Skip to main content
. 2021 Feb 7;23(6):1150–1158. doi: 10.1111/jch.14209

TABLE 2.

Multiple linear regression analysis regarding independent associations between differences in LVMI and BPV (systolic and diastolic)

Independent variables Left ventricular mass index differences (ΔLVMI)
Total population (n = 180) Controlled hypertensives (n = 119)
Model A (Office SBP)
ΔsBPV β = 0.20, p = .01 ΔdBPV β = 0.17, p = .04 ΔsBPV β = 0.26, p = .01 ΔdBPV β = 0.22, p = .01
Age Age Age Age
Smoking Smoking Smoking β = 0.19, p = .06 Smoking
BMI BMI BMI BMI β = −0.20, p = .05
Cholesterol Cholesterol Cholesterol Cholesterol
Office SBP Office SBP Office SBP Office SBP
Model B (Office mean BP)
ΔsBPV β = 0.20, p = .01 ΔdBPV β = 0.17, p = .04 ΔsBPV β = 0.26, p = .01 ΔdBPV β = 0.22, p = .02
Age Age Age Age
Smoking Smoking Smoking β = 0.19, p = .06 Smoking
BMI BMI BMI BMI β = −0.20, p = .05
Cholesterol Cholesterol Cholesterol Cholesterol
Office mean BP Office mean BP Office mean BP Office mean BP
Model C (24‐h SBP)
ΔsBPV β = 0.20, p = .01 ΔdBPV ΔsBPV β = 0.19, p = .04 ΔdBPV
Age Age Age Age
Smoking Smoking Smoking Smoking
BMI BMI BMI β = −0.20, p = .03 BMI β = −0.20, p = .03
Cholesterol Cholesterol Cholesterol Cholesterol
24‐h SBP β = 0.29, p < .001 24‐h SBP β = 0.30, p < .001 24‐h SBP β = 0.35, p < .001 24‐h SBP β = 0.39, p < .001