Skip to main content
. 2021 Dec 17;141:105153. doi: 10.1016/j.compbiomed.2021.105153

Table 1.

Summary of the Datasets used in Pre-training. Classifiers are pre-trained on 10.29 h audio recordings annotated with four class labels: cough, sneeze, speech and noise. The datasets do not include any COVID-19 labels.

Type Dataset Sampling Rate No of Events Total audio Average length Standard deviation
Cough TASK dataset 44.1 kHz 6000 91 min 0.91 s 0.25 s
Brooklyn dataset 44.1 kHz 746 6.29 min 0.51 s 0.21 s
Wallacedene dataset 44.1 kHz 1358 17.42 min 0.77 s 0.31 s
Google Audio Set & Freesound 16 kHz 3098 32.01 min 0.62 s 0.23 s
Total (Cough) 11 202 2.45 h 0.79 s 0.23 s
Sneeze Google Audio Set & Freesound 16 kHz 1013 13.34 min 0.79 s 0.21 s
Google Audio Set & Freesound + SMOTE 16 kHz 9750 2.14 h 0.79 s 0.23 s
Total (Sneeze) 10 763 2.14 h 0.79 s 0.23 s
Speech Google Audio Set & Freesound 16 kHz 2326 22.48 min 0.58 s 0.14 s
LibriSpeech 16 kHz 56 2.54 h 2.72 min 0.91 min
Total (Speech) 2382 2.91 h 4.39 s 0.42 s
Noise TASK dataset 44.1 kHz 12 714 2.79 h 0.79 s 0.23 s
Google Audio Set & Freesound 16 kHz 1027 11.13 min 0.65 s 0.26 s
Total (Noise) 13 741 2.79 h 0.79 s 0.23 s