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Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with a 
dismal 5-year survival rate. PDAC has a complex tumour microenvironment; 
characterised by a robust desmoplastic stroma, extensive infiltration of immune-
suppressive cells such as immature myeloid cells, tumour-associated macr-
ophages, neutrophils and regulatory T cells, and the presence of exhausted and 
senescent T cells. The cross-talk between cells in this fibrotic tumour establishes 
an immune-privileged microenvironment that supports tumour cell escape from 
immune-surveillance, disease progression and spread to distant organs. PDAC 
tumours, considered to be non-immunogenic or cold, express low mutation 
burden, low infiltration of CD8+ cytotoxic lymphocytes that are localised along the 
invasive margin of the tumour border in the surrounding fibrotic tissue, and often 
display an exhausted phenotype. Here, we review the role of T cells in pancreatic 
cancer, examine the complex interactions of these crucial effector units within 
pancreatic cancer stroma and shed light on the increasingly attractive use of T 
cells as therapy.
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Core Tip: Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease 
with a dismal 5-year survival of less than 5% in patients with metastatic disease, and is 
predicted to become the second cause of cancer-related death by 2030. Here, we 
discuss the complexity of the PDAC immunosuppressive tumour microenvironment, 
the mechanisms involved in T cell dysfunction, and potential immunotherapeutic 
strategies for treating PDAC.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with a 
dismal 5-year survival of less than 5% in patients with metastatic disease[1], and is 
predicted to become the second cause of cancer-related death by 2030[2]. Late 
detection and incredibly aggressive biology are significant challenges determining 
therapeutic failure[3,4]. PDAC has a complex tumour microenvironment (TME) 
characterised by a robust desmoplastic stroma[5], and an expanded pool of immu-
nosuppressive immune cells shielding the malignant cells harbouring aberrant 
expression of oncogenic pathways. The interplay between various cell types in this 
fibrotic TME supports tumour cell escape from immunosurveillance, disease 
progression and spread to distant organs [6,7], highlighting this cancer’s ability to 
evade immune recognition and its extra-ordinary metastatic potential. In this review, 
we discuss the interactions between T cells and the other components of the PDAC 
TME and highlight the impact of these interactions on the phenotype and function of T 
cells. Emerging immune-therapeutic strategies employed in overcoming T cell 
dysfunction and improve patient survival are also discussed.

PDAC IMMUNE LANDSCAPE
PDAC carcinogenesis is characterised by an abundant fibro-inflammatory reaction and 
subsequent oncogene activation on epithelial cells, resulting in a pro-tumorigenic 
microenvironment[8]. At early stages of cancer development, oncogenic KRAS 
expression in pancreatic cells results in the formation of pancreatic intraepithelial 
neoplasia (PanIN), and drives an inflammatory reaction that modulates the 
recruitment and infiltration of immunosuppressive myeloid and lymphoid cell 
subsets. KRAS-mutated pancreatic cells regulate the maintenance of immunoregu-
latory microenvironment by inducing the release of interleukin (IL)-6, IL-10 and 
transforming growth factor (TGF-β) cytokines. In the setting of sustained chronic 
inflammation, PanIN progression to malignant lesion is accompanied by mutations in 
genes such as TP53, CDKN2A and SMAD4 frequently, which further contribute to 
shape the immune microenvironment. For example, the mutant tumour suppressor 
gene TP53 are implicated in sustaining the tissue damage and chronic inflammation by 
enhancing the expression of NF-kB, secretion of vascular endothelial growth factor 
(VEGF) and activation of fibroblasts. Decreased infiltration of T and B cells and 
elevated numbers of Tregs were significantly correlated with CDKN2A mutations 
while SMAD4 mutations are involved with enhanced invasion, metastasis and 
immunosuppressive effects of TGF-β on immune response[9].

Chemotactic factors associated with the recruitment of dysfunctional bone marrow-
derived myeloid cells include granulocyte-macrophage colony-stimulating factor (GM-
CSF), granulocyte-colony-stimulating factor (G-CSF), IL-3, VEGF, and the interaction 
of the C-X-C chemokine ligand 12 (CXCL12)/C-X-C chemokine receptor 4 (CXCR4) or 
C-C chemokine ligand 2 (CCL2)/C-C chemokine receptor 2 (CCR2), amongst others
[10]. Stromal-associated fibroblasts produce C-X-C chemokine ligand 13 (CXCL13), 
which recruits IL-35-producing regulatory B cells (Breg) into the TME, further 
contributing to PDAC progression through IL35-mediated stimulation of tumour cell 
proliferation[10]. Copious infiltration of immature myeloid cells, tumour-associated 
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macrophages (TAMs), neutrophils and regulatory immune cells ultimately establishes 
an immune-privileged microenvironment that protects the malignant cells from T cell 
immunosurveillance and sustains tumour growth[11].

Therefore, pancreatic cancer evolves to establish a complex and heterogeneous 
immune microenvironment, characterised by high numbers of strongly suppressive 
immune cells, and a modest infiltration of lymphocytes with anti-tumour properties
[12-14]. As such, PDAC tumours are considered to be non-immunogenic or cold, 
displaying low infiltration of CD8+ cytotoxic lymphocytes (CTLs) that are localised 
along the invasive margin of the tumour border or trapped in the surrounding fibrotic 
tissue but are not present within the tumour core. Moreover, infiltrated CD8+ T cells in 
PDAC tumours often display minimal signs of activation[11,15,16]. T cell exclusion 
from TME has been demonstrated both in genetically engineered KPC (KRasLSL_G12D/+, 
Trp53LSL_R172H/+, Pdx1-Cre) mouse models[16] and PDAC patients[17].

Macrophages compose the most abundant immune cells in PDAC[11]. They play a 
critical role in the exclusion of T cells from tumours, maintenance of fibrosis through 
the secretion of pro-fibrotic cytokines[18] and induction of angiogenesis by secreting 
VEGF[19]. Increases in TAMs correlate with poor prognosis[20,21]. Myeloid-derived 
suppressor cells (MDSCs) are a heterogeneous population of immunosuppressive 
cells, including immature monocytes, granulocytes and dendritic cells (DCs). These 
cells show potent ability to inhibit proliferation and induce apoptosis of both CD4+ and 
CD8+ T cells, secrete elevated amounts of immunosuppressive cytokines IL-10 and 
TGF-β, which collaborate to the recruitment of regulatory CD4+ T cells (Tregs), and 
decrease the infiltration of natural killer (NK) and NKT cells into the tumour[22]. 
MDSCs accumulation has been described in the spleen, tumours and metastatic lesions 
in KPC models of PDAC, and its accumulation negatively correlated with CD8+ T cells 
infiltration[19].

Likewise, Tregs upregulate the expression of CTL-associated antigen 4 (CTLA-4)
[23], interact with DCs suppressing the expression of the co-stimulatory ligands, such 
as CD80 and CD86, necessary for T cell activation, secrete immunosuppressive 
cytokines, and directly suppress CD8+ T cells anti-tumour immunity[24]. Infiltration of 
Tregs occurs at early stages of PDAC formation, and increased numbers of both 
circulating and intra-tumoural. Tregs have been observed in pancreatic cancer patients
[19]. Additionally, the presence of tumour-infiltrating IL-17-producing CD4+ T cells 
and γδT cells also contribute to tumour immune evasion and progression[11,25].

Similar to PDAC, in inflammatory conditions of the pancreas, such as pancreatitis, 
the inflammatory reaction leads to the infiltration of myeloid cells, such as monocytes 
and neutrophils. Although macrophages comprise a significant population within the 
inflamed pancreas, T cells are also present, and infiltration of CD4+ T cells has been 
implicated in the progression of acute pancreatitis in mice. As pancreatitis progresses, 
the ratio of CD4+ and CD8+ T cell increases, with increased numbers of immunosup-
pressive Tregs observed in patients with chronic pancreatitis.

T CELL INTERACTIONS AND IMMUNE DYSFUNCTION IN PANCREATIC 
CANCER
T cell infiltration is observed in patients with surgically-resected PDAC and correlates 
with improved outcomes suggesting the anti-tumour potential of tumour-infiltrating 
CD4+ and CD8+ T cells[26]. However, as PDAC progresses, tumour-infiltrating T cell 
composition shifts to a decrease in CD8+ T cells and elevated percentage of Tregs 
within the CD4+ T cell subset[27]. While CD4+ Tregs are a prominent feature of the 
immune infiltrate, CD8+ T cells are rare in the PDAC microenvironment[24]. 
Consequently, PDAC is considered to be a poorly immune responsive cancer, with T 
cells present within the tumour microenvironment often showing lack of activation, or 
an exhausted phenotype[28-30]. This observation demonstrates that infiltrated CD8+ T 
cell may recognise and mount a response against these tumours, but the unfavourable 
TME halts optimal cytotoxic function.

Spatial localisation of the immune cells in these tumours reflect the challenging 
biology of PDAC TME. Tumour-infiltrating CD8+ T cells are localised at the periphery, 
within the surrounding fibrotic stroma in PDAC tissues[6,21,31,32]. CD8+ T cells 
migrate away from the juxta-tumoural compartment by favouring their movement 
towards CXCL12-rich stroma laid by activated pancreatic stellate cells (PSCs)[6]. The 
proximity of intra-tumoral CD8+ T cells to tumour cells correlates with patient survival
[32].
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PSCs play a central role in shaping the architecture of PDAC by modulating the 
ECM components and producing a physical barrier that limits T cell infiltration, 
migration and direct interaction with neoplastic cells[33]. These cells can also act as 
non-professional antigen-presenting cells (APCs) and secrete cytokines and growth 
factors that boost the recruitment of immunosuppressive cells and inhibit T cell 
responses, resulting in increased disease aggressiveness and decreased overall 
survival[34]. Therefore, in conjunction with the immunosuppressive cells, PSCs are 
crucial players in the orchestration of an immuno-privileged PDAC microenvironment 
by combination of secreted cytokines, chemokines and extra-cellular matrix proteins as 
well as direct cell-cell contact.

Cancer cell-intrinsic factors also impact T cell function. Overexpression of immune 
checkpoint mediators like programmed death-1 receptor (PD-1)-ligand (PD-L1) is one 
mechanism by which cancers suppress T cell immunity. PD-L1 is overexpressed in 
PDAC cells, and this overexpression correlates with worse prognosis[20]. Pancreatic 
cancer cells can also downregulate Fas, a cell surface receptor associated with the 
induction of Fas-mediated apoptosis in tumour cells. CD8+ T cells use the Fas-FasL and 
perforin–granzyme pathways as major effector mechanisms of cytotoxicity, and loss of 
Fas expression in PDAC tumours result in cancer immune evasion[7,35]. Spatial 
localisation and T cell interactions within the PDAC tumour microenvironment are 
shown in Figure 1.

PDAC has a low mutation burden, resulting in low neoantigen burden and the 
scarcity of tumour-infiltrating effector T cells. Only a few PDAC tumour antigens 
capable of inducing an anti-tumour immune response have been identified. Low 
mutation burden with minimal expression of neoantigens, and consequently marginal 
T cell infiltration is a classical feature in KPC models[36], and in PDAC patients[29,
37]. In a recent study aimed to identify T cell neoantigens in long-term survival 
patients, it appears that the total neoantigen burden does not correlate with increased 
survival, but the presence of high-quality neoantigens played an essential role in the 
immunosurveillance of long-term survival patients. This study also highlighted the 
correlation of prolonged survival with granzyme B+ CD8+ T cells[26]. In keeping with 
this hypothesis, the total number of infiltrated CD8+ T cells after vaccine immuno-
therapy did not show correlation with survival, but the subset of granzyme B+ CD8+ T 
cells was associated with long-term survivors[38]. These findings suggested that T cell 
quality may be more important than the total number of T cells for adequate anti-
tumour immunity[39].

Identification of multiple dense lymphocyte aggregates, known as tertiary lymphoid 
structures (TLS) has also been observed in PDAC[38]. Importantly, detection of TLS in 
tumour tissue of PDAC patients was an independent prognostic factor for prolonged 
survival[40-42]. Although TLS can occur intra-tumoral or at the tumour periphery, 
only the presence of intra-tumoral TLS correlates with survival[41]. TLS aggregates 
contain T- and B-cell areas co-localised with myeloid and follicular DCs, and high-
endothelial venules, displaying similar organisation to secondary lymphoid organs. 
They comprise ectopic lymphoid sites where T-cell activation and proliferation takes 
place[41]. Nevertheless, PDAC immune microenvironment is enriched with both 
exhausted and senescent T cells, and a diverse pool of highly immunosuppressive cells
[43].

T CELL PHENOTYPE AND FUNCTIONS
Mature T cells can be classified as CD8+ T cells (CTLs) and CD4+ helper T cells (Th), 
which further differentiate into Th1, Th2, Th17 and Tregs[17]. CD4+ Th1 cells secrete 
the pro-inflammatory cytokine interferon-γ (IFN-γ) which activates and supports 
CTLs cytotoxicity, while CD4+ Th2 cells exhibit tumour-promoting functions by 
producing a plethora of cytokines, sustaining fibrosis through ECM and collagen 
deposition, and contributing to the differentiation of macrophages into a M2-imm-
unosuppressive phenotype[44]. Polarisation towards Th2 cell subset is a common trait 
in pancreatic cancer, and this shift from Th1 to Th2 cells is correlated with decreased 
patient survival[45]. In PDAC patients, CD4+ Th17 cells functions are mediated by the 
secretion of IL-17 cytokine. Although not very well understood, infiltration of this 
population has been associated with immune tolerance and reduced survival in 
murine models[46]. Tregs are an essential component of the T cell population. PDAC 
patients have increased numbers of Tregs that are inversely associated with CD8+ T 
cells, therefore, they are often used as a negative prognostic biomarker in PDAC[45]. 
These cells can be identified by the expression of CD4+CD25+FOXP3+ phenotype[24] 
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Figure 1 Pancreatic ductal adenocarcinoma immune landscape and T cell immunosuppression. Illustrative image showing spatial localisation of T 
cells in the pancreatic ductal adenocarcinoma tumour microenvironment and cellular interactions that collectively prevent T cell infiltration and function. T cells are 
localised at the periphery of tumours preventing direct contact with cancer cells. Pancreatic stellate cells produce elevated amounts of extracellular matrix driving a 
fibrotic tissue that entraps infiltrated T cells, alongside with immunosuppressive cytokine to and expression of programmed death-ligand 1 (PDL-1). Pancreatic cancer 
cells avoid T cell killing by downregulating Fas, exhibiting low tumour mutational burden, expressing PDL-1 and secreting growth factors and cytokines that recruits 
immunosuppressive cells. Myeloid-derived-suppressor cells express PDL-1 and suppress T cells functions by several mechanisms, including depleting of arginase 1, 
the release of reactive oxygen species, and secretion of cytokines. Tregs directly suppress T cells, express cytotoxic T-lymphocyte-associated protein 4 and secrete 
cytokines. TAMs play a role in sequestering T cells at the periphery and secrete immunosuppressive cytokines. PSC: Pancreatic stellate cells; TAMs: Tumour-
associated macrophages; CTLA-4: Cytotoxic T-lymphocyte-associated protein 4; GM-CSF: Granulocyte-macrophage colony-stimulating factor; Arg-1: Arginase 1; 
PDL-1: Programmed death-ligand 1; iNOS: Inducible nitric oxide; MDSC: Myeloid-derived-suppressor cells; ROS: Reactive oxygen species; ECM: Extracellular 
matrix; TBM: Tumour mutational burden.

(Table 1).
CTLs are the preferred immune cells for targeting tumours. For durable and 

efficient immune responses, naïve T cells are primed in the lymph nodes with tumour 
antigens through interactions with APCs. Upon activation, they rapidly proliferate, 
differentiate into antigen-specific CTLs and migrate to tumour sites to perform their 
cytotoxic functions[47]. Elimination of tumour cells by CTLs occurs via the release of 
cytotoxic granzymes, IFN-γ and tumour necrosis factor α (TNF-α), or by induction of 
FasL-mediated apoptosis[48]. Following a cytotoxic immune response, the majority of 
CTLs will undergo apoptosis while a small fraction of them will further differentiate 
into diverse subsets of multipotent, long-lived memory CD8+ T cells endowed with 
self-renewal ability[47]. The integration of three coordinated signals regulates T cells 
activation, expansion, survival, and memory formation: T cell receptor (TCR) 
stimulation by antigens, engagement of co-stimulatory molecules (CD28, CD27, 4-1BB, 
and OX40) expressed by CD8+ T cells, and the release of inflammatory cytokines. In the 
absence of co-stimulatory signals, antigenic stimulation induces tolerance or clonal 
deletion in peripheral lymphoid organs[49]. The pro-inflammatory cytokines IL-12, IL-
2 and IFN-γ, are crucial for satisfactory naïve CD8+ T cell activation, expansion and 
differentiation whereas IL-7 and IL-15 are predominantly required for formation 
maintenance of memory CD8+ T cells. In pancreatic cancer patients, both number and 
functions are altered within the CD8+ T cell population. These patients show a 
decrease in circulating CD8+ T cells and a decrease in perforin expression within these 
cells compared to healthy subjects. Moreover, intra-tumoural CD8+ T infiltrates often 
display abnormal exhausted phenotype[44].

Memory CD8+ T cells immediately proliferate upon antigen stimulation, execute 
cytotoxic functions, secrete effector cytokines, persist in greater numbers and exist in 
different metabolic, transcriptional, and epigenetic states[50]. Importantly, while the 
correlation between the numbers of memory CD8+ T cells and the efficacy of T cell 
immunity is firmly established, the quality (or functional ability) of memory CD8+ T 
cells also determines the degree of protection[47,48,50]. While memory T cell 
population are heterogeneous and consist of multiple subsets, the central memory T 
cells (TCM) and effector memory T cell (TEM) subsets have been best characterised. TCM 
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Table 1 T cell phenotype and functions

T cell phenotype Surface markers Immune response Effector functions

Cytotoxic T cell

CTLs CD8 Tumour killing IFN-γ, TNF-α cytokines, granzymes, FasL

Helper T cell

Th1 CD4 STAT4 T-bet Tumour killing IFN-γ, IL-2 cytokines, increase CTL activity

Th2 CD4 STAT6 GATA3 Tumour tolerance IL-4, IL-5, IL-13 cytokines, decrease CTL activity

Th17 STAT3 RORγt Tumour tolerance IL-17 cytokine

γδ T cells TCRγ/δ Tumour tolerance IL-4, IL-10, TGF-β cytokines and CTL activity

Regulatory T cell

Tregs CD4 CD25 FOXP3 Tumour tolerance IL-10, TGF-β cytokines, CTLA-4

CTL: Cytotoxic lymphocyte; IFN-γ: Interferon-γ; TNF-α: Tumour necrosis factor α; IL: Interleukin; TGF-β: Transforming growth factor β.

cells express high levels of CD62L and CCR7 and efficiently home to lymph nodes, 
whereas TEM cells lack these molecules and reside mainly in non-lymphoid peripheral 
tissues but are able to migrate rapidy in response to cytokine gradient. TCM and TEM 
subsets can also be identified along with a terminally differentiated CD8+ T subset that 
expresses CD45RA (TEMRA). This way, the TCM subset is classified as CD45RA- CD27high 
CCR7+ cells and TEM subset as CD45RA- CD27low CCR7- cells. In contrast, TEMRA subset 
can be identified as CD45RA+ CD27lo CCR7- cells, and naïve T cells as CD45RA+ CD27
high CCR7+ cells, but there are other methods of differentiating these sub-types[47,50].

A handful of other markers have been described to differentiate T cell populations 
during the effector-to-memory transition states. Increased expression of IL-7Rα 
(CD127) is functionally required for long-term survival and can be used to identify 
memory precursor CD8+ T cells. Other proteins co-expressing with CD127+ CD8+ T 
cells include Bcl-2, CD27, CXCR3, and CD28. Cells expressing these set of markers 
have the most remarkable capacity to develop into central memory CD8+ T cells (TCM), 
showing elevated ability to proliferate upon antigen stimulation, increased IL-2 
secretion, and self-renewal. Conversely, CD8+ T cells with increased expression of 
KLRG1, CD57 and decreased expression CD127, CD27, CXCR3, and CD28 are 
associated with effector or memory CD8+ T cells that display cytotoxicity, elevated 
IFN-γ production and short-life span. Therefore, KLRG1+ CD127- CD8+ T cells can be 
considered effector memory CD8+ T cells (TEM), at least in murine models, though 
human equivalent data is awaited[47,50].

Transcriptional factors promote the development and function of TEM and TCM cells. 
Expression of T-bet, Blimp1, ID2, and STAT4 is associated with TEM cells, while high 
expression of TCF1, BCL-6, ID3, and STAT3 is linked to the formation of TCM cells[49,
50]. Interesting, in B cells, Blimp-1 and BCL-6 are essential for the development of 
germinal centre B cells and long-lived plasma cell through reciprocally antagonising 
each other[51], suggesting that this set of transcription factors acts in a similar fashion, 
in the regulation of effector- memory T-cell transition. Moreover, Tcf7 and Lef1 
transcription factors are found in self-renewing multipotent CD8+ T cells known as 
memory stem cells[52].

T CELL EXHAUSTION
Exhausted T cells differ from other dysfunctional T cells, including anergic T cells and 
senescent T cells. Anergic T cells are induced by suboptimal stimulation showing cells 
with low proliferative capacity and minimal effector function. Senescent T cells initiate 
from repeated stimulation, resulting in cells with low proliferative capacity, low 
expression of inhibitory receptors but show high effector functions despite shortened 
telomeres. Differently, exhausted T cells result from persistent antigenic stimulation 
causing Tcells with low proliferative capacity, low to moderate effector functions and 
elevated expression of multiple inhibitory receptors[53].

In cancers such as PDAC, T cells that go through the activation process will later 
differentiate into memory-like cells and will ultimately become terminally differen-
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tiated exhausted T cells. Exhausted T cells result from persistent antigen exposure 
featuring cells with low proliferative capacity, increased apoptosis, loss of their 
cytotoxic function, and elevated expression of multiple inhibitory receptors also 
known as immune checkpoints such as PD-1, CTLA-4, T cell immunoglobulin and 
mucin-domain containing-3 (TIM-3), lymphocyte activation gene 3 (LAG-3), or T cell 
immunoreceptor with Ig and ITIM domains (TIGIT)[43,53]. Each inhibitory receptor 
binds to its ligand, typically expressed by APCs and tumour cells in the TME.

The surface receptor PD-1 (CD279) is the primary receptor involved in T cell 
inhibitory signalling. PD-1 has two ligands: PD-L1 (CD274) and PD-L2 (CD273) can be 
found on the surface of antigen-presenting, MDSCs, TAMs and cancer cells. IFN-γ is 
the main trigger for PD-L1 and PD-L2 upregulation, while induction of PD-1 
expression on T cells results from cell receptor (TCR) stimulation or secretion of the 
cytokines IL-2, IL-7, IL-15, IL-21, and TGF-β. Engagement of PD-L1 or PD-L2 with PD-
1 receptor on T cells, inhibits dephosphorylation of TCR signalling components, 
specifically CD28, resulting in decreased IL-2, IFN-γ, and TNF-α cytokine production, 
survival, proliferation and effector functions[54].

CTLA-4 (CD152) is a B7/CD28 family member that is constitutively expressed by 
Tregs. CTLA-4-mediated immunosuppression occurs by limiting signalling through 
the co-stimulatory receptor CD28 during antigen-presentation, by either binding or 
deleting CD80 and CD86 from APCs[55]. Thus, indirectly reducing T cell activation 
and immune responses to tumour antigens. Other T cell subsets such as CD4+ T cells 
can also upregulate this receptor upon activation[56]. LAG-3 exerts inhibitory effects 
on T cells through MHCII binding, which results in decreased T cell activation and 
cytotoxicity, and increased suppressive function in Tregs. In PDAC, upregulation of 
this receptor is observed in association with upregulation of both PD-1 and CTL-4[57].

The inhibitory receptor TIGIT compete with CD226 to bind the ligands CD112 and 
CD155 while Tim-3 binds to Galectin-9 and CEACAM1 proteins to inhibit T cell 
function[58]. Of note, upregulation of Tim-3 in patients with PDAC is correlated with 
decreased patient survival[57]. Transcription factors involved in the formation of 
dysfunctional T cells include T-bet, Eomes, Foxo1, Blimp-1, NFAT and IRF-4[53].

A recent study using multiplex immunohistochemistry imaging combined with 
single-RNA sequencing to evaluate T cell landscape and function in patients with 
pancreatic cancer, demonstrated that infiltrated CD8+ T cells displayed a senescent 
phenotype, identified by the expression of CD57+CD27-CD28- or CD45RA+ CD27-/Low

CD28-/Low or an exhausted phenotype with elevated expression of TIGIT+ and CD39+ 
markers alongside PD-1low/intermediate expression[30]. Senescent and exhausted T cells as 
well as Tregs were also identified within the CD4+ population. Additionally, intra-
tumoural Tregs exhibit highly suppressive phenotypes, highlighted by the expression 
of multiple (TIGIT, ICOS, CD39) inhibitory markers[30].

IMMUNOTHERAPY AND PANCREATIC CANCER
Strategies aiming to leverage the activity of CTLs or the reversal of T cell dysfunction 
are widespread and have shown clinical success across a variety of cancer[27,29,59]. 
However, efforts to translate immunotherapy to PDAC, have been met with 
substantial challenges. The presence of tumour-infiltrating lymphocytes (TILs) with 
effector and memory functions within the tumour microenvironment and the positive 
correlation between CD8+ T effector memory cells and patient survival highlight the 
significance of the T cell immune infiltrate in limiting cancer progression[48]. Hence, 
the lack of efficacy in existing immunotherapies reflects the challenging non-
immunogenic PDAC TME[11,38,48,60].

Chimeric antigen receptor (CAR) T cells or tumour vaccines alone have not 
demonstrated a survival benefit in PDAC tumours[11,35,48,61]. However, work is 
ongoing on demonstrating novel targetable antigens or switchable CAR T cells which 
get activated on reaching the tumour[62,63]. Although most infiltrated CD8+ T cells in 
the PDAC stroma display features of an exhausted phenotype, demonstrated by cell 
surface expression of multiple inhibitory receptors, immunotherapy with single-agent 
immune checkpoint blockade (ICB) has been disappointing. KPC mouse models did 
not show anti-tumour responses to either CTLA4, PD-1, PDL-1 monotherapy or CTL-4 
combined with PD-1/PDL-1 blockade[19,64]. Similarly, human clinical trials using ICB 
demonstrated insufficient clinical activity and minimal improvement on prognosis, 
with clinical benefit observed in only highly selected patients[27,39]. Equally, 
monotherapy with CTLA-4 antibodies and in combination with chemotherapy has not 
shown ideal clinical activity[59]. Furthermore, exciting avenues for targeting novel 
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antigens such as CEACAM7 offers hope for CAR-T cell therapy[62,65,66].
The vast majority of trials targeted towards T cells in pancreatic cancer are centred 

around the use of immune inhibitory receptors against PD-1 and CTLA-4[67]. Most of 
these trials have enrolled patients with metastatic or borderline resectable pancreatic 
cancer and assessed the response to either single or double agent immunotherapy or 
combination therapy with chemotherapy/radiotherapy. The results regarding 
progression free survival or overall survival have been so far underwhelming[68]. In a 
meta-analysis on checkpoint inhibitors overall survival and progression-free survival 
showed no improvement in single agent therapy but a small number of studies on 
combination therapy have been more promising[69]. It is feasible that the limited 
tumor mutational burden of pancreatic cancer compared to immunotherapy 
responsive tumours, such as melanoma or non-small cell lung cancer, may be the key 
differentiating factor. The phase II KEYNOTE-185 study trying to assess the efficacy of 
pembrolizumab on patients with non-colorectal microsatellite unstable/mismatch 
repair deficient cancers enrolled 22 patients with pancreatic cancer, of which four 
patients showed response to treatment with increase in progression-free survival and 
median survival[70]. These results, although encouraging, demonstrate that there key 
barriers around identifying correct groups of patients that would benefit from T cell 
targeted therapies.

There are various explanations for ICB failure in PDAC tumours including low 
mutational burden and expression of neoantigens, minimal intra-tumoural infiltration 
of CD8+ T cells, expression of multiple inhibitory receptors in CD8+ T cells that 
infiltrate tumours, as well as decreased tumour and myeloid expression cell expression 
of PDL-1[31,57]. To improve PADC response to ICB, combined approaches have been 
investigated. Multi-agent immunotherapeutic protocols targeting multiple inhibitory 
receptors is a promising approach, and has proved more effective than single 
inhibitory receptor blockade in reversing dysfunctional CD8+ T cells PDAC[27,71]. In 
the same way, strategies with the goal to prime effector CD8+ T cells to increase their 
immunogenicity and responsiveness before the use of checkpoint inhibitor treatment 
represents an exciting opportunity in cancer immunotherapy[12,27,59,72,73]. 
Combinatory approaches utilising GM-CSF-secreting tumour cells vaccine (GVAX), to 
induce upregulation of PD-L1 expression into the PDAC TME, prior CTLA-4 and anti-
PD-1/PDL-1 blockade has shown promising results in PDAC patients[57,72], and a 
dual blockade targeting CXCR4 and PD-1 demonstrated improvement in T cell infilt-
ration with a decline in MDSCs[57].

Strategies with the co-stimulatory molecule agonist CD40 used to enhance APC 
capabilities of macrophages[74] combined with gemcitabine, PD-1 and CTL-4 ICB 
resulted in increased T-cell priming and infiltration in PDAC tumours[64,72]. 
Extraction and in vitro expansion of TILs from PDAC tumours also have been explored
[40] and the results demonstrated autologous T cell killing activity[75,76].

CONCLUSION
The PDAC tumour microenvironment is characterised by complex fibrotic stroma with 
substantial infiltration of tumour-promoting immunosuppressive cells and 
pronounced T cell exhaustion, favouring immune evasion that results in immuno-
therapeutic failures and poor clinical outcome. Therefore, understanding the 
complexity of PDAC immune landscape and the mechanisms involved in T cell 
dysfunction may contribute to identifying new immunotherapeutic strategies for 
treating PDAC and monitoring such response with novel technologies such as ctDNA 
to assess tumour lysis[77]. As such, unsuccessful immunotherapies could be reversed 
using combined approaches targeting multiple pathways that obstruct T cell anti-
tumour immunity along with other strategies to target stroma[78,79].

A variety of preclinical studies highlighting the influence of PDAC stromal 
components on T cell anti-tumour responses provided rationale for the development 
of clinical trials incorporating combined approaches to enhance T cell responses[80]. 
CXCL12 from cancer-associated fibroblasts synergizes with anti-PD-L1 blockade 
resulting in activation of T cells and tumour regression in mice[6,81]. Similarly, dual 
blockade of TGF-β and anti-PD1 resulted in increased T cell responses and tumour 
regression[82]. Moreover, targeting of myeloid cells with CSF1R in combination with 
PD-1 or CTLA-4 blockade[83] or focal adhesion kinases inhibitors has been shown to 
decrease infiltration of suppressive myeloid populations with concomitant activation 
of T cells, and improved survival in mice models[84].
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