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Abstract

Purpose: In the multi-atlas segmentation (MAS) method, a large enough atlas set, which can 

cover the complete spectrum of the whole population pattern of the target object will benefit 

the segmentation quality. However, the difficulty in obtaining and generating such a large set of 

atlases and the computational burden required in the segmentation procedure make this approach 

impractical. In this paper, we propose a method called SOMA to select subject-, object-, and 

modality-adapted precision atlases for automatic anatomy recognition in medical images with 

pathology, following the idea that different regions of the target object in a novel image can be 

recognized by different atlases with regionally best similarity, so that effective atlases have no 

need to be globally similar to the target subject and also have no need to be overall similar to the 

target object.

Methods: The SOMA method consists of three main components: atlas building, object 

recognition, and object delineation. Considering the computational complexity, we utilize an 

all-to-template strategy to align all images to the same image space belonging to the root image 

determined by the minimum spanning tree (MST) strategy among a subset of radiologically 

near-normal images. The object recognition process is composed of two stages: rough recognition 

and refined recognition. In rough recognition, subimage matching is conducted between the test 

image and each image of the whole atlas set, and only the atlas corresponding to the best-matched 

subimage contributes to the recognition map regionally. The frequency of best match for each atlas 

is recorded by a counter, and the atlases with the highest frequencies are selected as the precision 

atlases. In refined recognition, only the precision atlases are examined, and the subimage matching 

is conducted in a nonlocal manner of searching to further increase the accuracy of boundary 

matching. Delineation is based on a U-net-based deep learning network, where the original gray 

scale image together with the fuzzy map from refined recognition compose a two-channel input to 

the network, and the output is a segmentation map of the target object.

Correspondence: Jayaram K. Udupa, Medical Image Processing Group, Department of Radiology, 3710, Hamilton Walk, 6th Floor, 
Rm 602W, Philadelphia, PA 19104, USA. jay@pennmedicine.upenn.edu. 

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

HHS Public Access
Author manuscript
Med Phys. Author manuscript; available in PMC 2021 December 17.

Published in final edited form as:
Med Phys. 2021 December ; 48(12): 7806–7825. doi:10.1002/mp.15308.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results: Experiments are conducted on computed tomography (CT) images with different 

qualities in two body regions – head and neck (H&N) and thorax, from 298 subjects with nine 

objects and 241 subjects with six objects, respectively. Most objects achieve a localization error 

within two voxels after refined recognition, with marked improvement in localization accuracy 

from rough to refined recognition of 0. 6–3 mm in H&N and 0. 8–4. 9 mm in thorax, and also in 

delineation accuracy (Dice coefficient) from refined recognition to delineation of 0. 01–0. 11 in 

H&N and 0. 01–0. 18 in thorax.

Conclusions: The SOMA method shows high accuracy and robustness in anatomy recognition 

and delineation. The improvements from rough to refined recognition and further to delineation, 

as well as immunity of recognition accuracy to varying image and object qualities, demonstrate 

the core principles of SOMA where segmentation accuracy increases with precision atlases and 

gradually refined object matching.
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1 | INTRODUCTION

1.1 | Background

Prior knowledge-based anatomy segmentation methods have shown their strength and 

robustness in the field of medical image analysis. Typical methods include those based 

on shape and geographic models,1–5 atlases,6–11 and deep neural network models.12–16 The 

models, whether generated directly from the consensus of shapes among a set of samples 

or based on deep learning networks, all suffer from the problem that information is blurred 

when models are created, affecting decision making. Compared to shape and geographic 

model-based methods, which first determine models and then match target objects, some 

atlas-based methods directly use raw intensity images for decision making on specific 

patient images, which is the basis of precision medicine.

Most applications of the multi-atlas segmentation (MAS) approach10 lie in automatic 

structural segmentation in brain magnetic resonance imaging (MRI) data,17–23 while MAS 

has also shown usefulness in the segmentation of objects in images of different modalities24 

such as MRI, computed tomography (CT), ultrasonography, and in different body regions 

such as head and neck (H&N),25–30 thorax,31 abdomen,32,33 and multiple body regions.34,35 

An implicit assumption in the MAS method is that there should be a large enough atlas 

set, which has complete and perfect segmentations of target objects and which covers the 

object shape and geographic layout patterns and image intensity appearance patterns of the 

whole population of subjects under study. Also, when segmenting an object from an unseen 

input image, it assumes that there exists a subset of the atlases that closely resembles the 

pattern for this specific input case.36 These assumptions are usually not satisfied, which 

result in suboptimal segmentation. It is also unrealistic to obtain an infinitely large atlas set 

with complete reference delineations of objects that can account for all kinds of individual 

variations.37 The basic question of the minimum number of atlas images needed to be able 

to cover the subject-specific patterns of variation is only now beginning to be addressed.38
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To further develop the precision idea as applicable to MAS methods, we propose an atlas 

selection approach named SOMA, utilizing subject-, object-, and modality-adapted precision 

atlases, which largely increases the implicit patterns included in the atlas set by recognizing 

different parts of the target object in a novel image from different atlases, where the atlases 

with the highest frequencies of partial similarity comprise the sample-specific precision 

atlases.

1.2 | Related works

The basic steps of atlas-based segmentation methods include registration, atlas selection, 

and label fusion, and numerous strategies are proposed to improve one or more of them 

specifically adapted to their application and increase the segmentation accuracy. Registration 

is a fundamental preprocessing step through which the target image and atlas images are 

adjusted into a same image space where the atlas labels can be spatially propagated properly. 

Registration can be group-wise39 via tree-based strategies40,41 or template strategies,42 and 

can be target-specific43 where all atlases are registered to the target image. Based on the 

computational complexity, registration can be a simple rigid transformation or a nonrigid 

deformation.10,44 Besides simply taken as a preprocessing step, registration can further 

provide evidence where deformation can be taken as a similarity measure of ranking atlases 

for atlas selection and assigning weights for label fusion.45,46

Proper strategies of atlas selection will help to improve the computational efficiency and the 

segmentation quality.44 In Ref36 the best segmentation quality was estimated by the extreme 

value theory under the assumption of a given large enough atlas set (up to 5000 atlases). 

Although larger atlas sets can contain more patterns for tolerating individual variations, 

computational burden caused by registration47 could not be afforded in clinical practice. 

Moreover, the quality of the atlases fundamentally influences segmentation quality,48 and 

therefore atlas selection46,49 is introduced into the atlas-based segmentation methods to yield 

more accurate segmentation and to reduce the computational load of registration.50

Atlas selection can be and is usually conducted in an offline manner before considering the 

target image.44 In Ref50 a strategy was provided of initially clustering all atlases and then 

choosing the most representative cluster to fully register to the target image. The selection 

can also be conducted for each specific target image in an online manner44 according 

to image-based similarity metrics such as intensity-based metrics, features, and degree of 

overlap,51 and/or meta-information such as patient age and gender.17 In Ref52 a generic 

algorithm was proposed, where the intensity-based metric and Dice coefficient (DC) are 

used to measure similarity in a two-stage atlas selection process. In Ref17 rigid and all-to-

template registration is conducted to align all images into a same image space, and after 

atlas selection, nonrigid and target-specific registration is conducted on the most similar 

atlases to reach a higher accuracy of alignment. A hierarchical strategy is used in Ref32 

where registration, atlas selection, and atlas weighting are sequentially refined at the global, 

organ, and voxel levels. As opposed to selecting target-specific atlases, Ref21 selected 

representative atlases in the low-dimensional data space via a sparsity-based strategy.

Label fusion is another key element of the MAS approach. The most straightforward 

strategy for label fusion is majority voting,53 where labels on target voxels are determined 
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by the most common agreement from atlases. As an evolution of majority voting, 

intensity-based,32 deformation-based, and overlappingbased similarity measures are also 

often used to determine weights in voting. Another series of commonly used strategies 

are expectation-maximization-based STAPLE54 and its extensions,48,55 which introduce 

probabilistic models into label fusion.

The explosive use of machine learning and deep learning strategies also contribute 

to atlas-based methods in different applications, including image registration and label 

propagation,56 atlas ranking and selection,33,51,57 and feature extraction and/or label 

fusion.58–61

Although numerous strategies have been proposed to improve performance of atlas-based 

segmentation, and the importance of atlas selection has been emphasized from different 

aspects, the criteria for atlas ranking are all purely based on different kinds of similarity 

measures proposed in the literature. Besides, current methods are mainly based on the 

statistical decision from all available or selected atlases, where the pattern information from 

each single atlas is mixed up and is not fully utilized. In this work, we propose the SOMA 

approach starting from a novel viewpoint that different parts of a target object in the novel 

image can be recognized (matched) by different atlases, and that the frequencies of regional 

best match, instead of similarity itself, will be an effective strategy in selecting precision 

atlases. Furthermore, this strategy can be employed recursively to refine the “precision” of 

the atlases.

An early version62 of this work has been published in the SPIE 2021 Medical Imaging 

conference. In the present paper, we make several major extensions:(i) The conference 

version focused on the recognition of organs in H&N region, whereas the present work 

contains, in addition to the H&N organs, the organs in the thorax region that have 

more varying shapes, sizes, and intensity and contrast distributions. (ii) Deep learning-

based delineation (DLD) is conducted based on recognition maps, and thus the complete 

improvement of boundary interpretation can be observed through the whole process 

of anatomy segmentation. (iii) Extended experiments are conducted to demonstrate the 

effectiveness of the selected recognition parameters. (iv) A full presentation of methods, 

results, discussions, and background literature is also contained in this work.

1.3 | Outline of approach

The SOMA approach is depicted in Figure 1 and is described in detail in Section 2. There 

are three main components in this method: atlas building, object recognition, and object 

delineation. In atlas building, we align all atlas images into a unified image space, which 

belongs to a template image determined by the minimum spanning tree (MST) algorithm40 

among a set of preselected radiologically near-normal images. Then, a two-stage recognition 

process, involving rough recognition (RoR) and refined recognition (ReR), is conducted 

to generate fuzzy maps for object localization. Only the atlas images with subimage-level 

best match contribute to the membership map for recognition in the same subimage region. 

In RoR, all images in the atlas set are examined on each pixel-centered subimage, and 

the frequency of best match is counted for each of the atlases. The atlases with highest 

frequency are selected as precision atlases and utilized in ReR. Refined region of interest 
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(ROI) and nonlocal searching are also applied to generate fuzzy membership maps with 

better localization and more precise boundary matching. Lastly, the fuzzy map from ReR is 

further refined to the delineation mask via a deep learning model, where the original gray 

scale image and the fuzzy map compose a two-channel input to a U-net63 based network, 

and the output is the delineation mask for the target object.

Section 3 describes experiments conducted for verifying the SOMA method by the datasets 

of CT images in the H&N and thorax body regions from the Hospital of the University 

of Pennsylvania. Comparisons, gaps remaining in this work, and avenues for potential 

improvements are discussed in Section 4. Our conclusions are given in Section 5.

2 | METHOD

Notation:

B: Human body region studied.

m: Number of image modalities considered.

N1, N2, …, Nm: Number of images in modalities 1, …, m, respectively, available 

for atlas building.

O = O1, …, OL : L objects considered in body region B.

ℐa = I1
a, …, IN1

a , IN1 + 1
a , …, IN1 + N2

a , …, IN1 + ⋯ + Nm
a : A set of images of 

body region B available from m modalities.

ℐ = I1, …, IN1, IN1 + 1, …, IN1 + N2, …, IN1 + ⋯ + Nm : Images of ℐa after they 

have been registered to a template determined by the MST algorithm.40

Jℓ = J1
ℓ, …, JN1

ℓ , JN1 + 1
ℓ , …, JN1 + N2

ℓ , …, JN1 + ⋯ + Nm
ℓ : Binary images 

representing true segmentations of object Oℓ in the images in ℐ. Note that when 

segmentations are obtained from images in ℐa, the same registration operations 

applied to images in ℐa to produce ℐ are assumed to have been applied to these 

segmented binary images to obtain Jℓ.

For simplicity, below we will assume that the number of modalities m = 1 and that N1 = N. 

All that is described generalizes readily to the case of m > 1. With these assumptions, let ℐ
and Jℓ be defined as ℐ = I1, …, IN , Jℓ = J1

ℓ, …, JN
ℓ , ℓ = 1, …, L.

Vω,I(v): A ω × ω 2D subimage centered at pixel v of I.

The SOMA approach consists of an initial atlas building step, which is followed by object 

recognition and delineation steps.

2.1 | Atlas building

The atlas set is built by aligning all atlas images into the same image space, and the 

corresponding binary masks of target objects are geometrically transformed in the same 
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manner. For the target image under investigation, it should also be transformed to the 

same image space before the subsequent processes of recognition and delineation are 

performed. Considering the computational limitations and the time-consuming nature of the 

problem, all-to-template registration is utilized in SOMA, although this does not guarantee 

global optimality. Specifically, following SOMA’s spirit of selecting precision atlases, the 

intersubject variations are preserved. As such, a seven-parameter transformation is applied in 

the SOMA approach, where only global shift, rotation, and isotropic scaling are applied to 

adjust the overall position, pose, and scale of each subject during registration, instead of the 

nonrigid registration64 that is commonly used in atlas-based segmentation but which seems 

to be less effective for anatomical objects in body regions outside of the brain.10

To choose a constant template image from the atlas set ℐa, we first determine a subset of 

candidate images of ℐa, denoted by ℐR
a , which are radiologically near-normal, with the 

least amount of artifacts and pathological abnormalities. The template is determined from 

ℐR
a  by an MST algorithm.40 A complete weighted directed graph is first established where 

the nodes are the candidate images in ℐR
a  and the arc weights/costs are assigned by the 

dissimilarity between the node images. Mean absolute difference (MAD) is used as a metric 

to measure the dissimilarity between two candidate images, or weight for arc (ℐS
a , ℐT

a ), as 

shown in Equation (1):

w IS
a , IT

a =
∑v ∈ ISb

r ∪ ITb
a IS

r (v) − IT
a(v)

ISb
r ∪ ITb

a , (1)

where the source image IS
a  is registered to the target image IT

a  and transformed into IS
r , 

and where ISb
r  and ITb

a  represent the binary foreground regions inside of the outer skin 

boundaries of IS
r  and IT

a , respectively, to exclude the influence of background information, 

such as the scanner table, on the dissimilarity measure. After the graph is set up, an MST of 

the graph with least total cost is found.

The root image IRoot
a .of the MST is used as the template target image for the registration 

of all other images, including all atlases and future coming test images. In this way, all 

images are registered to the same image space with unified global position, pose, and scale. 

The set of atlases with obvious pathological abnormalities or artifacts is denoted by ℐA
a

Zero-padding in the z (craniocaudal) direction is necessary so that after registration, the 

images are properly and consistently represented in all studies. Otherwise, studies with 

shorter superior to inferior dimension may be cut off after registration at their ends in the 

craniocaudal direction. After registering all images to the root image, we will have sets 

ℐ, ℐR, and ℐA ℐ = ℐR + ℐA  corresponding to sets ℐa, ℐR
a , and ℐA

a ℐa = ℐR
a + ℐA

a , 

respectively. Although the root image lRoot
a  does not change after the entire registration 

process, to make notation uniform, we will denote it simply by IRoot. The subset ℐR is used 

for estimating the parameters of the SOMA-R approach, while the whole set ℐ is employed 

for building the atlas.

Li et al. Page 6

Med Phys. Author manuscript; available in PMC 2021 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2 | Object recognition

In the SOMA approach, objects are recognized one at a time. The SOMA recognition 

procedure, SOMA-R, is composed of two stages, RoR and ReR. In the RoR stage, an object 

Oℓ is localized (recognized) in a given image I by examining all atlas images in ℐ and 

identifying an atlas subset P from ℐ that can be best associated with Oℓ in I. In the ReR 

stage, the locality of Oℓ is sharpened by examining the atlas images in only P.

As mentioned previously, different parts of the segmentation can come from different 

atlases. Only the atlas with best local similarity with the target image contributes to the 

recognition map of the target object Oℓ and is determined as the precision atlas in this local 

region. The similarity is locally measured in sliding ω × ω 2D windows. The frequency 

of local best match over the image domain is the measure used to determine the overall 

precision atlases for Oℓ.

For describing SOMA-R, we will slightly modify the representation of binary images 

in Jℓ by changing background voxel values 0 to −1, but will still maintain the binary 

representation. The reason for making this change is that we wish to add up the contributions 

from the object parts (represented by voxels with value 1) and background parts (represented 

by voxels with value −1) from all precision atlases for each voxel v of I to develop a fuzzy 

map of Oℓ. Correspondingly, the subimage Vω,J(v) will also be comprised of only elements 1 

and −1.

2.2.1 | Procedure SOMA-R

Input: A test image Ia, atlas set ℐ and binary images Jℓ, ℓ = 1,…, L after registration; 

an image similarity function ψ (sum of squared difference [SSD] in this procedure); 

a threshold θ for the similarity function ψ; a subimage size ω; a ratio δ% of the 

precision atlases selected for ReR with respect to the whole atlas set; and a nonlocal 

floating window searching range fr.

Auxiliary variables: Atlas maps AMℓ for RoR and amℓ for ReR for recording the 

atlas index of the local best-match atlas; counters Cℓ(n) and cℓ(n) for counting the 

frequency of atlas image In ∈ ℐ selected as the local best-match atlas in RoR and 

ReR, respectively.

Output: Fuzzy membership maps FMℓ and fmℓ corresponding to RoR and ReR, 

respectively.

Begin:

R0. Register Ia to the template root image IRoot. Let the transformed version of Ia 

be I.

For each object Oℓ do

R1. Determine an initial ROI, denoted Rin, by dilating the union of the 

foreground regions of the images in Jℓ.

Rough recognition:
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R2. Set all voxels of FMℓ and AMℓ to 0 and so also all elements of Cℓ(n), n = 1, 

…, N.

R3. For each voxel v of I inside region Rin do

R4. Determine subimage Vω,I(v) at v.

R5. Determine image I* ∈ ℐ such that I* ∈ argmin
K ∈ ℐ

ψ V ω, I(V ), V ω, K(V ) . Let 

J* ∈ Jℓ be the binary image representing Oℓ in I*.

R6. If ψ(Vω,I(v), Vω,I*(v)) ≤ θ, then add Vω,J*(v) to FMℓ and set value of AMℓ
(v) to the index associated with I*.

R7. EndFor

R8. Threshold the fuzzy map FMℓ into a binary map BMℓ.

R9. Determine a refined ROI, Rre, by dilating foreground region of BMℓ.

R10. For each voxel v of I inside region Rre do

R11. Increment counter Cℓ(AMℓ(v)) by 1.

R12. EndFor

R13. Normalize and output FMℓ, and output Cℓ(n), n = 1, …, N.

Refined recognition:

R14. Set all voxels of fmℓ and amℓ to 0 and so also all elements of cℓ(n), n = 1, …, 

N.

R15. Rank Cℓ(n), n = 1, …, N, in descending order. Top δ% × N atlases with 

highest counter values Cℓ(n) compose the precision atlas set ℐP  and JP
ℓ  for I and 

object Oℓ.

R16. For each voxel v of I inside region Rre do

R17. Determine subimage Vω,I(v) at v.

R18. Determine nonlocal floating window searching range Rf(v) at v.

R19. Determine image l* ∈ ℐP  and nonlocal best-match position v* ∈ Rf (v) 

such that I*, v* ∈
argmin

K ∈ ℐ, V ′ ∈ Rf(v) ψ V ω, I(v), V ω, K v′ . Let J* ∈ JP
ℓ  be the 

binary image representing Oℓ in I*.

R20. Ifψ(Vω,I(v), Vω,I*(v*)) ≤ θ, then add Vω,J*(v*) to fmℓ on the subimage 

with the center v and set value of amℓ(v) to the index associated with I*.

R21. EndFor

R22. For each voxel v of I inside region Rre do

R23. Increment counter cℓ(amℓ(v)) by 1.

R24. EndFor
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R25. Normalize and output fmℓ, and output cℓ(n), n = 1, …, N.

EndFor

End

Details of the SOMA-R procedure are as follows: In Input, the SSD is used as 

the function ψ to evaluate similarity (dissimilarity) between subimages of I and 

atlas images in ℐ. Pearson correlation coefficient (PCC) and normalized mutual 

information17,52 (NMI) may also be suitable similarity metrics in different situations. 

As we use a dissimilarity function, the local best-match atlas should have the least 

SSD, and the threshold θ is used to avoid cases where no atlas is locally similar to the 

target subimage.

Atlas maps AMℓ and amℓ and counters Cℓ(n) and cℓ(n) are auxiliary variables for determining 

the precision atlas set P. After RoR, the initial ROI (Rin) is refined into Rre (target specific), 

and the counters are generated from atlas maps after excluding counts in the unrelated 

region. While Cℓ(n) can produce nonzero counts for any atlas image In ∈ ℐ, cℓ(n) will 

produce nonzero counts only for In ∈ ℐP . When the whole recognition process is iteratively 

refined, the ROI has the potential to undergo continued refinement based on the counters and 

fuzzy maps.

The outputs of SOMA-R are fuzzy maps FMℓ and fmℓ, which map the location of object Oℓ 
roughly as a fuzzy mask over image I. The map values FMℓ(v) and fmℓ(v) at voxel v indicate 

the cumulative votes of membership on v from all best-match atlas subimages going through 

v. This is not intended to be a precise delineation of Oℓ but instead a rough indicator of the 

whereabouts of Oℓ in I.

Steps R3–R7 compose the core of RoR where, at each voxel v, first a ω × ω 2D subimage 

Vω,I(v) of I centered at v is found (R4), and then a homologous subimage Vω,I*(v) over 

all atlas images in I that best matches with Vω,I(v) as per the similarity function ψ is 

determined (R5). If this match is at or above a certain confidence level (ψ(.) ≤ θ), then the 

evidence for the location of Oℓ at v in FMℓ is updated, and AMℓ(v) is also updated with the 

index of the atlas corresponding to I* (R6). The updating of FMℓ is accomplished by adding 

to the current FMℓ map the entire subimage Vω,J*(v) of the binary image J*, corresponding 

to I*, with all of its −1 and 1 values (see Figure 2). At the end of this loop (R7), two 

outcomes are expected: a rough location of Oℓ in I to emerge in the FMℓ map, and an atlas 

index map AMℓ showing the index of the best-match atlas for each voxel location, where 

Cℓ(n) will be accumulated from AMℓ for each atlas in R10–R12.

In steps R8–R9, the refined ROI Rre is dilated from BMℓ to focus on the specific target image 

I. The fuzzy map FMℓ is converted to the binary map BMℓ by the threshold value 1, where 

the FMℓ map values can range from –ω × ω to +ω × ω, and the threshold value 1 indicates 

that there is at least one more subimage from best-match atlas that votes on the foreground 

than on the background. In Step R13, the FMℓ map can be normalized to the range [−1, 

1] without affecting the 0 values in the map. A desirable property of SOMA-R is that the 

membership for not just the object, but also for surrounding background, is determined.
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ReR starts from Step R14. Although the implementation details are similar to those of RoR, 

ReR shows its strength in pursuing better localization by considering the refined set of 

precision atlases, refined target-specific ROI, and the nonlocal best-match searching strategy.

Step R15 constitutes the heart of the ReR strategy. If the atlas building stage has collected 

enough images to capture within the precision atlas set (and not necessarily in the whole 

atlas set without the precision atlas concept), the particular object layout and intensity 

distribution pattern presented in image I, then we expect counters Cℓ(n) to yield evidence of 

images that maximally match with I for Oℓ. The counters show the frequency of each atlas 

being the best match atlas for subimages, which imply that atlases are not necessarily overall 

similar to I for Oℓ, but are frequently similar in parts. The atlases are ranked according to the 

counters, and the top δ% atlases among the whole atlas set compose the precision atlas set 

ℐP , in which the atlas quality is outstanding compared to remaining atlases in ℐ, and the 

corresponding binary masks are denoted by JP
ℓ .

In Step R19, a nonlocal searching strategy is used to alleviate regional individual differences 

and misregistrations, which are difficult to consider in imagelevel registration. The target 

subimage Vω,I(v), like a floating window, searches the best-match atlas simultaneously 

within the 3D searching range Rf(v) and among the atlases in ℐP . Let fr refer to the radius 

of the searching range in voxels in the dimension with lowest resolution where r refers to the 

ratio between slice spacing and 2D pixel length. The searching range should be an isotropic 

region with (2r × fr + 1) × (2r × fr + 1) × (2 × fr + 1) voxels centered on the target position v. 

Given a typical situation where the voxel size in a CT image is 1 × 1 × 2 mm and fr is set as 

2, the searching of best match should be restricted inside a range of 9 × 9 × 5 voxels.

2.2.2 | Parameter determination—Four parameters are involved in the SOMA-R 

process, namely the threshold θ for the (dis)similarity function ψ, the subimage size ω, the 

ratio δ% for selecting precision atlases, and the nonlocal floating window searching range 

fr. Among these parameters, the threshold θ and the window size ω are object-dependent 

parameters, and the ratio δ% and the searching range fr are empirically decided upon 

according to the representability of the atlases. Intuitively, when the atlas set has perfect 

representability, the target object in the specific test image can be well represented by very 

few atlases. Conversely, the ratio δ% should be large if the atlas set does not contain that 

many patterns, such that the best-match subimages scatter widely among different atlases. 

If only a limited atlas set is available, the searching range fr should also be large to provide 

more chances for subimage matching, although a large fr may also lead to the problem of 

mismatching with surrounding confounding objects.

The threshold θ and the window size ω are object-specifically decided by experiments using 

the near-normal atlas subset ℐR. A leave-one-out strategy is used in RoR with different 

combinations of θ and ω. The combination yielding the best average DC on binary masks 

BMℓ is utilized in the actual SOMA-R procedure.
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2.3 | Object delineation

If we binarize fmℓ into bmℓ, we can observe that bmℓ approaches a delineation mask after 

utilizing precision atlases and the floating window strategy. However, it will still show 

scattered points, which are located appropriately in the vicinity of the location of object 

Oℓ in I, but which cannot contour the object accurately. Thus, postprocessing is needed. 

Deep learning-based methods are under explosive development in semantic segmentation in 

medical images, and U-net is one of the most used fully convolutional end-to-end networks. 

In the SOMA delineation (SOMA-D) procedure, we use a 2D U-net based network, where 

inputs are the two-channel images composed of the original gray scale image I and the fuzzy 

map fmℓ output by SOMA-R ReR, and output is the corresponding semantic segmentation 

mask for Oℓ.

2.3.1 | Network architecture—The network architecture is illustrated in Figure 3. 

Binary cross-entropy is taken as the loss function and Adam optimizer is used. Batch 

normalization is conducted, and batch size is determined according to ROI size and memory 

capacity. ReLUs in the encoder path are leaky with slope 0.2, and ReLUs in the decoder path 

are not leaky.65

As in the definition of Rin, the network input is trimmed by an ROI determined from fmℓ 
of training samples. The bounding boxes of voxels where fmℓ(v) > −0.4 for each training 

sample is first determined. Then, a larger box fully covering all of the bounding boxes is 

taken as a proper 2D ROI. To satisfy the input size of the network, where there are three 

convolutional layers with stride 2, the ROI is further expanded to a slightly larger size of 

multiples of eight. As all images are aligned to the same image space at the beginning of the 

SOMA method, the target object will be contained properly inside this ROI with very high 

likelihood. This also improves delineation specificity of the U-net.

2.3.2 | Training images—Atlas images in ℐ are employed for training, where a 

leave-one-out strategy is used in the complete SOMA-R procedure to generate the ReR 

map fmℓ for them. Each atlas image is taken as the target image while other images are 

taken as atlases. Slices of the fuzzy map fmℓ together with the original intensity slices 

in I are trimmed by ROI and concatenated into two-channel 2D inputs to the network. 

Data augmentation is conducted to mimic different recognition qualities by shifting and 

strengthening (sharpening) or weakening (blurring) the fuzzy maps for localization error 

(LE) and scaling error (SE) as in Equations (2) and (3), respectively.

fmℓ
LE(v) = fmℓ v′ , (2)

fmℓ
SE(v) = max min fmℓ(v) ± p, 1 , − 1 , (3)

where in Equation (2), v′ is spatially shifted from the original voxel v with deviation s, 

that is, v = (i, j, k), v′ = (i ± r × s, j ± r × s, k) or v′ = (i, j, k ± s), and r shows the 

ratio between slice spacing and pixel width as in determining the floating window range in 

the section describing ReR. The deviation s is also able to mimic the potential error, which 

cannot be overcome by or is introduced by floating windows. In Equation (3), p stands for 
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the membership value added to or subtracted from the original fuzzy membership value 

fmℓ(v), and intuitively indicates the situation where more or less atlases among neighboring 

ω × ω atlases agree with the membership of voxel v as foreground.

2.3.3 | Testing images—For testing images, fuzzy maps and the original images are 

trimmed into an ROI using the same size and position as for the training samples. The output 

is the segmentation mask with the trimmed ROI size, which can then be restored back to the 

original image size.

3 | EXPERIMENTAL RESULTS

3.1 | Datasets and experiments

3.1.1 | Datasets—This retrospective study was conducted following approval from the 

Institutional Review Board at the Hospital of the University of Pennsylvania (HUP) along 

with a Health Insurance Portability and Accountability Act waiver. Experiments were 

conducted on CT images of two body regions, H&N and thorax, from 298 and 241 patients, 

respectively. The routine clinically acquired images are for radiation therapy planning of 

patients with cancer in the two body regions. Nine objects in the H&N region and six objects 

in the thorax region as defined in66 are considered: CtEs, CtSC, Mnd, OHPh, SPGLx, RPG, 

LPG, RSmG, and LSmG in the H&N region; TSC, TEs, TB, Hrt, RLg, and LLg in the 

thorax region. The full names and acronyms for these objects are listed in Table 1 for ease 

of reference. Object-level quality (OQ) is manually evaluated by experts in terms of whether 

the object and its surrounding tissue are involved by pathology or whether the imaging 

quality is affected by artifacts,67 based upon which the object samples are divided into 

groups of good quality (GQ) and poor quality (PQ). Thirty-six subjects in the H&N region 

and 39 subjects in the thorax region show overall GQ on all considered objects and hence 

are selected as radiologically near-normal images comprising set ℐR
a . As described in66, a 

GQ study of an object contains deviations due to artifacts, abnormalities, and so forth in not 

more than three slices through the object, and a study that is not GQ is considered PQ for 

that object.

The voxel size varies from 0.93 × 0.93 × 1.5 to 1.6 × 1.6 × 3 mm3. The root images 

determined by SOMA have a resolution of 1 × 1 × 3 and 0.97 × 0.97 × 3 mm3 in H&N and 

thorax regions, respectively, and the sizes of all images are unified to 512 × 512 × 92 and 

512 × 512 × 128 voxels, respectively, after registration.

3.1.2 | Experiments—The SOMA method is N-fold cross-validated on samples in the 

whole datasets excluding the near-normal set ℐR, from which parameters are determined for 

SOMA-R as explained above. As not all samples are with complete reference masks of all 

considered objects, the division of folds is also different as shown in Table 1, where NF is 

the number of folds, AFR denotes the number of atlases contained in ℐ in each fold, and TeF 

stands for number of test samples in each fold.

There are four parameters contained in the SOMA-R procedure, which include 2D subimage 

size ω (in pixels), similarity threshold θ, ratio δ% for precision atlas selection, and fr for 

Li et al. Page 12

Med Phys. Author manuscript; available in PMC 2021 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



floating window searching, among which δ% = 20% and fr = 2 are empirically determined 

according to the representability of the atlases, and ω and θ are experimentally determined 

for each object by testing different combinations of them on ℐR. θ was selected from the 

values of {200, 400, 800, 1200}, and ω was initially selected from the values of {5, 11, 17} 

for objects in the H&N region and from {23, 33, 43, 53, 63} for objects in the thorax region. 

These initial candidate ω values are determined based on object thickness in different body 

regions (objects in H&N are generally much smaller than those in thorax), and larger values 

are tested until the highest DC has been reached for BMℓ in ℐR. Parameters obtained for all 

considered objects are listed in Table 2.

To quantitatively assess the performance of the SOMA method, we analyze the LE and 

SE for the RoR and ReR results, and DC and average symmetric distance68 (ASD) for 

the delineation results. Although FMℓ and fmℓ are fuzzy maps, they do not represent the 

probability values of image voxels belonging to the object or background, but instead show 

the membership from agreement over all atlases, and so the binary masks BMℓ and bmℓ are 

used in evaluation. LE is defined as the distance between geometric centers of the reference 

mask and BMℓ or bmℓ. SE is the ratio of the recognized object size to its true size. The size of 

an object represented by the binary mask is calculated by the root of the sum of eigenvalues 

corresponding to the principal components of the object.5 LE and ASD are measured in 

millimeters, and SE and DC are unitless, where cases with perfect overlap should show 0 

mm for LE and ASD, and 1 for SE and DC.

3.2 | Results

3.2.1 | Image examples—Image examples are illustrated in Figures 4 and 5 for all 

considered objects in the two body regions separately. Reference masks (first column), 

fuzzy maps from RoR and ReR procedures (second and third columns), and delineation 

masks (fourth column) are overlaid on 2D slices of gray scale images (first row) and 

overlapped by reference contours (second row). The corresponding surface renditions (for 

binary masks) and fuzzy volume renditions (for fuzzy masks) are shown as well (third 

row). From the comparisons of the results from recognition to delineation, we observe 

gradual improvement, including improvement from RoR to ReR, where the fuzziness of the 

membership maps is reduced and the interpretation of boundaries is improved, as the latter 

takes advantage of more precision atlases for the specific target object sample and the better 

matching introduced by the nonlocal floating window strategy; and from ReR to delineation, 

where the fuzziness is further reduced and binary masks are produced.

It should be noted how RoR captures the whereabouts of the objects quite sharply and 

how ReR already appears to demonstrate delineation, albeit fuzzily, quite well. The details 

captured by ReR are well portrayed in the fuzzy volume renditions, especially for objects 

with subtle surface details like for CtSC, CtEs, Mnd, SpGLx, TB, TSC, and TEs, sometimes 

notwithstanding the accompanying false positive regions.

3.2.2 | Quantitative evaluation—Quantitative evaluation results are summarized in 

Tables 3 and 4, where results of samples with different object quality (OQ) are separately 

evaluated in terms of RoR, ReR, and DLD.
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We make the following observations from the results shown in the tables.

i. Having observed gradual improvement in the results moving from RoR to ReR 

and to delineation for the image samples shown in Figures 4 and 5, we observe 

a similar improvement in the quantitative results in terms of decreasing LE 

values and bringing SE closer to 1 for recognition, and increasing DC values 

for delineation. By considering only precision atlases and utilizing a floating 

window searching strategy, the ReR advances from RoR in a manner of better 

boundary matching. Most of the improvements on results from RoR to ReR and 

from ReR to delineation are statistically significant with p-value <0.05. Only 

OHPh, RPG with GQ, RLg with GQ, and TSC with PQ slightly decreased in 

mean SE from RoR to ReR, and only CtSC with PQ slightly decreased in mean 

DC from ReR to delineation, although with corresponding decreases in standard 

deviation.

ii. In RoR, most objects yielded LE around or less than 6 mm, which is twice 

the unified slice spacing in both body regions (roughly equating two voxels), 

and the error is further decreased in ReR. The long sparse objects in the thorax 

region, that is, TB, TSC, and TEs, are more challenging, while TB and TSC 

are refined toward or under 6 mm in LE. However, TE has a larger LE of 

up to 14 mm even after ReR. Such a large error may be explained by two 

reasons: (a) the difficulty in consistently defining the two ends of certain long 

sparse objects, leading to large errors in the z-direction, and (b) the difficulty in 

segmenting soft tissue objects with low contrast. Both reasons lead to challenges 

for segmentation of TEs, especially along its inferior aspect where it joins the 

stomach at the gastroesophageal junction. Further analysis demonstrates that the 

average in-plane LE for TEs is 4.489 and 4.523 mm for GQ and PQ samples, 

respectively, in RoR, which improve to 3.605 and 3.862 mm, respectively, in 

ReR, showing that the large LE for TEs indeed is mainly attributable to error in 

the z-direction.

iii. The evaluation results on GQ and PQ samples are similar in all RoR, ReR, and 

DLD stages, while the model-based method, such as our previously proposed 

AAR-RT method,66 shows obvious differences in recognition and delineation 

results for samples with different qualities as compared in Table 6. This 

phenomenon indicates that the SOMA method is less influenced by OQ and 

demonstrates one of the core principles of the precision atlases that the target 

object sample is only recognized by atlases with local-level best match and will 

not be influenced by atlases with less similarity. Hence, the samples of various 

qualities can be well recognized by a sample-specific precision atlas subset if the 

whole atlas subset can cover different object qualities.

4 | DISCUSSIONS

4.1 | Recognition based on regional similarity

One of the strengths of the proposed method is its ability to recognize different regions 

of the target object in a novel image via subimage matching with different atlases. Then, 
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atlases with the highest frequencies of regional best match are selected as the subset of 

precision atlases. In other words, our method always focuses on each object-level image 

sample, and that’s why we call it a subject-, object-, and modality-adapted method, which 

is not a progressive strategy sequentially conducted in subject, object, and modality levels, 

but to consider the three elements as a whole simultaneously. Although we present results 

only on CT images in this work, the method directly transfers to other modalities or multiple 

modalities used simultaneously. These extensions will be reported in our future papers.

Figure 6 gives an example of RoR of left lung (LLg) in a novel image to demonstrate that 

the recognition process should not be conducted at subject level. In the figures, the novel 

image under consideration is taken as the base (in grey) and overlayed by intermediate 

results (in orange). Figure 6a–c shows three representative slices of the novel image going 

in the craniocaudal direction, which are overlayed on the atlas image with least overall 

SSD. As there is huge anatomic population variation, although the overall relationship and 

location of anatomy is the same with respect to each person, the subject-level similarity 

can only guarantee the rough alignment of scale, position, and posture of the whole-body 

region. Figure 6d shows the initial Rin, which is determined by all atlases and taken as 

the range to conduct subimage matching. Figure 6e is the atlas map (AM) representing the 

indexes of atlases, which reach regional best match, where the intensities 0–199 represent 

the 200 atlases under consideration, and the intensity 200 represents the region outside 

Rin. Quantitative statistics show that the 10 atlases with best subject-level similarity rank 

29th in average in the frequencies of regional best match, and conversely, the 10 atlases 

with most frequent best-match rank 28th in average in overall similarity. This demonstrates 

that subject-level matching is much inferior to regional best match. Figure 6f portrays 

the detailed recognition process where regions of the target object (LLg) are matched by 

different atlases based on regional similarities, and the recognition map is generated from 

binary masks of atlases with regional best match, as shown in Figure 6g.

4.2 | Comparison on different empirical parameters

There are two empirical parameters in the SOMA method, namely, the ratio δ% for selecting 

precision atlases with the highest frequency of best match and the floating window search 

range fr in the nonlocal matching strategy. Another implicit empirical factor is that the ReR 

is conducted only once in all experiments above. Whether continuous refinement following 

the current strategy will further improve the recognition accuracy is still under investigation. 

Experiments on these three empirical parameters are conducted as follows: (i) After RoR 

and ReR, refinement is continued where ReR2, ReR3, and ReR4 stand for iterative refined 

recognition with ratio δi% = 50%, such that δ2% = 20% × 50% = 10% for ReR2, δ3% = 10% 

× 50% = 5% for ReR3, and finally δ4% = 5% × 50% = 2.5% for ReR4. At the same time, 

the ROI is also iteratively refined based on the recognition mask yielded from the previous 

stage. (ii) Experiments on different δ%, that is, 50% (1/2), 33% (1/3), 10% (1/10), and 5% 

(1/20) are conducted to check if 20% is a reasonable ratio for refined atlas selection. (iii) 

Different floating window searching ranges are tested. fr = 0, 1, 2, and 3 separately denote 

the radius (in the unit of slice spacing) of the maximum extension from the tested voxel 

position. As in our experiments the unified resolution of images is around 1 × 1 × 3 mm, 
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the searching range with, for example, fr = 3, will be a 3D searching range with 19 × 19 × 7 

voxels centered on the test voxel.

Experiments are conducted on two typical objects with medium recognition difficulty: a 

small blob-like object RPG (right parotid gland) and a long sparse object CtEs (cervical 

esophagus), for which only one fold of test samples, that is, 58 test samples with 150 atlases 

for RPG and 82 test samples with 200 atlases for CtEs, are contained in the experiments 

of the empirical parameters. Quantitative evaluation results are shown in Table 5. For each 

parameter, cases with best DC or LE are marked in bold. Although the selected parameters 

do not always yield best results, they show no significant difference from the best cases 

(p-value >0.05). In addition, they are of less computational burden compared to the best 

cases, where larger δ% and fr introduce extra computational burden in ReR.

4.3 | Comparison with methods in literature

The same datasets are used in our previous work of the model-based AAR-RT method.66 

AAR-RT was designed to recognize all important organs in the target body region, which is 

based on high-level anatomic priors including the hierarchy of all organs under consideration 

and their fuzzy shape models. The hierarchy is a tree that defines the optimal order for 

recognizing organs and the relative positions and scales of the organ on each offspring node 

with respect to its parent node. These entities are estimated from a set of near-normal 

images. Typically, the skin of the body region is taken as the root organ and is first 

recognized by proper thresholds. Then, other organs are sequentially recognized based on 

the hierarchy, and refined based on local image intensities. Recognition and delineation are 

both improved by the proposed SOMA method as shown in Table 6, which quantitatively 

compares the influence of OQ in recognition and delineation quality via the two methods. 

OQ is less influential on the SOMA method than on the earlier model-based method, as the 

target object can be well recognized if its quality is covered in the spectrum of atlas images 

via SOMA, while model-based methods typically generate object models only based on 

normal subjects, and recognition may be less accurate for object samples with pathological 

abnormalities.

We also compared the proposed method with another two typical deep-learning methods. 

One is utilizing an end-to-end U-net architecture as in Figure 3 without applying SOMA 

recognition process, that is, the network input is with the original image size (512 × 512 

pixels) without ROI cropping via the fuzzy recognition map, and the output is binary 

mask with the same size as input. The results are shown in the Baseline column of Table 

6. Comparing with the results of SOMA, although in many cases the DC values show 

differences within 1%, results for LSmG, Hrt, and TB are largely degraded without the 

guidance of localization and membership confidence from SOMA recognition.

The other method under comparison utilizes a neural network-based similarity measure to 

determine the weight of atlases for label fusion. The results are shown in the Sim_Net 
column of Table 6. The similarity network was proposed in Ref69 and originally targeted for 

myocardial segmentation in CT and MR images, where the regions around LV myocardium 

were precropped. The similarity network is designed to map image patches into an 

embedding space, and the similarity is calculated based on a softmax function over the 
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Euclidean distance between atlases and target patches. Each training sample is selected 

around the boundaries of the target object, containing a patch of target image and two atlas 

patches, which include one positive patch with DC > 0.9 (ground truth similarity 1) and one 

negative patch with DC < 0.5 (ground truth similarity 0). Cross-entropy loss is utilized to 

optimize the network. As this method contains several hyperparameters, such as patch sizes 

and fusion strategies, which can be different for each object to reach best performance, we 

are still exploring this method to pursue the balance between segmentation accuracy and 

time efficiency, including embedding part of the idea into the SOMA process. The results 

presented in Table 6 are based on patches of 15 × 15 pixels with stride 11 inside the ROI 

determined in the same way as Step R1 of procedure SOMA-R. Different from the original 

purpose of this method to segment a target object within a cropped region, our focus is more 

on segmenting all the main organs inside a whole-body region, where the background region 

may contain different kinds of structures like bone, airway, and soft tissue, and the similarity 

network needs to be retrained for new objects and it is hard for the network to distinguish 

among tissues without annotations. The low DC values for TEs (thoracic esophagus) give 

a good illustration that the local background of TEs is also soft tissue with low contrast, 

and the similarity network fails to catch the real similarity inside this local region. Besides, 

we conducted an experiment by applying the similarity network trained for mandible (Mnd) 

to segment RPG, and the mean DC value degrades from 0.72 to 0.68. Instead, our SOMA 

recognition method does not only focus on foreground, but also explores the similarity in 

background region and generates atlas map, which is ready to be used for potential targets. 

Thus, SOMA can be used in conjunction with any top-of-the-line delineation engine for 

obtaining the final segmentation.

We would like to summarize the advantages of our proposed SOMA methods as follows: 

(i) The SOMA method is much less sensitive to the image quality problem arising from 

artifacts and distortions among real patients. As only the regional best-match atlas is applied 

to recognize the target object locally, the atlases with lower regional similarity will not 

influence the recognition quality, especially after selecting the precision subset of atlases 

for ReR, greatly alleviating this sensitivity problem widely existing in MAS methods.70 Our 

collected datasets contain clinical images of 539 cancer patients, 75 of which show overall 

GQ on all considered objects (meaning that there are no more than three slices with artifacts/

deviations, etc.; see66) and are used to determine parameters for the recognition process. The 

SOMA method is evaluated on the rest of the images, composed of 1809 object samples 

with GQ and 1073 object samples with PQ. As briefly compared in Table 6, recognition 

and delineation accuracies of SOMA are truly less influenced by object-level image quality 

variations. (ii) The intermediate recognition results are given in the SOMA process before 

using DL, which show good localization and refined boundary matching. Recognition alone 

can be used in clinical analysis, for example, for disease quantification,71 without having 

to do delineation. There is rarely such trackable and explainable intermediate result that 

comes out from DL processes. (iii) The SOMA method conducts subimage matching in 

both foreground and background regions, which can further extend to the whole-body 

region and be used in selecting precision atlases for any potential target. This matching 

process does not explicitly distinguish foreground and background before generating fuzzy 

membership maps. It can be done only once regardless of the future refinement in atlas 
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annotations, whereas the DL models need to be retrained when reference masks are updated. 

(iv) The SOMA method is not specialized to a specific set of objects or body regions, while 

most of the DL methods aim to segment target objects all at once and are less adjustable 

when considering other objects, other body regions, or other modalities. The object-specific 

considerations, including spatial locations, shapes, sizes, and contrasts, are contained in the 

SOMA recognition process when determining ROIs and parameters θ (similarity threshold) 

and ω (subimage size), which can be decided separately and will not have influence that 

permeates among objects.

4.4 | Gaps, challenges, and future works

Several gaps, challenges, and extensions for the SOMA method are to be worked on in 

the future. First, standardized definitions for body regions and all objects should always be 

pursued so that the performance of medical image segmentation methods can be reliably 

and meaningfully compared, although imperfect definitions cannot be entirely eliminated, 

especially for challenging sparse soft-tissue objects like the esophagus. Such imperfections 

will lead to errors in localization accuracy of recognition.

Second, the subset of precision atlases is selected by ranking the frequencies of regional 

best match, although the matching quality is currently only determined by the similarity 

threshold θ in a binary manner. Instead of a binary decision, there may be potential in 

combining the frequency with the level of similarity as a new measure to rank the atlases in 

future work.

Third, since the SOMA method spotlights the selection of precision atlases and the 

refinement in anatomy recognition, we only utilize a most typical semantic segmentation 

network—a U-net-based network to transform the fuzzy membership map into the binary 

segmentation mask. In the literature, some more advanced networks are utilized with 

different considerations, such as replacement of the ordinary convolution layers by res-

block72,73 or dense-block,74 or use of a fully convolutional network as the generator 

network followed by a discriminator network in the generative adversarial network 

(GAN) strategy.75,76 To know whether changing the network architecture will yield better 

delineation accuracy requires further experimentation.

Fourth, according to the division of atlas selection methods defined in,10,44 the proposed 

SOMA method is a purely online-learning method where the precision atlases are selected 

according to the frequencies of best match of intensity-based similarity to the target object 

in the test image. In our previous work,38 an atlas grouping method was proposed, and so 

offline learning and online learning can potentially be combined to improve atlas selection, 

as well as recognition accuracy and efficiency, in future work.

Finally, we plan to utilize the SOMA method on multimodality image datasets such as 

positron emission tomography/computed tomography (PET/CT) images. Modifications to be 

made for use on multimodality cases in terms of how to conduct intermodality registration 

and the statistics of best-match frequencies are still under investigation. Assessment of the 

performance of SOMA method in other body regions, such as the abdomen and pelvis, is an 

additional topic of future research.
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4.5 | Computational considerations

The SOMA method was implemented on a computer with the following specifications: 

6-core Intel i7–7800X CPU 3.5 GHz with 64 GB RAM, NVIDIA TITAN XP GPU with 12 

GB of memory, and GeForce GTX 1070 GPU with 8 GB of memory, running on the Linux 

operating system. In SOMA, the seven-parameter registration costs 1–2 min for each image. 

Computational time for recognition depends on the atlas size, subimage size ω, and ROI 

size. A larger atlas set, ω, and ROI will cost more time in recognition. Recognition of heart 

(Hrt) in the thorax region is typically the most time consuming, given the large ROI and the 

largest ω = 55 among all considered objects, which costs around 40 min with 200 atlases. 

For the mandible (Mnd) with the smallest window size ω = 5, recognition for a test sample 

costs about 3 min based on 200 atlases. As all objects can be recognized simultaneously, the 

most time-consuming object determines the recognition time for the entire-body region. In 

this sense, the recognition of all objects in the thorax region depends on Hrt and is typically 

40 min, and the recognition of all objects in the H&N region depends on cervical spinal cord 

(CtSC), an object with a large spatial extent, with an overall recognition time of about 7 min 

when using the largest ω = 17. As subimage matching is conducted on each atlas and each 

position in an ROI, parallel computing is obviously available in the recognition procedure to 

reduce computational time and will be an area of focus in our future work. DLD costs 1–3 

s for each object sample in the test stage, while training time is also based on the number of 

training samples and the sizes of the ROIs. Typically, training time ranges from ~80 min for 

small objects like right submandibular gland (RSmG) and up to 10 h for large objects like 

right lung (RLg).

5 | CONCLUSIONS

In this paper, we introduce a new approach called SOMA of selecting subject-, object-, 

and modality-adapted precision atlases for automatic anatomy recognition and delineation 

in medical images with pathology. The proposed method starts from a viewpoint that the 

recognition of different parts of the target object can be taken from different atlases with 

best regional (and not global) similarity, while the similarities on other regions do not matter. 

Hence, the precision atlases have no need to be overall similar to the test image but with 

frequent regional similarity to the target object, where the frequency of best match is the 

measure for selecting precise atlases.

The method includes three main components, atlas construction, two-stage recognition, and 

delineation. The atlas set is constructed by aligning all images into a unified image space, 

which belongs to the root image determined via an MST strategy from a set of radiologically 

near-normal images. Then, specific to each test object sample under consideration, RoR 

is conducted to determine a refined ROI and a set of precision atlases with the highest 

frequency of regional best match. Subsequently, ReR is conducted with the refined ROI, 

refined atlases, and a floating window strategy to generate better regional match. A U-net-

based deep learning network is trained for delineation, where the original gray scale image 

together with the fuzzy map from ReR is taken as a two-channel input, while output is the 

segmentation mask of the target object. We conducted experiments on two body regions, 
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the H&N region with 298 patient datasets and nine objects, and the thorax with 241 patient 

datasets and six objects.

We summarize our conclusions as follows. (i) The SOMA method shows high accuracy 

and robustness in anatomy recognition and delineation. There is a tendency of gradual 

refinement from RoR to ReR and to delineation, owing to selection of precision atlases 

in RoR, careful boundary matching in ReR, and strength of deep learning models in 

interpreting boundaries. (ii) Samples with different object qualities show less difference 

in recognition and delineation accuracy, whereas the accuracy is obviously influenced by 

object quality in model-based methods. This confirms one of the SOMA principles that no 

matter whether an object sample is of good or poor quality, it can be well recognized if there 

exist partially similar atlases in the atlas set. This is one of the central tenets and strengths 

of the SOMA approach. (iii) Although only CT images of H&N and thorax body regions are 

evaluated in the current experiments, the SOMA method is applicable unmodified to other 

image modalities and other body regions as long as a set of atlases is available such that 

patterns of different portions of the test sample are able to be represented by a part of the 

atlas set.
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FIGURE 1. 
Schematic representation of the SOMA approach
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FIGURE 2. 
Two-dimensional example of a 5 × 5 subimage V5,J*(v) (middle), where v is shown 

highlighted, the 5 × 5 region around v in FMℓ (left), and the same 5 × 5 region around 

v in the resulting FMℓ (right) after the update in Step R6
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FIGURE 3. 
Deep learning network architecture for SOMA delineation procedure. A case of right parotid 

gland (RPG) is taken as an example
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FIGURE 4. 
Image examples for objects in the head and neck (H&N) region. Two-dimensional images 

for reference masks (first column), fuzzy maps from RoR and ReR procedures (second and 

third columns), and delineation masks (fourth column) overlapped on gray scale images and 

overlapped by reference contours are shown in first two rows. The corresponding 3D surface 

or volume renditions are arranged at the bottom
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FIGURE 5. 
Image examples for objects in the thorax region. Similar to Figure 4, reference masks, 

recognition maps, and delineation masks are shown from left to right
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FIGURE 6. 
Illustration of why subject-level similarity should not be considered in the recognition 

process. (a–c) Three slices of the novel image are overlayed by the atlas with best subject-

level similarity; this will not guarantee the regional similarity/match. (d) Initial region of 

interest (Rin). (e) Atlas map that indicates indexes of best-match atlases of each region. (f) 

Different regions of the novel image are matched by different atlases, and their binary masks 

are combined as in Figure 2 to generate a recognition map as in (g)
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