Skip to main content
. 2021 Dec 17;141:105153. doi: 10.1016/j.compbiomed.2021.105153

Table 8.

COVID-19 speech classifier performance: For the Coswara (fast and normal speech) and the ComParE speech the highest AUCs were 0.893, 0.861 and 0.923 respectively and achieved by a Resnet50 trained by transfer learning in the first two cases and an SVM using with bottleneck features in the third case.

Dataset ID Classifier Best Feature Hyperparameters Best Classifier Hyperparameters (Optimised inside nested cross-validation) Performance
Spec Sens Acc AUC σAUC
Coswara S1 Resnet50 + TL Table 4 Default Resnet50 (Table 1 in Ref. [39]) 90% 85% 87% 0.893 3 × 10−3
normal S2 LSTM + TL Table 4 88% 82% 85% 0.877 4 × 10−3
speech S3 CNN + TL 88% 81% 85% 0.875 4 × 10−3
S4 MLP + BNF α3 = 0.25, α7 = 60 83% 85% 84% 0.871 8 × 10−3
S5 SVM + BNF α1 = 10−6, α4 = 105 83% 85% 84% 0.867 7 × 10−3
S6 KNN + BNF α5 = 50, α6 = 10 80% 85% 83% 0.868 6 × 10−3
S7 LR + BNF α1 = 102, α2 = 0.6, α3 = 0.4 79% 83% 81% 0.852 7 × 10−3
S8 Resnet50 + PF M=26,F=210,S=120 Default Resnet50 (Table 1 in Ref. [39]) 84% 80% 82% 0.864 51 × 10−3
S9 LSTM + PF M=26,F=211,S=150 β3 = 0.1, β4 = 32, β5 = 128, β6 = 0.001, β7 = 256, β8 = 170 84% 78% 81% 0.844 51 × 10−3
S10 CNN + PF M=39,F=210,S=120 β1 = 48, β2 = 2, β3 = 0.3, β4 = 32, β7 = 256, β8 = 210 82% 78% 80% 0.832 52 × 10−3
Coswara S11 Resnet50 + TL Table 4 Default Resnet50 (Table 1 in Ref. [39]) 84% 78% 81% 0.861 2 × 10−3
fast S12 LSTM + TL Table 4 83% 78% 81% 0.860 3 × 10−3
speech S13 CNN + TL 82% 76% 79% 0.851 3 × 10−3
S14 MLP + BNF α3 = 0.55, α7 = 70 78% 83% 81% 0.858 7 × 10−3
S15 SVM + BNF α1 = 104, α4 = 10−2 78% 83% 81% 0.856 8 × 10−3
S16 KNN + BNF α5 = 60, α6 = 15 77% 83% 81% 0.854 8 × 10−3
S17 LR + BNF α1 = 10−3, α2 = 0.4, α3 = 0.6 77% 82% 80% 0.841 11 × 10−3
S18 LSTM + PF M=26,F=211,S=120 β3 = 0.1, β4 = 32, β5 = 128, β6 = 0.001, β7 = 256, β8 = 170 84% 80% 82% 0.856 47 × 10−3
S19 Resnet50 + PF M=39,F=210,S=150 Default Resnet50 (Table 1 in Ref. [39]) 82% 78% 80% 0.822 45 × 10−3
S20 CNN + PF M=52,F=210,S=100 β1 = 48, β2 = 2, β3 = 0.3, β4 = 32, β7 = 256, β8 = 210 79% 77% 78% 0.810 41 × 10−3
ComParE S21 Resnet50 + TL Table 4 Default Resnet50 (Table 1 in Ref. [39]) 84% 90% 87% 0.914 4 × 10−3
S22 LSTM + TL Table 4 82% 88% 85% 0.897 5 × 10−3
S23 CNN + TL 80% 88% 84% 0.892 5 × 10−3
S24 SVM + BNF α1 = 10−1,α4 = 103 84% 88% 86% 0.923 4 × 10−3
S25 MLP + BNF α3 = 0.3, α7 = 60 80% 88% 84% 0.905 6 × 10−3
S26 KNN + BNF α5 = 20, α6 = 15 80% 86% 83% 0.891 7 × 10−3
S27 LR + BNF α1 = 102, α2 = 0.45, α3 = 0.7 81% 85% 83% 0.890 7 × 10−3
S28 MLP + PF + SFS M=26,F=211,S=150 α3 = 0.35, α7 = 70 82% 88% 85% 0.912 11 × 10−3
S29 MLP + PF M=26,F=211,S=150 α3 = 0.35, α7 = 70 81% 85% 83% 0.893 14 × 10−3
S30 KNN + PF B=100,F=210,S=120 α5 = 70, α6 = 15 80% 84% 82% 0.847 16 × 10−3
S31 SVM + PF B=80,F=211,S=120 α1 = 10−2, α4 = 10−3 79% 81% 80% 0.836 15 × 10−3
S32 LR + PF B=60,F=210,S=100 α1 = 104, α2 = 0.35, α3 = 0.65 69% 72% 71% 0.776 18 × 10−3