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Primary bone diffuse large B-cell lymphoma (PB-DLBCL) is a rare extranodal lymphoma subtype.

This retrospective study elucidates the currently unknown genetic background of a large clinically

well-annotated cohort of DLBCLwith osseous localizations (O-DLBCL), including PB-DLBCL. A total

of 103 patients with O-DLBCL were included and compared with 63 (extra)nodal non-osseous

(NO)-DLBCLs with germinal center B-cell phenotype (NO-DLBCL-GCB). Cell-of-origin was deter-

mined by immunohistochemistry and gene-expression profiling (GEP) using (extended)-Nano-

String/Lymph2Cx analysis.Mutational profileswere identifiedwith targeted next-generation deep

sequencing, including 52 B-cell lymphoma-relevant genes. O-DLBCLs, including 34 PB-DLBCLs,

were predominantly classified as GCB phenotype based on immunohistochemistry (74%) and

NanoString analysis (88%). Unsupervised hierarchical clustering of an extended-NanoString/

Lymph2Cx revealed significantly different GEP clusters for PB-DLBCL as opposed to NO-DLBCL-

GCB (P , .001). Expression levels of 23 genes of 2 different targeted GEP panels indicated a

centrocyte-like phenotype for PB-DLBCL, whereas NO-DLBCL-GCB exhibited a centroblast-like

constitution. PB-DLBCL had significantly more frequent mutations in four GCB-associated genes

(ie, B2M, EZH2, IRF8, TNFRSF14) comparedwith NO-DLBCL-GCB (P5 .031, P5 .010, P5 .047, and

P 5 .003, respectively). PB-DLBCL, with its corresponding specific mutational profile, was signifi-

cantly associated with a superior survival compared with equivalent Ann Arbor limited-stage I/II

NO-DLBCL-GCB (P5 .016). This study is the first to show that PB-DLBCL is characterized by a GCB

phenotype, with a centrocyte-like GEP pattern and a GCB-associated mutational profile (both

involved in immune surveillance) and a favorable prognosis. These novel biology-associated fea-

tures provide evidence that PB-DLBCL represents a distinct extranodal DLBCL entity, and its spe-

cific mutational landscape offers potential for targeted therapies (eg, EZH2 inhibitors).
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Key Points

� PB-DLBCL is
characterized by a
GCB phenotype, a
centrocyte-like GEP
pattern, GCB-
associated mutational
profile, and favorable
prognosis.

� These features
indicate PB-DLBCL as
a distinct extranodal
DLBCL entity, and its
specific mutations
offer potential for
targeted therapies.
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Introduction

The World Health Organization (WHO) Classification of Soft Tissue
and Bone recognizes primary bone lymphoma as a specific lymphoma
entity, which is primarily represented by diffuse large B-cell lymphoma
(DLBCL).1 Primary bone DLBCL (PB-DLBCL) is a rare DLBCL sub-
type, with a relative young median age at diagnosis (55 years)2 and
a favorable 5-year overall survival (mean OS, 82%).2-9 Most patients
present with symptoms of pain, bone fractures, localized swelling, or
suspected periprosthetic joint infection.10-13 Patients ’ physical perfor-
mance can be affected because weight-bearing bones are commonly
involved (eg, femur, spine, pelvis).2,6,13

Between studies, reported clinical characteristics and survival rates
are diverse due to a lack of strict (anatomical) definitions and conse-
quent proper classification of DLBCL with osseous involvement
(O-DLBCL). As such, theWHO classification1 andMessina et al2 dis-
tinguish 3 different subentities: PB-DLBCL, with a single bone lesion
with or without regional involvement of lymph nodes; polyostotic-
DLBCL, with multifocal disease in a single bone or multiple affected
bones only; and disseminated-DLBCL, with $1 bone lesion(s) and
$1 (extra) nodal localization(s). These O-DLBCL subentities illustrate
patient outcomes, with a superior survival for PB-DLBCL and
polyostotic-DLBCL compared with that for disseminated-DLBCL.

Only a few small retrospective cohort studies have investigated the
clinicopathologic characteristics of O-DLBCL. Examining cell-of-origin
(COO) with immunohistochemistry (IHC) by using the Hans algo-
rithm,14 these studies identified a predominantly germinal center
B-cell (GCB) phenotype in �60% of O-DLBCL (n 5 269 cases,
pooled data from10 studies).5,13,15-22 Based on gene-expression pro-
filing (GEP), this finding was confirmed by Li et al,8 describing a GCB
phenotype in 90% (n 5 155). Nonetheless, a comprehensive molec-
ular characterization of O-DLBCL is currently lacking.

To our knowledge, only 2 studies report genetic data explicitly col-
lected from O-DLBCL. First, a lack of MYD88 L265P hotspot muta-
tion was observed in O-DLBCLs (n 5 15).20 Second, applying a
limited targeted next-generation sequencing (tNGS) panel, activating
mutations in NOTCH1 and KRAS were identified in PB-DLBCL (n5
1).23 Due to the limited number of studies, relatively small patient
cohorts, and absence of comprehensive genetic analyses, knowledge
is lacking regarding the genetic constitution of O-DLBCL. This is
caused by the rarity of the disease, the difficulty in obtaining sufficient
diagnostic tissue, and the inability to attain proper molecular analysis
of bone biopsy specimens, as decalcification procedures lead to
acquisition of DNA artifacts and complicate interpretation of sequenc-
ing results. Consequently, it is unclear whether the various O-DLBCL
subentities reflect a separate molecular entity or rather a heteroge-
neous disease, as commonly assumed for DLBCL, not otherwise
specified.24-28

Since the introduction of tNGS, evidence of genetic heterogeneity
associated with histopathologic and clinical features and anatomical
localization of DLBCL, not otherwise specified has increased. There-
fore, the revised (2016)WHOClassification of Tumors of Hematopoi-
etic and Lymphoid Tissues29 recognizes extranodal DLBCL with
specific anatomy as separate entities, such as intravascular large
B-cell lymphoma, primary cutaneous DLBCL, primary cutaneous
DLBCL–leg type, and primary DLBCL of the central nervous system
(PCNSL), commonly representing an activated B-cell (ABC)

phenotype.30-36 Following this paradigm and because of their specific
disease presentation and clinical behavior, we hypothesized that
PB-DLBCL contains unique molecular characteristics. To address
this theory, our study presents the first comprehensive GEP and tar-
geted deep-sequencing analyses in a well-annotated and relatively
large cohort of PB-DLBCL.

Methods

Patient characteristics

This retrospective study investigated 103 cases of O-DLBCLs for
which sufficient tumor DNA was available and that were not included
in our previous studies.12,19,37-41 Patients were selected through a
search of pathology surveys that reported osseous involvement and
were diagnosed between 2002 and 2020 at the Leiden University
Medical Center (LUMC; n5 48), Amsterdam University Medical Cen-
ter, location AMC (n5 11), Erasmus MC Cancer Institute (n5 7), or
affiliated nonacademic hospitals (n 5 37). As an expert center for
tumors of soft tissue and bone, the LUMC contribution was enriched
for O-DLBCLs. Figure 1A presents an overview of included cases.

Formalin-fixed and paraffin-embedded or fresh frozen tissue samples
were obtained during diagnostic procedures (supplemental Table 1).
Based on different local standard procedures at the time of initial diag-
nosis, staging was performed with magnetic resonance imaging, com-
puted tomography imaging, or positron emission tomography/
computed tomography scanning and reviewed by a radiologist expert
(R.R.) to stratify cases according to WHO definitions (supplemental
Table 1).1,2 As a comparator, the study included 63 patients diagnosed
between 2006 and 2020 with nonosseous DLBCL as considered by
radiologic assessments and a GCB phenotype (NO-DLBCL-GCB)
based on the Hans algorithm (Figure 1A). T-cell/histiocyte-rich DLBCL
and Burkitt lymphoma were not included. All cases were classified
according to Ann Arbor staging and the International Prognostic Index.

This study was performed in accordance with the Dutch Code for
Proper Secondary Use of Human Tissue, the local institutional board
requirements, and the revised Declaration of Helsinki (2008). It was
approved with a waiver of consent by the LUMC’s medical ethics
committee (B16.048).

IHC and fluorescence in situ hybridization

Following the latest WHO classification of lymphoid neoplasms,29

IHC and fluorescence in situ hybridization (FISH) analyses were per-
formed (details are given in the supplemental Methods). Briefly, IHC
was accomplished with CD10, BCL6, and MUM1 antibodies for
COO classification according to the Hans algorithm.14 For
O-DLBCLs, MYC, BCL2, and BCL6 rearrangements were analyzed
according to FISH, using break-apart probes, as outlined elsewhere.42

NO-DLBCL-GCBs were screened for MYC rearrangements, and if
present, BCL2 and BCL6 rearrangements were assessed. Epstein-
Barr virus (EBV) status was determined by EBV-encoded RNA in
situ hybridization.

Gene expression profiling

GEP was performed with a NanoString system and an extended
custom-made probe set, covering 20 genes of the Lymph2Cx assay
for COO classification and an additional 219 genes related to DLBCL
(supplemental Methods).43-47 For COO classification, raw counts
obtained by NanoString gene expression analysis were uploaded at
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Figure 1. Overview of included O-DLBCL and NO-DLBCL cohorts and subentities with specific anatomical localizations. (A) Flowchart of included and analyzed

O-DLBCL and NO-DLBCL subentities. A total of 103 DLBCL cases with osseous involvement were subdivided into three O-DLBCL stages, with PB-DLBCL (n 5 41),

polyostotic-DLBCL (n 5 14), and disseminated-DLBCL (n 5 48). Of these, 20 cases failed tNGS quality controls (insufficient DNA or high number of deamination variants), and
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the Lymphoma/Leukemia Molecular Profiling Project Web site for
COO categorization (https://llmpp.nih.gov/LSO/LYMPHCX/
lymphcx_predict.cgi).48 Technical variation of NanoString nCounter
results of each sample was removed by using standardization based
on the geometric mean of inherent positive controls in the assay. Next,
a principal component analysis was performed as a quality control for
identification of possible outliers and potential “batch effects” intro-
duced by NanoString cartridges (supplemental Figure 1). Gene-
expression data were normalized by using five Lymph2Cx housekeep-
ing genes, and the resulting data were analyzed with RStudio (R-3.6.
3, including packages NanoStringNorm-1.2.1, glmnet-3.0-2,
factoextra-1.0.6, ComplexHeatmap-2.2.0, dendextend-1.13.4,
ggpubr-0.4.0, and scales-1.1.1). All 234 genes (excluding house-
keeping genes) were used to identify GEP clusters within
O-DLBCLs and NO-DLBCL-GCB.

Two different assays were used to further subdivide GCB into centro-
blast or centrocyte B cells. In total, the BAGS(2CLINIC) assays con-
sist of 208 genes, overlapping 26 genes of our custom NanoString
panel. Thirteen genes of BAGS(2CLINIC) assays, most distinctive
between centroblast and centrocyte B cells, were included for further
analysis. In addition, another study recently reported a dark zone/light
zone (DZ/LZ) spatial signature consisting of 53 genes, overlapping 11
genes with our panel. Both limited [BAGS(2CLINIC) and DZ/LZ spa-
tial signature] assays, with only MYC overlapping, were used sepa-
rately to assign centroblast-like or centrocyte-like phenotypes
(supplemental Figure 3).49-51

TheGEP data reported in this article have been deposited in theGene
Expression Omnibus database (accession number GSE176126) and
can also be found in supplemental Table 4.

Targeted next-generation deep sequencing

After microdissection from deparaffinized 10-mm sections (median
tumor cells, 70%; range, 20%-90%) (supplemental Table 1), total
nucleic acid was isolated with the fully automated Tissue Preparation
System (Siemens Healthcare Diagnostics), as previously described.52

For fresh frozen biopsy specimens, DNA was isolated from 25-mm
cryosections by using the QIAamp DNA Mini Kit (Qiagen).

The LYMFv1 NGS panel was designed and validated in-house and is
an Ion-Torrent–based AmpliSeq panel (Thermo Fisher Scientific;
details are provided in the supplemental Methods). The LYMFv1 panel
contains 1362 amplicons, subdivided into 2 primer pools, and covers
52 B-cell lymphoma-relevant genes (supplemental Table 2). Briefly,
this panel was compiled from a comprehensive review of �300
articles (until 2018) on frequencies and clinical relevance of aberra-
tions in B-cell lymphomas. The LYMFv1 panel has an overlap of
73% (33 genes) with a proposed consensus tNGS panel for all
mature lymphoid malignancies.53 LYMFv1 libraries were prepared
with an Ion Chef System (Thermo Fisher Scientific) or manually. The

resulting libraries were sequenced on an Ion Torrent S5-system
(Thermo Fisher Scientific). Sequence reads were aligned to the
human reference genome (GRCh37/hg19) using TMAP 5.07 soft-
ware, with default parameters (https://github.com/iontorrent/TS).54

Variants were called by a Torrent Variant Caller. The average read
count was 2634 (range, 137-16001). Supplemental Table 1 lists
average read counts per patient. Minimum thresholds for calling var-
iants were $100 on-target reads and 10% variant allele frequency.
Samples were excluded if deep-sequencing data provided an insuffi-
cient number of reads or the transition to transversion ratio was $5,
indicating excess formalin fixation artifacts. All variants were annotated
in the Geneticist Assistant NGS interpretive Workbench (SoftGe-
netics), into class 1 (benign), class 2 (likely benign), class 3 (unknown
significance), class 4 (likely pathogenic), or class 5 (pathogenic).55

Class 4 and 5 variants were designated as pathogenic mutations.
Also , class 3 variants of unknown pathogenicity were interpreted as
pathogenic mutations, in case of a high Combined Annotation Depen-
dent Depletion–PHRED score (.25) and/or a pathogenic prediction
from$2 of 4 selected prediction scores (Sift, PolyPhen, the likelihood
ratio test, and MutationTaster). Sequencing data obtained for the
O-DLBCL and NO-DLBCL-GCB subgroups were mutually com-
pared. In addition, a literature-based cohort of DLBCL-GCBwas gath-
ered from 4 large sequencing studies.24-27 Corresponding
supplemental Tables (or Figure 524) reporting COO subtypes and
potential pathogenic variants were used to identify mutational frequen-
cies in DLBCL-GCB cases, collecting a total of 651 DLBCL-GCB
cases.

Statistical analysis

Statistical analyses were performed by using RStudio (R-3.6.3, includ-
ing packages clustertend-1.4, cmprsk-2.2-10, ComplexHeatmap-
2.2.0, dendextend-1.13.4, dynpred-0.1.2, factoextra-1.0.6,
ggpubr-0.4.0, glmnet-3.0-2, NanoStringNorm-1.2.1, prodlim-
2019.11.13, scales-1.1.1, and survival-3.1.11). Hierarchical clustering
analysis on GEP data was performed by using Euclidean distance
metric and Ward’s minimum variance method for cluster formation.
A penalized logistic regression model was applied to identify genes
most differentially expressed between PB-DLBCL and NO-DLBCL-
GCB.56 This model was based on Elastic Net regression, for which
a mixing parameter a of 0.10 was used. Analysis of variance was
applied on GEP data of a selected set of 13 genes of the BAG-
S(2CLINIC) assay and 11 genes of the DZ/LZ spatial signature.
The Fisher exact test or Student t test was applied for analyzing cate-
gorical or continuous variables among O-DLBCL subgroups and NO-
DLBCL-GCB. Progression-free survival (PFS) or OS was defined as
date from initial diagnosis to date of progression and/or death by any
cause. Patients were administratively censored after 3 years of follow-
up or censored at last follow-up when there was no event. The Kaplan-
Meier method was used to determine median follow-up time and to
construct survival curves, and they were compared with a log-rank

Figure 1 (continued) 83 cases attained appropriate sequencing results. In addition, 63 NO-DLBCL-GCB cases were included as a comparator. Furthermore, 63 samples with

adequate RNA were sent for NanoString analysis, of which 3 failed analysis. In total, 24 PB-DLBCL, 5 polyostotic-DLBCL, 11 disseminated-DLBCL, and 20 NO-DLBCL-GCB

cases were successfully analyzed with the NanoString platform. (B) Radiologic imaging of International Extranodal Lymphoma Study Group staging system with 3 anatomically

defined stages: PB-DLBCL, with a single bone lesion with or without regional involvement of lymph nodes; polyostotic lymphoma (polyostotic-DLBCL), with multifocal disease in a

single bone or multiple affected bones; and disseminated lymphoma (disseminated-DLBCL) with $1 bone lesion(s) and $1 (extra)nodal localization(s).2 NO-GCB-DLBCL was

defined as nodal, mixed (nodal and extranodal involvement), or only extranodal localization(s), without any osseous involvement. (C) Frequencies of anatomical osseous local-

izations identified in all 103 O-DLBCL subentities. Other osseous localizations consisted of one calcaneus, cuneiform, metacarpal III, or talus. (D) Frequencies of anatomical

nonosseous localizations of 63 NO-DLBCL-GCBs. CNS, central nervous system.
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test. In case of a statistically significant P value (,.05), corresponding
hazard ratios and 95% confidence intervals (CIs) were calculated with
a Cox proportional hazards model.

Results

Patient characteristics

O-DLBCL cases were categorized into PB-DLBCL (n541),
polyostotic-DLBCL (n514), and disseminated-DLBCL (n548) (Fig-
ure 1A-B).17 Table 1 summarizes clinical characteristics of both
O-DLBCL and NO-DLBCL-GCB subentities. Individual radiologic
assessments and age-related bone localizations are described in
the supplemental Results. Figure 1C-D displays exact anatomical
non-osseous localizations. Consistent with previous studies, the
mean age at diagnosis for PB-DLBCL and polyostotic-DLBCL was
(borderline) significantly lower (53 and 50 years) compared with
that for disseminated-DLBCL (62 years; P 5 .020 and P 5 .068,
respectively) and NO-DLBCL-GCB (64 years; P 5 .003 and P 5

.033).2,6,7 In addition, NO-DLBCL-GCB cases were subdivided into
only nodal (n 5 19), mixed (nodal and extranodal involvement, n 5
28), or solitary extranodal (n 5 16) localization. Six extranodal NO-
DLBCL-GCB cases were diagnosed with PCNSL, considered as
poor-risk advanced disease (Ann Arbor stage IV) and treated with
high-dose methotrexate-containing regimens. Most patients (n 5
150 [90%]) were treated with curative intent by using rituximab,
cyclophosphamide, doxorubicin, vincristine, and prednisone (R-
CHOP)-based (immune-) polychemotherapy. Five patients died
before treatment, and for palliation, 4 patients received local radiother-
apy only or rituximabmonotherapy. Median follow-up times for patients
with O-DLBCL and NO-DLBCL-GCB were 40 and 20 months,
respectively.

Pathological features

Figure 2 displays morphologic examples and immunohistochemical
characteristics of O-DLBCL. According to the Hans classification, a
GCB phenotype was identified in 74% of O-DLBCL (70 of 94
patients) (supplemental Table 3). Using NanoString/Lymph2Cx, a
GCB phenotype was found in 88% of O-DLBCL cases (35 of 40
patients), an “intermediate/unclassifiable” phenotype in 10% (n 5
4), and an ABC phenotype in 2% (n 5 1). In addition, NanoString/
Lymph2Cx revealed a GCB phenotype in 90% of NO-DLBCL-GCB
cases (18 of 20 patients), one ABC phenotype, and one intermedi-
ate/unclassifiable phenotype. Overall, the COO concordance
between cases with both IHC and NanoString results was 83%
(50 of 60 cases).

Fluorescence in situ hybridization

The majority of O-DLBCL cases (83 of 103) were screened forMYC/
BCL2/BCL6 rearrangements and EBV status (Figure 3A). Due to
technical failures, most likely caused by decalcification of bone mate-
rial, analysis of all 3 rearrangements failed in 40% (33 of 83 cases).
Therefore, only a descriptive analysis was performed. Approximately
similar frequencies of rearrangements were identified in polyostotic-
DLBCL, disseminated-DLBCL, and NO-DLBCL-GCB, largely consis-
tent with occurrences of DLBCL-GCB cases in the litera-
ture.24,27,28,57 Compared with NO-DLBCL-GCB, MYC/BCL2
rearrangements were observed at relatively low frequencies, whereas
BCL6 rearrangements were more common (4%, 8%, and 31%,
respectively) in PB-DLBCL, indicating that onlyBCL6 rearrangements

seem to be relevant for PB-DLBCL lymphomagenesis. A “double/
triple”-hit makeup characteristic for high-grade B-cell lymphoma was
observed in ten NO-DLBCL-GCB cases and three disseminated-
DLBCL cases but not in PB-DLBCL or polyostotic-DLBCL cases.
IHC MYC and BCL2 status for evaluating double expressors are
described in the supplemental Results. No O-DLBCL (n 5 61) and
only three NO-DLBCL-GCB cases were EBV positive. Lack of EBV
in these overall GCB subtype DLBCL cases is consistent with previ-
ous studies describing the occurrence of EBV-positive DLBCLs
mainly (in elderly subjects) with an ABC phenotype.58

Gene expression profiling

Because the NanoString material was limited, GEPwas performed on
63 randomly selected cases, of which �20 ng/mL of RNA was avail-
able (Figure 1A; supplemental Table 5). After excluding 3 failed meas-
urements and 2 outliers (supplemental Figure 1), clustering of GEP
data was performed on 58 cases, representing 23 PB-DLBCL, 5
polyostotic-DLBCL, 11 disseminated-DLBCL, and 19 NO-DLBCL-
GCB. Using both fresh frozen and formalin-fixed, paraffin-embedded
tissues for GEP analysis did not affect the identified difference
between O-DLBCL and NO-DLBCL-GCB (supplemental Figure
1E). This finding is consistent with previous studies showing a high
correlation between GEP data obtained from fresh frozen and
formalin-fixed, paraffin-embedded tissues.59-61 Unsupervised hierar-
chical clustering with GEP data of an extended Lymph2Cx (234
genes) provided 4 different clusters (clusters A-D) (supplemental Fig-
ure 2). The most significant difference was found between cluster A,
allocating eight PB-DLBCLs and one NO-DLBCL-GCB, and cluster
B, with three PB-DLBCLs and 12 NO-DLBCL-GCBs (P , .001).
Cluster C was a mixture of O-DLBCL subentities and cluster D an
agglomeration of O-DLBCL subtypes and NO-DLBCL-GCBs.
Disseminated-DLBCL was observed across all 4 clusters, indicating
its heterogeneity and wide variety in disease origins of individual
cases.

To further differentiate GEP differences between PB-DLBCL and NO-
DLBCL-GCB, a penalized logistic regression model was performed,
assigning a significant set of 34 genes differentially expressed
between PB-DLBCL and NO-DLBCL-GCB. Unsupervised clustering
of these differentially expressed genes generated 3 clusters: A, pre-
dominantly PB-DLBCLs; B, an agglomeration of O-DLBCL subtypes
and NO-DLBCL-GCB; and C, mainly NO-DLBCL-GCBs (Figure 4).
In contrast to NO-DLBCL-GCB, PB-DLBCL displayed significantly
increased expression (P , .001) of immune response genes
(CTLA4 and CXCL12) and HLA-A, HLA-C, HLA-E, and HLA-F. Ele-
vated expression levels of ARID1A and SMARCA4 (both involved in
chromosome organization) and FOXO1 (a centroblast hallmark) were
found in NO-DLBCL-GCB compared with PB-DLBCL.62-65

Subsequently, to relatively distinguish between a centroblast-like or
centrocyte-like phenotype of PB-DLBCL and NO-DLBCL-GCB
cases, both limited BAGS(2CLINIC)-GEP and DZ/LZ spatial signa-
ture assays were assessed.49-51 Expression levels of 8 genes
(62%) were significantly different between PB-DLBCL and NO-
DLBCL-GCB (P # .047) (supplemental Figure 3). PB-DLBCL exhib-
ited significantly higher expression of BCL2A1 and IL6R (centrocyte
related), whereas NO-DLBCL-GCB exhibited significantly increased
expression for BCL6, MME, MYBL1, FOXO1, SMARCA4, and
TCL1A (centroblast related). Applying a limited-DZ/LZ spatial signa-
ture, 9 genes showed significantly higher expression (CD3E, CD4,
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CD8A, CTLA4, FAS, HLA-E, ITGB2, LAG3, and STAT1) for
PB-DLBCL compared with NO-DLBCL-GCB (P # .031) (supple-
mental Figure 3C-D), designating a centrocyte-like phenotype for
PB-DLBCL. Despite these limited-BAGS(2CLINIC) and limited-DZ/
LZ spatial signature analyses, both independently identified GEP dif-
ferences indicating a possible centrocyte-like phenotype for
PB-DLBCL and a conceivable centroblast-like constitution for NO-
DLBCL-GCB, corroborating previous results by Li et al.8

Targeted next-generation deep sequencing

In total, 83O-DLBCLs and 63NO-DLBCL-GCBs successfully under-
went deep sequencing. For 20 O-DLBCLs, obtained NGS data were
of insufficient quality due to DNA artifacts (Figure 1A). Pathogenic var-
iants were identified in 49 genes (Figure 3A; supplemental Table 5),
with a median of 4 mutated genes per individual (range, 0-12). Four
known “hotspot” mutations were elucidated: loss-of-function B2M
p.M1* and CD79B, p.Y196*, and gain-of-function EZH2 p.Y646*

and MYD88 p.L265P. In contrast to a prior study, our data revealed
low frequencies ofMYD88 p.L265Pmutation in O-DLBCLs.20 Based
on strict anatomical WHO definitions, the 2 most biologically different
DLBCL subentities (PB-DLBCL and NO-GCB-DLBCL) were com-
pared to explore potential differences. The mutational profile of
PB-DLBCL included frequent mutations ($25%) in B2M,
EZH2Y646*, IRF8, and TNFRSF14 (loss-of-function) and differed sig-
nificantly from NO-DLBCL-GCB, which was relatively lacking these
mutations (P5 .031,P5 .010,P5 .047, andP5 .003, respectively)
(Figure 3C).

In contrast to PB-DLBCL, high occurrences ($25%) of KMT2D and
TP53 aberrations were observed within NO-DLBCL-GCB (P5 .347
andP5 .325). In addition to frequentmutations inCREBBP,KMT2D,
MYD88, and TNFRSF14,CARD11was the most commonly mutated
gene (36%) in polyostotic-DLBCL and was (borderline) significantly
higher compared with PB-DLBCL (P 5 .085), disseminated-DLBCL
(P5 .036), or NO-DLBCL-GCB (P5 .014), suggesting a biologically

A B

C D

E F

Figure 2. Morphologic and immunohistochemical features of O-DLBCLs. (A) Infiltration of pleomorphic B cells with entrapment of preexisting bone (black arrowhead) in

an example of PB-DLBCL. (B) Pleomorphic B cells in a case of PB-DLBCL with large and irregular nuclei with a cleaved, multilobulated appearance and small nucleoli. (C)

Pleomorphic B cells in a case of disseminated-DLBCL with large nuclei and prominent large nucleoli with an immunoblastic/plasmablastic appearance. (D) Diffuse staining of

CD20 in PB-DLBCL. (E) Diffuse staining of CD10 in an example of PB-DLBCL with a GCB phenotype, according to the Hans algorithm. (F) Strong diffuse staining of MUM1 in an

example of disseminated-DLBCL with an ABC phenotype.
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Figure 3. Significant differences in genetic landscapes between PB-DLBCL and NO-DLBCL-GCB. OncoPrint plot of the genetic aberrations and COO of O-DLBCL (A)

and NO-DLBCL-GCB (B) subentities. COO phenotype is indicated by blue for ABC, orange for GCB, brown for intermediate (only NanoString), and gray for cases with unknown

COO phenotype. Furthermore, a positive ISH (FISH or EBV-encoded small RNA) and a mutation in one of the genes are marked with green. Hotspot mutations are indicated with

dark red (B2MM1*, CD79BY196*, EZH2Y646*, and MYD88L265P). (C) Comparison of identified genetic aberrations with high frequencies ($20%) of PB-DLBCL, NO-DLBCL-

GCB, and a pooled literature-based DLBCL-GCB cohort. PB-DLBCL showed a unique genetic profile, with increased frequencies of B2M, EZH2, IRF8, and TNFRSF14, and

was significantly different (P 5 .031, P 5 .010, P 5 .047, and P 5 .003, respectively) compared with NO-DLBCL-GCB harboring high occurrences (although not significant) of

KMT2D and TP53 aberrations (P 5 .347 and P 5 .325). Except for EZH2 and TNFRSF14 (P5 .148 and P 5 .136), the occurrence of mutations in B2M and IRF8 in our cohort

of PB-DLBCL was significantly higher compared with that of the literature-based DLBCL-GCB cohort (P5 .012 and P5 .020). Careful interpretation is needed, as essential data

regarding exact anatomical localizations (eg, osseous involvement was unknown) were lacking for these studies. Significant difference (P , .05) between two groups were

marked with asterisks.
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distinct subgroup.With frequent mutations in TNFRSF14, KMT2D, or
TP53, disseminated-DLBCL exhibited similarities with molecular con-
stitutions of both PB-DLBCL and NO-DLBCL-GCB. In addition,
focusing on 19 disseminated-DLBCL cases with bulky osseous

disease (Figure 3), comparable mutational profiles as PB-DLBCL
were identified with high frequencies of mutations in B2M (16%),
EZH2 (26%), IRF8 (21%), and TNFRSF14 (42%), suggesting that
this lymphoma originated in bone.
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Figure 5. Three-year PFS and OS analysis for O-DLBCL and NO-DLBCL-GCB subentities. (A-B) Consistent with the prognostic importance of International Extranodal

Lymphoma Study Group staging, PB-DLBCL and polyostotic-DLBCL displayed a significantly superior PFS and OS, compared with disseminated-DLBCL. (C-D) No significant
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Survival analyses

Consistent with the prognostic importance of International Extranodal
Lymphoma Study Group staging,2 PB-DLBCL and polyostotic-
DLBCL showed superior PFS/OS (P 5 .011/P 5 .042) (Figure
5A-B), compared with disseminated-DLBCL, with 3-year OS rates
of 91% (95% CI, 0.83-1.00), 100% (95% CI, 1.00-1.00), and 77%
(95% CI, 0.64-0.90), respectively. No significant difference in PFS/
OS was observed for extranodal, nodal, and mixed NO-DLBCL-
GCB subentities (Figure 5C-D). PB-DLBCL exhibited a significantly
superior PFS/OS compared with equivalent Ann Arbor stage I/II
NO-DLBCL-GCBs (P 5 .016/P 5 .046) (Figure 5E-F). Between
PB-DLBCL and NO-DLBCL-GCB, the mutational landscape differed
significantly (P5 .002), as the majority of PB-DLBCLs (24 of 34) har-
bored$1 mutation in B2M, EZH2, IRF8, and TNFRSF14, compared
with a minority of stage I/II NO-DLBCL-GCB (7 of 25) with $1 of
these specific mutations. No difference was observed in the occur-
rence of mutations in KMT2D or TP53 between PB-DLBCL (12 of
34) and NO-DLBCL-GCB (12 of 25; P 5 .423). With respect to
Ann Arbor stage III/IV, disseminated-DLBCL and NO-DLBCL-GCB
exhibited similar survival outcomes, although polyostotic-DLBCL
reported an improved PFS/OS (Figure 5G-H). Besides a prognostic
impact for Ann Arbor stage, International Prognostic Index, and age,
further univariate survival analyses revealed no remarkable survival dif-
ferences for patient characteristics, COO, rearrangements, or individ-
ual pathogenic variants, presumably due to low patient numbers and
the relatively low number of events (supplemental Table 6).

Discussion

To our knowledge, this study is the first to provide a comprehensive
and integrative evaluation of IHC, GEP, and targeted deep sequenc-
ing in a clinically well-annotated and relatively large cohort of patients
with O-DLBCL. As previously described,8 IHC/NanoString analysis
confirmed a predominant GCB phenotype in O-DLBCL cases, across
all subentities. Extended-Lymph2Cx-GEP analysis revealed signifi-
cantly different clusters for PB-DLBCL specifically targeting immune
surveillance genes, in contrast to NO-DLBCL-GCB with a focus on
chromosome organization and reduction of p53 activity. Limited-BAG-
S(2CLINIC) and DZ/LZ spatial signature analysis indicated a
centrocyte-like phenotype for PB-DLBCL with a preferential origin in
the early LZ of B-cell development, as opposed to a centroblast-like
constitution (DZ) for NO-DLBCL-GCB. Intriguingly, the predominant
GCB centrocyte-like phenotype in PB-DLBCL was supported by fre-
quent mutations in GCB-associated genes (ie, B2M, EZH2, IRF8,
TNFRSF14). In addition, although with a favorable survival in general
for DLBCL-GCB, PB-DLBCL with its corresponding specific muta-
tional profile was significantly associated with a superior OS com-
pared with equivalent Ann Arbor limited-stage I/II NO-DLBCL-GCB.
Based on our data, we propose a model in which PB-DLBCL can
be recognized as a distinct extranodal DLBCL, with a centrocyte-
like GCB phenotype, overexpression of immune response genes,
and a unique GCB-associated molecular constitution, thereby reflect-
ing a favorable prognosis (Figure 6).

Controversial O-DLBCL definitions complicate a meaningful compar-
ison between individual studies, including small numbers of O-DLBCL
cases (n 5 4-63) and varying frequencies (25%-86%) of IHC-based
GCB phenotypes.5,13,15-21,66 Using the Affymetrix GeneChip/BAG-
S2CLINIC assay, Li et al8 reported a GCB phenotype in 90% of
O-DLBCLs (n 5 155) and a centrocyte-like phenotype in a small

subgroup (n 5 11). Likewise, our extended-NanoString/Lymph2Cx-
GEP showed significantly different GEP clusters for PB-DLBCL
and NO-DLBCL-GCB. Also, limited-BAGS(2CLINIC) and DZ/LZ
spatial signature analysis indicated a centrocyte-like phenotype for
PB-DLBCL and a centroblast-like constitution for NO-DLBCL-
GCB.49-51 In PB-DLBCL, Li et al.8 reported upregulation of major his-
tocompatibility complex class I, extracellular matrix and adhesion, and
tumor suppressor genes and downregulation of pro-oncogenes, com-
pared with NO-DLBCL-GCB. Furthermore, high expression of genes
involved in the immune response (CTLA4 and CXCL12) was identi-
fied in PB-DLBCL, and together with frequent mutations in B2M
and TNFRSF14, they are important for immune surveillance. This sug-
gests that evasion from immune surveillance is crucial for PB-DLBCL
to survive in their osseous environment.62,63,65,67-69 In contrast, NO-
DLBCL-GCB exhibited higher expression ofARID1A andSMARCA4
(chromosome organization through SWI/SNF complex), and both tar-
get TP53 (DNA damage response) and CDKN1A (cell cycle inhibi-
tor).64,65,69 The frequent mutations in genes involved in epigenetics
(CREBBP and MEF2B) and TP53 mutations indicate that, unlike
immune evasion in PB-DLBCL, survival of NO-DLBCL-GCB is criti-
cally dependent on deregulation of chromosome organization and
reduction of p53 activity.65,69 Increased expression of BCL2A1 and
IL6R indicated a centrocyte-like phenotype for PB-DLBCL. Upregula-
tion of BCL6, MME, MYBL1, SMARCA4, and TCL1A suggested a
centroblast-like constitution for NO-DLBCL-GCB. Lastly, high expres-
sion of FOXO1, a centroblast hallmark and imperative for sustaining
the GC DZ, was specifically found in NO-DLBCL-GCB, thereby sup-
porting a centroblast-like phenotype for NO-DLBCL-GCB, as
opposed to low/average FOXO1 expression in PB-DLBCL.

Comprehensive reviews by Pasqualucci65 and Mlynarczyk et al.69

independently provide an integral insight into the development of
GCB lymphomas. Following these established pathogenic principles,
the frequently mutated GCB-associated genes, B2M, EZH2, IRF8,
and TNFRSF14 ($1 present in 68% of PB-DLBCLs), are likely to
play a crucial role in GCB lymphomagenesis, as elucidated by our
data. Frequent occurrence of mutations in chromatin modifiers and
immunomodulators (e.g. EZH2 and TNFRSF14) was observed, and
although there are similarities with follicular lymphoma, other genetic
abnormalities such as BCL2 translocations were less common in
PB-DLBCL (2 of 25). Approximately one-quarter of PB-DLBCL per-
tained a gain-of-function EZH2 hotspot mutation (Y646*), which abro-
gates the terminal B-cell differentiation and cell cycle control.70 EZH2
acts as an important GC regulator like BCL6, through silencing of
genes by tri-methylation of lysine-27 of histone-3 within the PRC2
complex. As such, EZH2 Y646* hyper-represses CKDN1A and
IRF4, increasing proliferation and preventing differentiation toward
an activated B cell.65 Consequently, compared with EZH2 wild-
type, EZH2-mutated DLBCL seems to be susceptible to tazemetostat
(EZH2 inhibitor).69,71 Moreover, B2M loss-of-function, EZH2 gain-of-
function aberrations, and downregulation of major histocompatibility
complex class I/II will lead to a successful evasion of immune surveil-
lance mechanisms.65,69,72,73 TNFRSF14 loss-of-function mutations
are associated with B- and T-lymphocyte attenuator downregulation,
thereby initiating a B-cell autonomous activation and lymphoma-
supportive microenvironment.69,74,75 Finally, IRF8 is a member of
the interferon family of transcription factors, regulating immune
response through BCL6 activation. However, an IRF8-driven pheno-
type alone is insufficient for lymphomagenesis because a second
genetic hit is required.76,77 This is consistent with our findings
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profiles. As described by Li et al.,8 and corresponding with our GEP analysis showing an increased expression of BCL2A1 and IL6R, PB-DLBCL preferentially originated in the

GC early LZ of B-cell development, indicating a centrocyte-like phenotype. The predominant centrocyte-like GCB phenotype in PB-DLBCL was subsequently supported by

frequently mutated GCB-associated genes, such as B2M, EZH2, IRF8, and TNFRSF14, culminating in superior survival. In addition, PB-DLBCL exhibited significantly (P, .001)

increased expression of immune response genes (CTLA4 and CXCL12), and together with frequent mutations in B2M and TNFRSF14, they are important for immune sur-

veillance, suggesting that evasion from immune surveillance is crucial for PB-DLBCL to survive in their osseous environment. In contrast, upregulation of BCL6, MME, MYBL1,

SMARCA4, and TCL1A suggested a centroblast-like constitution for NO-DLBCL-GCB. Accordingly, high expression of FOXO1, a centroblast hallmark and imperative for

sustaining the GC DZ,62-65,69 was specifically identified in NO-DLBCL-GCB. Furthermore, elevated expression levels of ARID1A and SMARCA4 (both involved in chromosome

organization) were found in NO-DLBCL-GCB. Together with frequent mutations in genes involved in epigenetics (CREBBP and MEF2B) and TP53 mutations, this indicates that,

unlike immune evasion in PB-DLBCL, survival of NO-DLBCL-GCB is critically dependent on deregulation of chromosome organization and reduction of p53 activity. Our results

thus emphasize that PB-DLBCL can be recognized as a distinct extranodal DLBCL, with a GCB-centrocyte-like phenotype, a specific GEP pattern, and a unique GCB-associated

molecular constitution, reflecting favorable prognosis. Purple color indicates genes related to a centroblast-like phenotype, whereas brown-colored genes are related to a

centrocyte-like phenotype.
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indicating that 57% (12 of 21) of mutated IRF8 cases were accompa-
nied by $1 B2M, EZH2, and/or TNFRSF14 abnormalities.

Four NGS studies investigated the mutational landscape of large
DLBCL cohorts and also reported on COO (Affymetrix, IHC, and/or
NanoString), allowing direct comparison of mutation frequencies in
COO-stratified subgroups vs our results in O-DLBCL.24-27 These
studies included 96, 60, 331, and 164 DLBCL-GCB cases, respec-
tively. This pooled literature-based DLBCL-GCB cohort (n 5 651)
yields mutation frequencies for B2M, EZH2, IRF8, KMT2D,
TNFRSF14, and TP53 of 15%, 16%, 14%, 32%, 21%, and 15%,
respectively (Figure 3C). Except for EZH2 and TNFRSF14 (P 5
.148 and P 5 .136), the occurrence of mutations in B2M and IRF8
in our cohort of PB-DLBCL was significantly higher compared with
the literature-based DLBCL-GCB cohort (P 5 .012, and P 5 .020).
Because essential data regarding exact anatomical localizations
(with osseous involvement unknown) were lacking for these studies,
and control for confounding factors was not possible, it could be
assumed that a proportion of DLBCL-GCBs were PB-DLBCLs.
Excluding these cases from this literature-based cohort might increase
the significance level of this comparison. Although an independent val-
idation study remains indispensable, this external literature-based
assessment strengthens our findings by emphasizing that
PB-DLBCL could be recognized as a distinct molecular entity charac-
terized by frequent mutations in B2M, EZH2, IRF8, and TNFRSF14,
compared with NO-DLBCL-GCB.

Clustering analyses in the noted NGS studies have independently
designated different (and partially overlapping) molecular DLBCL sub-
types related to COO, prognosis, and potential therapeutic targets. In
the current study, the limited tNGS panel used for sequencing and
lack of chromosomal aberrations impaired proper molecular classifica-
tion of O-DLBCL subtypes. As such, supplemental Table 7 summa-
rizes only a derivative of these clusters related to molecular profiles
identified in O-DLBCL subentities. Considering frequent mutations
in B2M, EZH2, IRF8, and TNFRSF14, PB-DLBCL could primarily
be categorized in “good-risk” clusters (eg, C1, C3, EZB, BN2,
BCL2), which corroborates our results that PB-DLBCL is associated
with favorable survival. This contrasts with other WHO-recognized
extranodal DLBCLs, such as PCNSL, primary cutaneous
DLBCL–leg therapy, and intravascular large B-cell lymphoma, which
are primarily characterized by ABC phenotypes and inferior survival.
Our findings in PB-DLBCL coincide with compelling evidence, illus-
trating superior OS for DLBCL-GCB compared with DLBCL-
ABC.2,30-36

The characterized genetic background of PB-DLBCL does not
answer the question of whether a lymphoma originates in the bone,
as it is assumed that a GC does not exist in bones, or that circulating
lymphoma cells are attracted by locally secreted chemokines. The
contrast in mutational profiles between PB-DLBCL and NO-
DLBCL-GCB (and even more with opposite extranodal DLBCL-
ABCs) requires additional investigation into the coherence of these
genetic factors and the resulting specific interactions with its microen-
vironment. Remarkably, no specific (extranodal) DLBCL-GCB entity
has yet been recognized in the WHO Classification of Tumors of
Hematopoietic and Lymphoid Tissues, and therefore this study can
be used as a reference study for DLBCL-GCB. As stated before,78

our findings (re)affirm the supplementary merit of examining well-
annotated homogeneous cohorts and invoke the need for additional
in-depth evaluation of extranodal DLBCLs.

This study was limited by a percentage of GEP (7%; n5 3) and tNGS
(19%; n 5 20) dropouts of the O-DLBCL cohort, illustrating difficul-
ties in molecular analysis on decalcified bone tissue, with no indication
that this dropout is selective for certain outcomes. By using IHC as the
primaryCOOclassifier, several non-GCB IHC cases that harbor a late
GCB phenotype are absent from our comparator NO-DLBCL-GCB
cohort. Given the low percentage (9%) of dissimilar COO classifica-
tion by IHC and NanoString in the original study,48 we anticipate that
this may have possibly biased our results but to a limited extent. More-
over, this investigation would have benefited frommore extensiveGEP
measurements (eg, complete BAGS2CLINIC assay or DZ/LZ spatial
signature assay) for refinement of COO clustering and comprehen-
sive sequencing data (eg, whole-exome sequencing) to elucidate
complete molecular profiles, including copy number alterations or
larger structural variations. Nevertheless, these techniques would
also have been impeded by our perceived (partially) suboptimal
DNA/RNA qualities. Furthermore, GEP analyses focused on the com-
parison of PB-DLBCL with NO-DLBCL-GCB, and therefore the num-
bers of polyostotic-DLBCL and disseminated-DLBCL analyzed were
underrepresented and require additional research. A sensitivity analy-
sis showed that the inclusion of a relatively small number of high-grade
B-cell lymphoma cases did not significantly bias our results (supple-
mental Results). Multivariate analyses showed that the heterogeneity
in age, chemotherapy, or adjuvant radiotherapy did not confound
our survival outcomes.

In conclusion, this study is the first to show that PB-DLBCL is charac-
terized by a centrocyte-like GCB phenotype, with a specific GEP pat-
tern and GCB-associated mutational profile (mainly B2M, EZH2,
IRF8, and TNFRSF14 mutations), both involved in immune surveil-
lance, and is associated with favorable survival. Consequently, these
new biological findings provide evidence that PB-DLBCL can be rec-
ognized as a distinct extranodal DLBCL entity and offers potential for
the development of targeted therapies (eg, EZH2 inhibitors or other
epigenetic-modulating agents69) to ultimately improve patients’
survival.
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