Skip to main content
. 2021 Dec 17;141:105153. doi: 10.1016/j.compbiomed.2021.105153

Table 6.

COVID-19 cough classification performance. For the Coswara, Sarcos and ComParE datasets the highest AUCs of 0.982, 0.961 and 0.944 respectively were achieved by a Resnet50 trained by transfer learning in the first two cases and a KNN classifier using 12 primary features determined by sequential forward selection (SFS) in the third. When Sarcos is used exclusively as a validation set for a classifier trained on the Coswara data, an AUC of 0.954 is achieved.

Dataset ID Classifier Best Feature Hyperparameters Best Classifier Hyperparameters (Optimised inside nested cross-validation) Performance
Spec Sens Acc AUC σAUC
Coswara C1 Resnet50 + TL Table 4 Default Resnet50 (Table 1 in Ref. [39]) 97% 98% 97% 0.982 2 × 10−3
C2 CNN + TL Table 4 92% 98% 95% 0.972 3 × 10−3
C3 LSTM + TL 93% 95% 94% 0.964 3 × 10−3
C4 MLP + BNF α3 = 0.35, α7 = 50 92% 96% 94% 0.963 4 × 10−3
C5 SVM + BNF α1 = 104, α4 = 101 89% 93% 91% 0.942 3 × 10−3
C6 KNN + BNF α5 = 20, α6 = 15 88% 90% 89% 0.917 7 × 10−3
C7 LR + BNF α1 = 10−1, α2 = 0.5, α3 = 0.5 84% 86% 85% 0.898 8 × 10−3
C8 Resnet50 + PF [20] Table 4 in [20] Default Resnet50 (Table 1 in Ref. [39]) 98% 93% 95% 0.976 18 × 10−3
C9 CNN + PF [20] Table 4 in [20] 99% 90% 95% 0.953 39 × 10−3
C10 LSTM + PF [20] 97% 91% 94% 0.942 43 × 10−3
Sarcos C11 Resnet50 + TL Table 4 Default Resnet50 (Table 1 in Ref. [39]) 92% 96% 94% 0.961 3 × 10−3
C12 LSTM + TL Table 4 92% 92% 92% 0.943 3 × 10−3
C13 CNN + TL 89% 91% 90% 0.917 4 × 10−3
C14 MLP + BNF α3 = 0.75, α7 = 70 88% 90% 89% 0.913 7 × 10−3
C15 SVM + BNF α1 = 10−2, α4 = 104 88% 89% 89% 0.904 6 × 10−3
C16 KNN + BNF α5 = 40, α6 = 20 85% 87% 86% 0.883 8 × 10−3
C17 LR + BNF α1 = 10−3, α2 = 0.4, α3 = 0.6 83% 86% 85% 0.867 9 × 10−3
Sarcos (val only) C18 Resnet50 + TL Default Resnet50 (Table 1 in Ref. [39]) 92% 96% 94% 0.954
C19 LSTM + PF [20] Table 5 in [20] Table 5 in [20] 73% 75% 74% 0.779
C20 LSTM + PF + SFS [20] 96% 91% 93% 0.938
ComParE C21 Resnet50 + TL Table 4 Default Resnet50 (Table 1 in Ref. [39]) 89% 93% 91% 0.934 4 × 10−3
C22 LSTM + TL Table 4 88% 92% 90% 0.916 4 × 10−3
C23 CNN + TL 86% 90% 88% 0.898 4 × 10−3
C24 MLP + BNF α3 = 0.25, α7 = 20 85% 90% 88% 0.912 5 × 10−3
C25 SVM + BNF α1 = 10−3, α4 = 102 85% 90% 88% 0.903 6 × 10−3
C26 KNN + BNF α5 = 70, α6 = 20 85% 86% 86% 0.882 8 × 10−3
C27 LR + BNF α1 = 104, α2 = 0.3, α3 = 0.7 84% 86% 85% 0.863 8 × 10−3
C28 KNN + PF + SFS B=60,F=211,S=70 α5 = 60,α6 = 25 84% 90% 92% 0.944 9 × 10−3
C29 KNN + PF B=60,F=211,S=70 α5 = 60, α6 = 25 78% 80% 80% 0.855 13 × 10−3
C30 MLP + PF M=13,F=210,S=100 α3 = 0.65, α7 = 40 76% 80% 78% 0.839 14 × 10−3
C31 SVM + PF B=80,F=29,S=70 α1 = 10−4, α4 = 10−1 75% 78% 77% 0.814 12 × 10−3
C32 LR + PF B=140,F=211,S=70 α1 = 10−2, α2 = 0.6, α3 = 0.4 69% 73% 71% 0.789 13 × 10−3