also iteratively refined based on the recognition mask yielded from the previous
stage. (ii) Experiments on different 6%, that is, 50% (1/2), 33% (1/3), 10% (1/10), and 5%
(1/20) are conducted to check if 20% is a reasonable ratio for refined atlas selection. (iii)
Different floating window searching ranges are tested. 7,=0, 1, 2, and 3 separately denote
the radius (in the unit of slice spacing) of the maximum extension from the tested voxel
position. As in our experiments the unified resolution of images is around 1 x 1 x 3 mm,
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the searching range with, for example, 7-= 3, will be a 3D searching range with 19 x 19 x 7
voxels centered on the test voxel.

Experiments are conducted on two typical objects with medium recognition difficulty: a
small blob-like object RPG (right parotid gland) and a long sparse object CtEs (cervical
esophagus), for which only one fold of test samples, that is, 58 test samples with 150 atlases
for RPG and 82 test samples with 200 atlases for CtEs, are contained in the experiments

of the empirical parameters. Quantitative evaluation results are shown in Table 5. For each
parameter, cases with best DC or LE are marked in bold. Although the selected parameters
do not always yield best results, they show no significant difference from the best cases
(p-value >0.05). In addition, they are of less computational burden compared to the best
cases, where larger 8% and £ introduce extra computational burden in ReR.

Comparison with methods in literature

The same datasets are used in our previous work of the model-based AAR-RT method.%¢
AAR-RT was designed to recognize all important organs in the target body region, which is
based on high-level anatomic priors including the hierarchy of all organs under consideration
and their fuzzy shape models. The hierarchy is a tree that defines the optimal order for
recognizing organs and the relative positions and scales of the organ on each offspring node
with respect to its parent node. These entities are estimated from a set of near-normal
images. Typically, the skin of the body region is taken as the root organ and is first
recognized by proper thresholds. Then, other organs are sequentially recognized based on
the hierarchy, and refined based on local image intensities. Recognition and delineation are
both improved by the proposed SOMA method as shown in Table 6, which quantitatively
compares the influence of OQ in recognition and delineation quality via the two methods.
0OQ is less influential on the SOMA method than on the earlier model-based method, as the
target object can be well recognized if its quality is covered in the spectrum of atlas images
via SOMA, while model-based methods typically generate object models only based on
normal subjects, and recognition may be less accurate for object samples with pathological
abnormalities.

We also compared the proposed method with another two typical deep-learning methods.
One is utilizing an end-to-end U-net architecture as in Figure 3 without applying SOMA
recognition process, that is, the network input is with the original image size (512 x 512
pixels) without ROI cropping via the fuzzy recognition map, and the output is binary
mask with the same size as input. The results are shown in the Baseline column of Table
6. Comparing with the results of SOMA, although in many cases the DC values show
differences within 1%, results for LSmG, Hrt, and TB are largely degraded without the
guidance of localization and membership confidence from SOMA recognition.

The other method under comparison utilizes a neural network-based similarity measure to
determine the weight of atlases for label fusion. The results are shown in the Sim_Net
column of Table 6. The similarity network was proposed in Ref® and originally targeted for
myocardial segmentation in CT and MR images, where the regions around LV myocardium
were precropped. The similarity network is designed to map image patches into an
embedding space, and the similarity is calculated based on a softmax function over the
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Euclidean distance between atlases and target patches. Each training sample is selected
around the boundaries of the target object, containing a patch of target image and two atlas
patches, which include one positive patch with DC > 0.9 (ground truth similarity 1) and one
negative patch with DC < 0.5 (ground truth similarity 0). Cross-entropy loss is utilized to
optimize the network. As this method contains several hyperparameters, such as patch sizes
and fusion strategies, which can be different for each object to reach best performance, we
are still exploring this method to pursue the balance between segmentation accuracy and
time efficiency, including embedding part of the idea into the SOMA process. The results
presented in Table 6 are based on patches of 15 x 15 pixels with stride 11 inside the ROI
determined in the same way as Step R1 of procedure SOMA-R. Different from the original
purpose of this method to segment a target object within a cropped region, our focus is more
on segmenting all the main organs inside a whole-body region, where the background region
may contain different kinds of structures like bone, airway, and soft tissue, and the similarity
network needs to be retrained for new objects and it is hard for the network to distinguish
among tissues without annotations. The low DC values for TEs (thoracic esophagus) give

a good illustration that the local background of TEs is also soft tissue with low contrast,

and the similarity network fails to catch the real similarity inside this local region. Besides,
we conducted an experiment by applying the similarity network trained for mandible (Mnd)
to segment RPG, and the mean DC value degrades from 0.72 to 0.68. Instead, our SOMA
recognition method does not only focus on foreground, but also explores the similarity in
background region and generates atlas map, which is ready to be used for potential targets.
Thus, SOMA can be used in conjunction with any top-of-the-line delineation engine for
obtaining the final segmentation.

We would like to summarize the advantages of our proposed SOMA methods as follows:

(i) The SOMA method is much less sensitive to the image quality problem arising from
artifacts and distortions among real patients. As only the regional best-match atlas is applied
to recognize the target object locally, the atlases with lower regional similarity will not
influence the recognition quality, especially after selecting the precision subset of atlases
for ReR, greatly alleviating this sensitivity problem widely existing in MAS methods.”® Our
collected datasets contain clinical images of 539 cancer patients, 75 of which show overall
GQ on all considered objects (meaning that there are no more than three slices with artifacts/
deviations, etc.; see56) and are used to determine parameters for the recognition process. The
SOMA method is evaluated on the rest of the images, composed of 1809 object samples
with GQ and 1073 object samples with PQ. As briefly compared in Table 6, recognition

and delineation accuracies of SOMA are truly less influenced by object-level image quality
variations. (ii) The intermediate recognition results are given in the SOMA process before
using DL, which show good localization and refined boundary matching. Recognition alone
can be used in clinical analysis, for example, for disease quantification,”! without having

to do delineation. There is rarely such trackable and explainable intermediate result that
comes out from DL processes. (iii) The SOMA method conducts subimage matching in
both foreground and background regions, which can further extend to the whole-body
region and be used in selecting precision atlases for any potential target. This matching
process does not explicitly distinguish foreground and background before generating fuzzy
membership maps. It can be done only once regardless of the future refinement in atlas
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annotations, whereas the DL models need to be retrained when reference masks are updated.
(iv) The SOMA method is not specialized to a specific set of objects or body regions, while
most of the DL methods aim to segment target objects all at once and are less adjustable
when considering other objects, other body regions, or other modalities. The object-specific
considerations, including spatial locations, shapes, sizes, and contrasts, are contained in the
SOMA recognition process when determining ROIs and parameters @ (similarity threshold)
and w (subimage size), which can be decided separately and will not have influence that
permeates among objects.

4.4| Gaps, challenges, and future works

Several gaps, challenges, and extensions for the SOMA method are to be worked on in

the future. First, standardized definitions for body regions and all objects should always be
pursued so that the performance of medical image segmentation methods can be reliably
and meaningfully compared, although imperfect definitions cannot be entirely eliminated,
especially for challenging sparse soft-tissue objects like the esophagus. Such imperfections
will lead to errors in localization accuracy of recognition.

Second, the subset of precision atlases is selected by ranking the frequencies of regional
best match, although the matching quality is currently only determined by the similarity
threshold &in a binary manner. Instead of a binary decision, there may be potential in
combining the frequency with the level of similarity as a new measure to rank the atlases in
future work.

Third, since the SOMA method spotlights the selection of precision atlases and the
refinement in anatomy recognition, we only utilize a most typical semantic segmentation
network—a U-net-based network to transform the fuzzy membership map into the binary
segmentation mask. In the literature, some more advanced networks are utilized with
different considerations, such as replacement of the ordinary convolution layers by res-
block”273 or dense-block,”# or use of a fully convolutional network as the generator
network followed by a discriminator network in the generative adversarial network
(GAN) strategy.”>7® To know whether changing the network architecture will yield better
delineation accuracy requires further experimentation.

Fourth, according to the division of atlas selection methods defined in,1944 the proposed
SOMA method is a purely online-learning method where the precision atlases are selected
according to the frequencies of best match of intensity-based similarity to the target object
in the test image. In our previous work,38 an atlas grouping method was proposed, and so
offline learning and online learning can potentially be combined to improve atlas selection,
as well as recognition accuracy and efficiency, in future work.

Finally, we plan to utilize the SOMA method on multimodality image datasets such as
positron emission tomography/computed tomography (PET/CT) images. Modifications to be
made for use on multimodality cases in terms of how to conduct intermodality registration
and the statistics of best-match frequencies are still under investigation. Assessment of the
performance of SOMA method in other body regions, such as the abdomen and pelvis, is an
additional topic of future research.
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Computational considerations

The SOMA method was implemented on a computer with the following specifications:
6-core Intel i7-7800X CPU 3.5 GHz with 64 GB RAM, NVIDIA TITAN XP GPU with 12
GB of memory, and GeForce GTX 1070 GPU with 8 GB of memory, running on the Linux
operating system. In SOMA, the seven-parameter registration costs 1-2 min for each image.
Computational time for recognition depends on the atlas size, subimage size w, and ROI
size. A larger atlas set, w, and ROI will cost more time in recognition. Recognition of heart
(Hrt) in the thorax region is typically the most time consuming, given the large ROI and the
largest w = 55 among all considered objects, which costs around 40 min with 200 atlases.
For the mandible (Mnd) with the smallest window size w =5, recognition for a test sample
costs about 3 min based on 200 atlases. As all objects can be recognized simultaneously, the
most time-consuming object determines the recognition time for the entire-body region. In
this sense, the recognition of all objects in the thorax region depends on Hrt and is typically
40 min, and the recognition of all objects in the H&N region depends on cervical spinal cord
(CtSC), an object with a large spatial extent, with an overall recognition time of about 7 min
when using the largest w = 17. As subimage matching is conducted on each atlas and each
position in an ROI, parallel computing is obviously available in the recognition procedure to
reduce computational time and will be an area of focus in our future work. DLD costs 1-3

s for each object sample in the test stage, while training time is also based on the number of
training samples and the sizes of the ROIs. Typically, training time ranges from ~80 min for
small objects like right submandibular gland (RSmG) and up to 10 h for large objects like
right lung (RLg).

CONCLUSIONS

In this paper, we introduce a new approach called SOMA of selecting subject-, object-,

and modality-adapted precision atlases for automatic anatomy recognition and delineation

in medical images with pathology. The proposed method starts from a viewpoint that the
recognition of different parts of the target object can be taken from different atlases with
best regional (and not global) similarity, while the similarities on other regions do not matter.
Hence, the precision atlases have no need to be overall similar to the test image but with
frequent regional similarity to the target object, where the frequency of best match is the
measure for selecting precise atlases.

The method includes three main components, atlas construction, two-stage recognition, and
delineation. The atlas set is constructed by aligning all images into a unified image space,
which belongs to the root image determined via an MST strategy from a set of radiologically
near-normal images. Then, specific to each test object sample under consideration, RoR

is conducted to determine a refined ROI and a set of precision atlases with the highest
frequency of regional best match. Subsequently, ReR is conducted with the refined ROI,
refined atlases, and a floating window strategy to generate better regional match. A U-net-
based deep learning network is trained for delineation, where the original gray scale image
together with the fuzzy map from ReR is taken as a two-channel input, while output is the
segmentation mask of the target object. We conducted experiments on two body regions,
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the H&N region with 298 patient datasets and nine objects, and the thorax with 241 patient
datasets and six objects.

We summarize our conclusions as follows. (i) The SOMA method shows high accuracy

and robustness in anatomy recognition and delineation. There is a tendency of gradual
refinement from RoR to ReR and to delineation, owing to selection of precision atlases

in RoR, careful boundary matching in ReR, and strength of deep learning models in
interpreting boundaries. (ii) Samples with different object qualities show less difference

in recognition and delineation accuracy, whereas the accuracy is obviously influenced by
object quality in model-based methods. This confirms one of the SOMA principles that no
matter whether an object sample is of good or poor quality, it can be well recognized if there
exist partially similar atlases in the atlas set. This is one of the central tenets and strengths
of the SOMA approach. (iii) Although only CT images of H&N and thorax body regions are
evaluated in the current experiments, the SOMA method is applicable unmodified to other
image modalities and other body regions as long as a set of atlases is available such that
patterns of different portions of the test sample are able to be represented by a part of the
atlas set.
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FIGURE 1.
Schematic representation of the SOMA approach
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FIGURE 2.

Two-dimensional example of a 5 x 5 subimage V5 »(V) (middle), where vis shown
highlighted, the 5 x 5 region around vin FMAleft), and the same 5 x 5 region around
vin the resulting FMA(right) after the update in Step R6
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FIGURE 3.

Deep learning network architecture for SOMA delineation procedure. A case of right parotid
gland (RPG) is taken as an example
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FIGURE 4.

Image examples for objects in the head and neck (H&N) region. Two-dimensional images
for reference masks (first column), fuzzy maps from RoR and ReR procedures (second and
third columns), and delineation masks (fourth column) overlapped on gray scale images and
overlapped by reference contours are shown in first two rows. The corresponding 3D surface
or volume renditions are arranged at the bottom
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FIGURE 5.
Image examples for objects in the thorax region. Similar to Figure 4, reference masks,

recognition maps, and delineation masks are shown from left to right
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FIGURE 6.
Illustration of why subject-level similarity should not be considered in the recognition

process. (a—c) Three slices of the novel image are overlayed by the atlas with best subject-
level similarity; this will not guarantee the regional similarity/match. (d) Initial region of
interest (R}y). (e) Atlas map that indicates indexes of best-match atlases of each region. (f)
Different regions of the novel image are matched by different atlases, and their binary masks
are combined as in Figure 2 to generate a recognition map as in (g)
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