Skip to main content
. 2021 Dec 17;141:105153. doi: 10.1016/j.compbiomed.2021.105153

Table 7.

COVID-19 breath classifier performance: For breaths, the best performance was achieved by an SVM using bottleneck features (AUC = 0.942). The Resnet50 classifier trained by transfer learning achieves a similar AUC of 0.934.

Dataset ID Classifier Best Feature Hyperparameters Best Classifier Hyperparameters (Optimised inside nested cross-validation) Performance
Spec Sens Acc AUC σAUC
Coswara B1 Resnet50 + TL Table 4 Default Resnet50 (Table 1 in Ref. [39]) 87% 93% 90% 0.934 3 × 10−3
B2 LSTM + TL Table 4 86% 90% 88% 0.927 3 × 10−3
B3 CNN + TL 85% 89% 87% 0.914 3 × 10−3
B4 SVM + BNF α1 = 102,α4 = 10−2 88% 94% 91% 0.942 4 × 10−3
B5 MLP + BNF α3 = 0.45, α7 = 50 87% 93% 90% 0.923 6 × 10−3
B6 KNN + BNF α5 = 70, α6 = 10 87% 93% 90% 0.922 9 × 10−3
B7 LR + BNF α1 = 10−4, α2 = 0.8, α3 = 0.2 86% 90% 88% 0.891 8 × 10−3
B8 Resnet50 + PF M=39,F=210,S=150 Default Resnet50 (Table 1 in Ref. [39]) 92% 90% 91% 0.923 34 × 10−3
B9 LSTM + PF M=26,F=211,S=120 β3 = 0.1, β4 = 32, β5 = 128, β6 = 0.001, β7 = 256, β8 = 170 90% 86% 88% 0.917 41 × 10−3
B10 CNN + PF M=52,F=210,S=100 β1 = 48, β2 = 2, β3 = 0.3, β4 = 32, β7 = 256, β8 = 210 87% 85% 86% 0.898 42 × 10−3