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Abstract

Rationale: Non-invasive quantification of the severity of pharyngeal airflow obstruction would 

enable recognition of obstructive versus central manifestation of sleep apnoea, and identification 

of symptomatic individuals with severe airflow obstruction despite a low apnoea-hypopnoea index 

(AHI).

Objectives: Here we provide a novel method that uses simple airflow-versus-time (“shape”) 

features from individual breaths on an overnight sleep study to automatically and non-invasively 

quantify the severity of airflow obstruction without oesophageal catheterisation.

Methods: 41 individuals with suspected/diagnosed obstructive sleep apnoea (AHI range=0–

91 events/hr) underwent overnight polysomnography with gold-standard measures of airflow 

(oronasal pneumotach, flow) and ventilatory drive (calibrated intraoesophageal diaphragm 

EMG, drive). Obstruction severity was defined as a continuous variable (flow:drive ratio). 

Multivariable regression used airflow shape features (inspiratory/expiratory timing, flatness, 

scooping, fluttering) to estimate flow:drive in 136,264 breaths (performance based on leave-one-

patient-out cross-validation). Analysis was repeated using simultaneous nasal pressure recordings 

in a subset (N=17).
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Measurement and Main Results: Gold-standard obstruction severity (flow:drive) varied 

widely across individuals independent of AHI. A multivariable model (25 features) estimated 

obstruction severity breath-by-breath (R2=0.58 vs. gold-standard, P<0.00001; mean absolute 

error=22%) and the median obstruction severity across individual patients (R2=0.69, P<0.00001; 

error=10%). Similar performance was achieved using nasal-pressure.

Conclusions: The severity of pharyngeal obstruction can be quantified non-invasively using 

readily-available airflow shape information. Our work overcomes a major hurdle necessary for the 

recognizing and phenotyping of patients with obstructive sleep disordered breathing.

Plain Language Summary

Pharyngeal airflow obstruction is a hallmark of obstructive sleep disordered breathing and 

manifests not only as changes in flow amplitude but also as changes in flow “shape” 

(flattening, scooping, timing, fluttering). There is currently no automated approach for using 

rich flow shape data to quantify the magnitude or severity of airflow obstruction during sleep. 

This information could improve sleep apnoea classification and phenotyping (e.g. central vs. 

obstructive pathophysiology) or airflow obstruction in the absence of cyclic respiratory events. 

First we introduce an objective definition of the severity of airflow obstruction, defined as the ratio 

of actual airflow to intended airflow or ventilatory drive (calibrated intraoesophageal diaphragm 

EMG, drive), where a flow:drive ratio of 50% indicates that the airflow achieved was half of 

the intended value (100% is an open airway; 0% is fully closed). We show that pharyngeal 

airflow obstruction varies widely for any given OSA severity (apnoea-hypopnoea index). Second 

we demonstrate that a multivariable model using automated flow shape information accurately 

estimates the severity of airflow obstruction: a) per breath (error=22%), and b) per patient 

(error=10%). Our approach overcomes major barriers for the objective phenotyping of sleep 

disordered breathing.
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INTRODUCTION

Pharyngeal airflow obstruction, characterised by a mismatch between actual ventilatory flow 
and ventilatory effort (drive), is a hallmark of obstructive sleep disordered breathing [1]. 

For decades, investigators have sought to assess airflow obstruction and consequent flow-

limitation [2–4] for the purposes of phenotyping obstructive versus central contributions to 

sleep apnoea [5, 6], and for identifying individuals with a low apnoea-hypopnoea index 

(AHI) who have severe airflow obstruction and symptoms that may warrant treatment [7, 

8]. It is now widely appreciated that the AHI is not a reliable indicator of sleep disordered 

breathing symptoms or outcomes, with several studies suggesting that the severity of airflow 

obstruction may be influential [9–15]. A non-invasive means to estimate of the severity of 

pharyngeal obstruction is needed [16].

The field of sleep medicine is now reinvigorating efforts to automatically detect pharyngeal 

obstruction (i.e. inspiratory flow limitation) based on the flow “shape” of individual breaths 
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[17, 18]. Clinically, pharyngeal obstruction is recognised by expert scientists based on: 

a flattening or scooping (mid-inspiratory dip) of inspiratory flow [19–21], an increase in 

inspiratory time at the expense of expiratory time [22], and complex flow-limited breath 

patterns involving intermittent collapse and fluttering [23]. Thus, it is feasible that these 

features could be combined to estimate the severity of airflow obstruction automatically.

Important progress has already been made: Automated methods to detect flow shape features 

currently form the underlying algorithms within auto-titrating CPAP machines [20], yet 

these algorithms are not publicly available [24]. The main limitation to the available 

published approaches [6, 18, 20, 25–28] has been the reliance on patient characteristics 

or subjective expert interpretation to classify presence or absence of obstruction, and most 

studies have limited methods to a single flow “shape” feature [6, 20].

Here we developed and validated a tool that combines flow shape features across multiple 

known domains (flattening, scooping, timing, fluttering) to estimate airflow obstruction 

objectively across a continuum of severities. First, we define airflow obstruction based 

on the ratio of actual ventilation (flow) to the intended ventilation based on calibrated 

intraoesophageal diaphragm EMG (drive), i.e. the flow:drive ratio [29, 30]. Second, flow 

shape features were calculated in participants with suspected or diagnosed obstructive sleep 

apnoea (N=41). A host of flow shape features (see Methods) were used to develop a 

multivariable model to estimate the severity of pharyngeal airflow obstruction (flow:drive) 

in individual breaths, and average obstruction severity in individual patients. Finally, we 

examined the performance of the same multivariable flow shapes model using the nasal 

pressure signal as a clinically-applicable means to quantify obstruction (N=17).

METHODS

Subjects

Forty-three participants with suspected or diagnosed obstructive sleep apnoea (OSA) 

attended our sleep research laboratory. All individuals with suspected but not diagnosed 

OSA reported witnessed snoring/gasping plus daytime sleepiness/fatigue. Patients were free 

of major co-morbidities and were not using medications expected to influence ventilatory 

control. The study was approved by the Partners Internal Review Board. All participants 

provided written informed consent before participation. Two participants could not tolerate 

oesophageal catheterisation (see below), leaving 41 patients with data available for analysis.

Procedure

In addition to routine polysomnographic signals (electroenchephalography, 

electrocardiography, thoracoabdominal movements, oximetry), airflow was measured with 

a pneumotach (Hans Rudolf, Shawnee KS, USA; Validyne Engineering, Northbridge CA, 

USA) attached to an oronasal mask (AirFit small, Resmed Inc., San Diego CA, USA). To 

provide gold-standard measurement of ventilatory drive, minimally influenced by changes in 

airflow [31], each patient was instrumented with an intraoesophageal diaphragmatic EMG 

catheter (Servo-i Ventilator, Maquet Getinge Group, Wayne, NJ, USA). A subset of patients 
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(N=17) had simultaneous nasal pressure recording via a modified cannula. Patients slept 

supine throughout the studies.

The physiological link between airflow obstruction and flow shape

Theory.—In principle, the flow “shape” (airflow versus time profile), manifest via 

pharyngeal obstruction, depends not only on the degree of collapsibility but also on the 

underlying ventilatory drive (Figure S1), and thus reflects the ratio of actual airflow 

(ventilation, referred to as flow) to intended ventilation (ventilatory drive, referred to as 

drive). Thus, this ratio “flow:drive” was used as a continuous quantitative measure of the 

severity of airflow obstruction, scaled so that 100% indicates a patent airway based on 

wakefulness [5, 29]; note flow:drive=50% indicates obstruction with actual flow equal to 

just half of the intended flow (drive) consequent to reduced flow and/or increased drive. The 

flow:drive definition of obstruction is intentionally broad to encompass any form of manifest 

flow-limitation (e.g. Starling resistor ‘flatness’, negative effort dependence ‘scoopiness’), 

more complex airway obstruction (e.g. intermittent collapse), and simple linear increases in 

resistance, all encapsulated by their common effect to reduce ventilation for any given level 

of ventilatory drive (lowered flow:drive). In principle, flow:drive is equal to the reciprocal 

of the respiratory system neuro-mechanical impedance (linear equivalent, resistance and 

elastance, presented as a fraction of the average wakefulness levels).

Data analysis

Gold-standard measurement of airflow obstruction (flow:drive).—Periods with 

absent signals, artefact or non-zero CPAP were manually excluded. Breaths scored as 

obstructive apnoea were automatically excluded from flow-shape processing. All other 

breaths were analysed, regardless of sleep stage (wake, sleep, arousal). Breath-to-breath 

ventilation was measured using tidal volume × respiratory rate (L/min). Ventilatory drive 

was calculated using the processed diaphragm EMG excursions, calibrated to L/min using 

wakefulness data. See Supplement for details. Flow:drive was calculated as ventilation (L/

min) divided by ventilatory drive (L/min) and expressed as a percentage.

Flow shape measures.—To provide a method with broad clinical utility we down-

sampled airflow data (pneumotach and nasal pressure) to 25Hz, i.e. AASM minimum 
sampling rate [32]. Nasal pressure signals were linearised as appropriate [30] (Figure S2).

We included published features [6, 19, 20] in addition to novel metrics as candidates. 

For inclusion, features had to be independent of flow amplitude and able to be calculated 

without external information (e.g. reference breaths). In total, 85 candidate features were 

calculated for each breath to reflect aspects of flattening, scooping, asymmetry, breath 

timing, and high-frequency variability (spectral power). See Supplement for details (Table 

S1). Key features are highlighted in Results.

Features that were not well-characterised using nasal pressure (R2≤0.5 vs. pneumotach 

flow measures, ~40% of features, Table S2) were excluded since clinical application (nasal 

pressure) is a major goal of this work.
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Flow-Shape Estimation of Obstruction Severity

We adopted a simplified “machine-learning” approach for face-validity and translatability:

Feature transformation.—To handle non-linear associations between flow shape features 

and obstruction severity, we made transformed versions of each feature (square and square-

root) and untransformed versions all available for selection.

Multivariable regression to quantify airflow obstruction.—Multivariable linear 

regression with backwards elimination was employed to identify a model (set of feature 

terms and coefficients) for predicting obstruction severity (flow:drive, continuous variable).

Analysis of nasal pressure.—Flow shape features were assessed in 17 patients; the 

above model was used to estimate obstruction severity compared with the gold standard 

(flow:drive from pneumotach and diaphragm EMG).

Statistical Analysis

Reported estimates of flow:drive throughout the study were based on a conservative 

leave-one-patient-out cross-validation procedure, whereby flow:drive estimates from each 

patient were based on a modified version of the model using only other patients’ data. 

The coefficient of determination (R2) was used to assess the strength of the relationship 

between the gold standard obstruction severity (flow:drive) and the flow-shape-estimated 

for each breath (all data wake and sleep). The same approach was used to assess the 

association between the median obstruction severity (gold standard vs. estimated) for each 

patient (all breaths during sleep only, data in arousals excluded to assess sleep-related 

obstruction). R2>0.5 was considered a strong association. Mean absolute error was used 

to describe the expected estimation error. Weighted least-squares was used in regression 

model development to balance the influence of five severity classes (normal: flow:drive 
>90%, mild: 70–90%, moderate: 50–70%, severe: 30–50%, very severe: <30%). P<0.05 was 

considered statistically significant. Multivariable regression assessed whether obstruction 

severity estimated from flow shape predicted the gold-standard (flow:drive) independent of 

obstruction frequency (AHI).

RESULTS

Participant characteristics are summarised in Table 1. In total, 136,264 breaths in 41 

participants were assessed.

Relationship between airflow obstruction severity and OSA severity

Although we observed an association between median gold-standard obstruction severity 

(flow:drive) and OSA severity (apnoea-hypopnoea index), the median obstruction severity 

varied widely for any given obstruction frequency (AHI, residual SD = 23%; Figure 1). 

Some individuals had profound obstruction despite a low AHI.
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Multivariable flow-shape estimate of airflow obstruction

Number of shape features.—Mean absolute error (estimated minus gold-standard, 

cross-validated) decreased with increasing numbers of shape features (beyond 100 features); 

a model with 25 features represented a sensible compromise between accuracy and 

complexity (Figure S3 and S4).

Examples.—Representative traces illustrate concordance between estimated and gold-

standard obstruction severity (flow:drive) values in common clinical circumstances (Figure 

2). Note how knowledge of obstruction provides quantifiable insight into the (otherwise 

covert) pathophysiology in each example.

Breath-by-breath obstruction.—The estimated obstruction severity for each breath 

(i.e. continuous flow:drive values predicted from flow shape model; pneumotach signal) 

was strongly associated with the gold standard flow:drive values (without cross-validation, 

R2=0.63, mean absolute error = 18%; Figure 3A shows cross-validated results, R2=0.58, 

P<0.00001, mean absolute error = 22%).

Patient average obstruction.—The estimated median obstruction severity for each 

patient during sleep were also strongly associated with gold-standard flow:drive values 

(without cross-validation, R2=0.77, mean absolute error = 9%; Figure 3B shows cross-

validated results, R2=0.69, P<0.00001, mean absolute error = 10%). Adjusting for AHI did 

not diminish the association (P<0.00001).

Key flow-shape measures

The top 5 features captured high frequency variability (spectral power) in inspiration and 

expiration, deviation from a normal rounded contour in inspiration and expiration, and the 

degree of inspiratory scooping (Table 2, Figure 4). The complete list of 25 shape features 

utilized in the final model are described in Table S3.

Nasal pressure analysis

In total, 62,990 breaths with simultaneous nasal pressure (clinical airflow signal) and 

pneumotach oronasal airflow were assessed. Nasal pressure estimates of flow:drive (same 

model) were strongly associated with pneumotach derived estimates (R2=0.80, P<0.00001, 

mean absolute error = 8%; Figure 5A, Table S3).

Using nasal pressure, the estimated obstruction severity for each breath (R2=0.48, 

P<0.00001, mean absolute error = 23%; Figure 5B) and for each patient (R2=0.46, 

P<0.00001, mean absolute error = 11%, adjusted for AHI: P=0.002; Figure 5C) were 

significantly associated with the gold standard flow:drive. Note that mean absolute errors 

were similar to the pneumotach estimates (i.e. 22%, 10% respectively).

DISCUSSION

The current study has developed and validated the first automated method for quantifying 

the magnitude of pharyngeal airflow obstruction during sleep using airflow shape on a 
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breath-by-breath basis. We provide a simple multi-feature model that estimates the breath-

by-breath obstruction severity and provides an accurate estimate of average obstruction 

severity (which we show is considerably different from obstruction frequency, i.e. AHI). Use 

of nasal pressure was similarly effective illustrating that the current approach can be readily 

applied to a routine clinical sleep study. Overall, our study demonstrates that the flow shape 

can be leveraged to quantify the degree of pharyngeal obstruction during sleep, information 

which is not otherwise evident when assessing sleep apnoea severity.

Novel Physiological Insights

Our study demonstrates that magnitude of pharyngeal airflow obstruction (flow limitation)

—measured on a continuum (ratio of ventilation to ventilatory drive, flow:drive, [30, 33])

—influences the clinically-observed flow shape in obstructive sleep disordered breathing. 

First, we showed that theoretically (Figure S1) the airflow shape generated by a flow-limited 

airway is fundamentally affected by both the properties of the airway (collapsibility, tube 

law, peak flow) as well as the ventilatory drive or effort, and that the ratio of these 

aspects (flow:drive) theoretically determines the observed flow shape. Second, by direct 

measurement in patients we demonstrated that a greater mismatch between flow and 

drive (airflow obstruction severity) is associated with multiple recognisable flow shape 

abnormalities (see Table S3), including greater signal variability (spectral power) in both 

inspiration and expiration [23], deviation from a rounded (“sinusoidal”) inspiratory flow 

contour [18], greater “scooping” [21], increased inspiratory time [6] and greater inspiratory 

flattening [20]. A brief summary of the highest performing features in the final model are 

presented in Table 2 and illustrated in Figure 4. Third, when combined, flow shape features 

can explain ~58% of the variability in flow:drive. Fourth, further analysis revealed that 

the flow shape associations with flow and drive assessed separately is somewhat weaker 

(R2=0.45, 0.30 respectively, compared with 0.58 for flow:drive ratio) demonstrating that it is 

the mismatch between flow and drive (flow:drive) that best explains the manifest flow shape 

abnormalities in obstructive sleep disordered breathing.

Our study is the first to demonstrate that combined airflow shape features can be used 

as a tool to recognise the otherwise concealed severity of airflow obstruction on a breath-

by-breath basis. Bivariate analysis showed that there was no single shape feature with 

high predictive performance across the patient cohort (Table S1). For example, increased 

inspiratory duty ratio (inspiratory duration ÷ total breath duration) [28] was modestly 

associated with obstruction severity (R2=0.32), and a well-known inspiratory flattening 

index used for CPAP titration [20] also performed modestly (R2=0.34). Combining multiple 

features was considerably more effective (R2=0.58), consistent with the knowledge that 

pharyngeal obstruction manifests as different flow shapes in different patients [21, 23, 25].

Clinical Implications

A major goal of the field for decades has been a non-invasive clinically-applicable 

automated method to quantify the magnitude of airflow obstruction on individual breaths 

using a clinically-accessible airflow signal (nasal pressure) for the purposes of 1) detecting 

obstructive sleep disordered breathing (i.e. upper airway resistance syndrome [12, 34, 35]) 
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in patients with minimal overt respiratory events and 2) facilitating discrimination between 

obstructive and central phenotypes of sleep apnoea.

It is well recognised that the symptoms of sleep-disordered breathing are not well 

explained by the frequency of respiratory events (AHI), and that there are a number 

of symptomatic individuals with severe unrecognised flow limitation (i.e. upper airway 
resistance syndrome [12, 34, 35]) who may benefit from treatment [9–15]. Available 

evidence has also demonstrated that hallmarks of greater obstruction severity—including 

increased oesophageal pressure swings, loud snoring—are associated with sleepiness and 

hypertension independent of the AHI [9–15]. For example, surgical treatment of flow 

limitation in a small study of children was effective at relieving symptoms [12], CPAP 

treatment of flow limitation in pregnancy can improve preeclampsia [14], and surgical 

treatment of flow limitation in adults may improve sleepiness [13]. However, the role of 

obstruction severity in the absence of overt apnoeas and hypopnoeas has remained poorly 

investigated due to the lack of objective and clinically-applicable measurement techniques. 

Indeed, a recent American Thoracic Society working group [17] emphasised the need to 

develop an automated open-source algorithm (full model is provided in Supplement), with 

clear recommendations for recording standards (minimum 25 Hz sampling, DC-coupled, 

unfiltered), capable of using flow shape to detect airflow obstruction of both non-episodic 

and episodic nature, that could be related to clinical outcomes in epidemiological studies. 

Our method addresses and exceeds these requirements by (a) identifying and utilising 

an objective physiological gold standard (rather than subjective expert-consensus-guided 

labels), and (b) quantifying the magnitude of pharyngeal obstruction on a continuum.

The differential diagnosis of central versus obstructive sleep apnoea is challenging due 

to difficulty determining the severity of obstruction during sleep. Importantly, treatments 

for sleep apnoea that target pharyngeal anatomy (CPAP, oral appliances, surgery) are 

consistently less efficacious in those with a more central (or high loop gain) phenotype 

[36–38]. By definition, this non-obstructive (possibly “central”) phenotype manifests as the 

presence of respiratory events despite minimal obstruction severity (e.g. Figure 1(ii)). An 

estimate such as the median obstruction severity during sleep, which had minimal error 

(10% pneumotach, 11% nasal pressure) and was not confounded by AHI, is needed if such 

patients are to be easily identified for future phenotype-based interventions.

We emphasise that our approach is clinically applicable by design and seeks to obviate the 

requirement for (invasive) oesophageal catheterisation. Further studies are needed to test the 

utility of the tool, and determine the role of the severity of airflow obstruction per se in the 

sequelae of sleep disordered breathing.

Methodological considerations

There are a number of methodological considerations. Our definition of flow:drive is 

calibrated based on wake respiratory mechanics, and as such, the calibration value may 

change across the night. To control for this, the calibration value was extrapolated using a 

weighted moving-time average to best represent changes across the night. The calibration to 

wakefulness also means that our gold standard measure of airflow obstruction is expressed 

relative to wakefulness (i.e. relative resistance) rather than absolute obstruction (i.e. absolute 
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resistance); thus deficits in wake mechanics will not be detected (e.g. underestimating 

absolute resistance in obese patients with wake deficits). We emphasise that our goal was to 

describe sleep-specific changes. Second, we chose a relatively simple feature selection and 

classification routine (multivariable linear regression with stepwise feature selection) to train 

and validate our model to ensure face validity and ease of sharing with other investigators. 

We performed a separate validation study (N=29, see Supplement for details) that showed 

that the current method had positive predictive value of 88% and negative predictive value 

of 85% to detect obstructed breaths (in hypopneas) versus unobstructed breaths (in arousals). 

It is possible that further performance improvements could be achieved by the use of 

more sophisticated classification tools, however such approaches can obfuscate important 

discriminatory features. Likewise, combining input from other physiological indicators of 

airflow obstruction (e.g. respiratory belts, oximetry, snoring sounds, transcutaneous CO2) 

may improve model performance [39]. We also note that our method does not require an 

unusual signal quality: we intentionally used signals down-sampled to 25 Hz to represent 

a standard clinical polysomnogram (maximising clinical applicability). While increased 

signal quality might be expected to improve the method, a recent study found that lowering 

sampling rate to 25 Hz did not greatly affect ability to detect presence/absence of flow-

limitation [40], provided the sampling rate was similar during development and testing.

The current study made no attempt to use flow shape to estimate the site of collapse or 

to estimate the timing of pharyngeal collapse with respect to the phases of the respiratory 

cycle. However, we have inherently taken into account—through the various candidate flow 

shapes that capture aspects of both inspiratory and expiratory skewness and asymmetry—the 

understanding that the timing of obstruction is heterogeneous.

Our measure of obstruction severity (flow:drive) does not, by itself capture the balance 

between central and obstructive contributions to loss of flow during hypopnoeas, or capture 

the absolute drop in drive per se. Recognition of a “central phenotype” may require not 

only specific consideration of flow:drive during events, but also assessment of flow, and the 

evolution of these measures across the course of events: We would consider hypopnoeas 

to be of 1) classic “obstructive” manifestation if drive rises while flow falls throughout a 

hypopnoea, recognizable by a fall in flow:drive that occurs faster in comparison to the fall in 

flow (i.e. drive increases), and 2) more “central” in manifestation (than classic obstruction) 

if flow falls in parallel with a fall in drive (with obstruction nonetheless present when flow 

falls faster than drive, e.g. Figure 2D), recognizable by a fall in flow:drive that occurs slower 

than the fall in flow (i.e. drive decreases). See Supplement, Figure S8, for examples. Future 

studies validating the utility of these approaches with respect to clinical outcomes of therapy 

are warranted.

Conclusions

We provide a method for the quantification of pharyngeal airflow obstruction that uses 

information derived entirely from the airflow shape of any given breath. The method 

compared favorably against a physiological gold standard, on a breath-by-breath basis 

and when assessing average patient obstruction during sleep. Use of nasal pressure did 

not yield a substantial deterioration in performance, indicating that our technique is ready 
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for application to routine clinical polysomnography. As such, our work provides tools 

needed to address the long-standing inability to discriminate between obstructive and non-

obstructive manifestations of sleep apnoea, with implications for guiding sleep apnoea 

therapies. Likewise, it may enable recognition of a disturbing magnitude of pharyngeal 

airway obstruction in symptomatic non-apneic individuals who are presently ineligible for 

treatment of sleep disordered breathing on the basis of a low AHI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Take-Home Message

The degree of pharyngeal airflow obstruction varies widely for any given OSA severity 

(apnoea-hypopnoea index) and is challenging to measure. Here we combine information 

from automated flow shape to accurately estimate the severity of airflow obstruction.
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Figure 1: 
Scatter plot (center) illustrates the association between the severity of airflow obstruction 

(gold-standard patient median flow:drive) and the frequency of airflow obstruction 

(apnoea-hypopnoea index) during sleep. Only the latter is currently reported clinically. 

Note some individuals without sleep apnoea (near zero AHI) exhibit substantial airflow 

obstruction (lowered median flow:drive). Histograms of airflow obstruction severity 

(flow:drive) during sleep for selected individuals (labelled i-v, matched with scatter plot): 

(i) Normal breathing: This individual neither has sleep apnoea nor airflow obstruction 

(median flow:drive=100%). (ii) Moderate sleep apnoea despite normal airflow obstruction 

(flow:drive=99%) suggesting a non-obstructive (possibly central) phenotype of sleep 

apnoea. (iii) Severe sleep apnoea without severe obstruction (flow:drive=65%), also 

suggesting a non-obstructive (possibly central) phenotype. (iv) Severe sleep apnoea with 
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severe airflow obstruction (flow:drive=35%). (v) No sleep apnoea despite a level of airflow 

obstruction (flow:drive=46%) consistent with severe OSA (e.g. iv).
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Figure 2: 
Example patterns of airflow obstruction in five individuals (A-E). In each individual, note 

that the severity of airflow obstruction (flow:drive) estimated based on flow shape (red) 

matches the gold standard (black); flow and drive signals are shown separately. (A) First, 

note that in breath (i) the patient does not achieve the airflow that they intended based 

on drive (lowered flow:drive), which is evident based on the characteristic flow-limited 

“shape”. Compare with breath (ii), where the same flow is achieved but at a lower drive; 

note the rounded “shape” when the airway is unobstructed. Second, note that breaths (iii) 
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and (iv) have different magnitudes but identical shapes, consistent with the parallel reduction 

in flow and drive in (iv) i.e. same obstruction severity. (B) Transition from cyclic events 

to “stable” breathing in a patient with sleep apnoea. Despite so called stable breathing, 

pharyngeal obstruction remains substantial (the patient achieves just half the intended flow, 

flow:drive=50%), a phenomenon that is recognisable based on flow shape. (C) Prolonged 

obstructed breathing without respiratory events, characterised by increased ventilatory drive, 

again recognisable based on flow shape. (D) At the end of one respiratory event, the 

airway is fully reopened in association with an arousal (i). A subsequent obstructive event 

is terminated without complete airway reopening (flow:drive<100%) in the absence of 

an arousal (ii), illustrating that this patient can achieve marked airflow recovery while 

maintaining sleep. In this interesting example, we also see the ventilatory drive is falling 

rather than rising during the event, while the airway is simultaneously becoming obstructed. 

We note that drive falls towards normal eupneic levels, while flow falls to ~10% of eupneic 

levels, i.e. the reduction in flow is proportionately greater than the reduction in drive, hence 

obstruction (reduced flow:drive). (E) A central hypopnoea, characterised by a reduction in 

flow that is similar in magnitude to the reduction in drive (diaphragm EMG), hence minimal 

obstruction (and high, constant flow:drive). In this case, the airway is more obstructed after 

(versus during) the event.
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Figure 3: 
Airflow obstruction severity estimated from flow shape (pneumotach) predicts the gold 

standard in individual breaths (A) and individual patients (B). (A) Gold-standard versus 

estimated obstruction severity (flow:drive) for individual breaths (sleep and wake), note the 

strong association (R2=0.58, P<0.00001). The box plot overlay shows summary statistics 

(median, IQR, 10th to 90th percentiles) for breaths within each severity classification (normal 

to very severe). (B) Gold-standard versus estimated obstruction severity (flow:drive) for 

individual patients (median of sleep only data, 73,737 breaths), note the strong association 

(R2=0.69, p<0.00001, adjusted for AHI p<0.00001).
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Figure 4: 
The five key features in the multivariable airflow obstruction model. An example normal 

breath (left, blue) and obstructed (right, red) are shown. Increasing values of these 

features, labelled i-v, indicated greater obstruction. Specifically: (i and ii) Power5to12E 

and Power5to12I quantify the flow variability (power) in 5–12 Hz range for expiration 

and inspiration respectively; note the area (power) for the obstructed breath (red) is greater 

than the area for the normal breath (blue). (iii and iv) QuadE and QuadI50 quantify the 

discrepancy between the airflow signal and a matched parabola (same peak amplitude, 

curved dashed lines), for expiration and inspiration respectively. The absolute difference 

(area) quantifies the discrepancy (only the middle 50% of inspiration is used, all data for 

expiration). (v) AreaUnderPeaksI captures the degree of scooping by quantifying the area 

under a line joining two inspiratory peaks. A simplified 5-feature model is provided in the 

Supplement (Table S5, Figures S5 and S6) and performed effectively.
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Figure 5: 
Nasal pressure analysis of airflow obstruction. (A) Scatter plot showing a very strong 

association (R2=0.8) between nasal pressure estimated flow:drive and pneumotach estimated 

flow:drive values. (B) Scatter plot showing a moderate association (R2=0.48) between nasal 

pressure estimated flow:drive and gold-standard flow:drive values for individual breaths. 

The box plot overlay shows summary statistics (median, IQR, 10th and 90th percentiles) for 

breaths within each severity classification. A small reduction in performance (compared to 

pneumotach flow, Figure 3A) appears in the distinction between very-severe and severe 

obstruction. (C) A moderate association is observed between nasal pressure estimated 

median flow:drive and gold-standard patient median flow:drive during sleep, including 

apnoea breaths (R2=0.46, p<0.003, adjusted for AHI p<0.003). Note that in this subset 

of patients that include simultaneous oronasal pneumotach flow and nasal pressure signals, 

there are very few patients with severe and very severe airflow obstruction as shown by 

gold-standard flow:drive <50%. Pnasal, nasal pressure.
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Table 1.

Patient characteristics

Characteristic Comparison to gold standards
(N=41)

Nasal pressure vs. pneumotach (N=17)

Demographics

 Age (years) 58±9 59±9

 Sex (M:F) 25:16 11:6

 Race (Black:White:Asian:Other) 12:28:0:1 3:14:0:0

 Body mass index (kg/m2) 32.4±6.6 31.8±7.5

 Neck circumference (cm) 41.3±4.8 41±5.2

 Currently treated (CPAP:oral appliance:untreated) 15:2:24 2:1:14

Polysomnography

 OSA severity (normal:mild:moderate:severe) 5:13:7:16 4:8:2:3

 Apnoea-hypopnoea index, total (events/hr) 30.5±27.4 15.4±15.7

 Apnoea-hypopnoea index, non-REM (events/hr) 30±28 14.5±16.1

  Central events, non-REM (% respiratory events) 0.8±3.5 0.5±1.2

  Hypopnoeas, non-REM (% respiratory events) 64.4±31.2 80.3±21.7

  Arousal Index, non-REM (events/hr) 50.3±24.2 42.7±18.4

 Total sleep time (min) 239±92 249±80

  Sleep time, spontaneous breathing* (min) 160±96 209±83

 Non-REM 1 (% total sleep time) 37±20 37±23

 Non-REM 2 (% total sleep time) 48±17 46±18

 Non-REM 3 (% total sleep time) 6±7 8±10

 REM (% total sleep time) 9±8 9±9

Values are mean±S.D.

*
Sleep time available for analysis without physiological tests (part of previous study). OSA severity classes defined as; normal Apnoea-hypopnoea 

index(AHI)<5, mild 5<AHI<15, moderate 15<AHI<30, and severe AHI>30 events/hr. CPAP = continuous positive airway pressure. OSA = 
obstructive sleep apnoea. REM = rapid-eye-movement sleep. AHI = apnoea-hypopnoea index. Note the lower AHI in the nasal pressure subset was 
not by design.
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Table 2.

Selection of highest performing unique features in the multivariable airflow obstruction model

Category Feature Name (in order 
of importance)

Δ with ↑ 
obstruction 

severity
Description/Definition

Fluttering
Power5to12E Increase Power in expiratory flow signal [range 5 to 12 Hz]

Power5to12I Increase Power in inspiratory flow signal [range 5 to 12 Hz]

Scooping

QuadE Increase Area between expiratory flow shape and a quadratic best fit to 3 points (x,y: 
start expiration, 0; Te/2, PEF; end expiration, 0)

QuadI50 Increase
Part area between inspiratory flow shape and a quadratic best fit to 3 points 

(x,y: start inspiration, 0; Ti/2, PIF; end inspiration, 0).
Area taken is from 25th to 75th centiles of inspiratory time.

AreaUnderPeaksI Increase Area between inspiratory airflow signal and connected peaks

Features are in order of importance based on backwards feature elimination (i.e. Power5to12E was the final feature remaining after sequential 
elimination). The five features listed here are illustrated in Figure 4. A simplified 5-feature model is provided in the Supplement (Table S5, Figures 
S5 and S6) and performed effectively. Hz, Hertz (cycles/sec). Te, Expiratory time. Ti, Inspiratory time. PEF, Peak expiratory flow. PIF, Peak 
Inspiratory flow (note PIF was normalised).
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