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Background
With the increase of aging population, countries all over the world invest more and more 
in the diseases of the elderly. This also caused more researchers to work to slow down 
the huge medical costs and social burden caused by human aging. Statistics show that 
the disease spectrum of human beings is changing from infectious diseases to chronic 
non infectious diseases such as hypertension, heart disease, stroke and cancer.
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Background:  At present, the bioinformatics research on the relationship between 
aging-related diseases and genes is mainly through the establishment of a machine 
learning multi-label model to classify each gene. Most of the existing methods for 
predicting pathogenic genes mainly rely on specific types of gene features, or directly 
encode multiple features with different dimensions, use the same encoder to con-
catenate and predict the final results, which will be subject to many limitations in the 
applicability of the algorithm. Possible shortcomings of the above include: incomplete 
coverage of gene features by a single type of biomics data, overfitting of small dimen-
sional datasets by a single encoder, or underfitting of larger dimensional datasets.

Methods:  We use the known gene disease association data and gene descrip-
tors, such as gene ontology terms (GO), protein interaction data (PPI), PathDIP, Kyoto 
Encyclopedia of genes and genomes Genes (KEGG), etc, as input for deep learning to 
predict the association between genes and diseases. Our innovation is to use Mashup 
algorithm to reduce the dimensionality of PPI, GO and other large biological networks, 
and add new pathway data in KEGG database, and then combine a variety of biologi-
cal information sources through modular Deep Neural Network (DNN) to predict the 
genes related to aging diseases.

Result and conclusion:  The results show that our algorithm is more effective than 
the standard neural network algorithm (the Area Under the ROC curve from 0.8795 to 
0.9153), gradient enhanced tree classifier and logistic regression classifier. In this paper, 
we firstly use DNN to learn the similar genes associated with the known diseases from 
the complex multi-dimensional feature space, and then provide the evidence that the 
assumed genes are associated with a certain disease.
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One of the main problems in the study of human aging is that it is much more diffi-
cult to carry out experiments due to obvious ethical reasons and long experimental time, 
so animal models with shorter life are usually preferred. This problem also creates the 
opportunity to deploy bioinformatics methods to study human aging. There is a large 
amount of data on this subject in the publicly available gene or protein database, but 
such data has not been fully developed [1, 2]. The purpose of this work is to analyze the 
human genes related to aging by combining various kinds of biological data and using 
deep learning data mining method. After we find the genes related to aging, we can use 
drugs to repair specific genes to delay human aging and treat human age-related diseases 
more effectively, which can alleviate the growing pressure of aging society [3]. Therefore, 
it is particularly important to propose a more effective multi label learning algorithm to 
reduce the workload of experimental verification in the field of biology [4, 5].

There are three contributions of this paper: (1) Using Mashup algorithm to reduce the 
dimensionality of biological network, and applying the processed data to the prediction 
of aging disease-related genes [6]; (2) Proposing a new DNN model; (3) According to 
the prediction of our algorithm, some negative genes close to known positive genes are 
recommended for further study for each disease. Our proposed architecture is called 
MDL (Mashup and Deep Learning), which integrates multiple data sources to obtain the 
prediction of the final model. We compare MDL with existing deep learning architec-
ture [7], gradient boosting tree (GBT) [8]classifier (lightGBM Implementation) and tra-
ditional logistic regression (LR) classifier in terms of prediction ability [9].

The rest of this paper is organized as follows: Firstly, describes the construction prin-
ciple of MDL and the method of compiling data. And then reports our experimental 
results, including the statistical analysis of the prediction performance of MDL, DNN, 
GBT and LR classifiers. The priority of disease genes is also the focus of our task, some-
one proposed Hetesim’s method in 2017 [10]. Especially, in the end of this part, a num-
ber of promising genes for further analysis are listed based on our method. Finally, in the 
discussion part, we use hypothesis testing to verify the advantages of the recommended 
gene compared with other genes. Then, according to the rules of statistical genes, the 
possibility of further prediction of aging related genes is prospected.

Methods
Overall structure

In this paper, we use several types of features (or datasets), as shown in Fig. 1. The KEGG 
dataset, consisting of gene pathway information from the Kyoto Encyclopedia of Genes 
and Genomes, was used as described in Fabris and Freitas [11]. We obtained protein–
protein interaction (PPI) features representing the human protein interaction network 
extracted from the STRING database v9.1 [12] and the Munich Information Center for 
Protein Sequences (MIPS). The Gene Ontology (GO) features were obtained by down-
loading data from the GO database [13]. Our method uses the Mashup algorithm [6] 
and the modular Deep Neural Network (DNN) algorithm proposed in Fabris et al. [7], 
as summarized in Fig. 1. Firstly, we used the Mashup algorithm to embed the GO terms 
and PPI features into an 800-dimensional feature vector, generating the Mashup dataset. 
Second, we use the modular DNN algorithm to learn a model in two phases. In the first 
phase we train 4 neural networks, denoted as “Encoder 1” in Fig. 1, each trained with 
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a different type of feature (dataset)—namely the Mashup, KEGG, GTEx and PathDIP. 
Each Encoder 1 is used to reduce the dimensionality of its corresponding dataset. In the 
second phase, a neural network (denoted as “Encoder 2” in Fig. 1) is trained with a con-
catenation of the outputs of all trained Encoder 1 neural networks, generating a final 
predictive model. The specific model is as Fig. 1.

Mashup

The high-dimensional nature of biological networks and the incompleteness of origi-
nal networks bring great challenges to the adaptability of machine learning algorithms 
[14]. Specifically, first, the conflict between the huge amount of computation and the 
insufficient computation of most current computing devices. Second, the dimensions of 
multiple biological networks are not of the same order or magnitude, which makes it 
difficult to integrate multiple biological networks and predict gene function. Therefore, 
we need an algorithm to merge high-dimensional networks and reduce them into low 
dimensional data that is basically consistent with other smaller networks. On condition 
that, we can use an unified deep learning model to learn and predict multiple biological 
networks, and Mashup is such an excellent algorithm, which can well solve the above 
challenging problems efficiently.

Mashup algorithm is a network structure analysis tool based on random walk with 
restart (RWR). RWR is to start random walk again in each step of expansion with a 

Fig. 1  Algorithm frameworks. The vector of binary features consisted of 4 main parts (PPI, GO, KEGG, 
PathDIP), each part of which was equivalent to one of the data sources. The information for each data 
source was a boolean value, and if any gene contained this value, it scored 1, and otherwise, it scored 0. The 
remaining part (Mashup, GTEx) is non-BOOL value



Page 4 of 16Ye et al. BMC Bioinformatics          (2021) 22:597 

certain probability, so as to identify the important nodes in the local and global topology 
of the network. The RWR from node i is defined as Eqs. (1, 2, 3):

where sti is a n-dimensional distribution vector, which holds the probability of reach-
ing each node from i after t-step random walk; pr is the probability of restart; ei is a 
n-dimensional distribution vector. Each Bij of B represents the probability of a transition 
from node i to node j; A represents the n-dimensional weighted adjacency matrix of the 
original biological network containing n genes or proteins.

Due to the high dimensionality and incompleteness of biological network, there is a lot 
of noise in the node diffusion state obtained by restart random walk algorithm. In order 
to reduce the noise and dimensionality of data, each diffusion state is approximated by a 
polynomial logic model based on a lower dimensionality latent vector of nodes to gener-
ate a much smaller dimensionality than the original feature network.

When there are multiple networks, the above steps are firstly carried out for each net-
work respectively, then the same weights used fuse each network into a final one. The 
final generation network is a 800 dimensional vector, which is 95% lower than the origi-
nal 15,000 dimensional protein interaction network and gene ontology network. The cal-
culation of data analysis is greatly reduced.

Deep neural network model

With the continuous improvement of computer computing resources, deep learning has 
also shown its great development potential in various directions in bioinformatics [15, 
16]. For example, Daniel et al. [17], Kulmanov et al. [18] used CNN and LSTM to predict 
nonprotein coding DNA sequences function, Skwark et al. [19] used deep learning net-
work to predict protein structure, Gupta et al. [20] used deep architecture to learn the 
structure in gene expression data and applied it to gene clustering. It is believed that in 
the continuous development of deep learning, the prediction of gene expression can be 
further improved.

In general, the algorithm proposed in this paper has two stages, one is used to encode 
multiple biological data sources in the early stage, and to detect the coding effect, the 
other is used to train multiple biological data after serial coding, and give our prediction 
results. Because of the differences of data sources and data dimensionality, we propose 
two different deep learning models, Encoder1 and Encoder2.

In the model Encoder1, we use a four-layer fully connected neural network in each 
initial biological network, whose neurons in each layer are 64, 32, 32 and 16, respec-
tively, and, the output is set to multi-label categories of 27 diseases. The Relu activa-
tion function is used in the four hidden layers to ensure that the output is a nonlinear 

(1)st+1
i = (1− pr)Bs

t
i + prei,

(2)Bij =
Aij

∑

i Aij
,

(3)ei(j) =

{

1, i = j
0, i �= j
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combination of inputs, and add a bias neuron to improve the fitting ability of neurons. 
In the final output layer, we set tanh as the activation function. The combined training 
of Tanh and Relu activation functions can significantly improve the overall performance 
of the model [21]. In order to reduce the amount of parameters needed to be calculated 
in the training model, the learning rate is set to 0.001, and the neuron dropout rate of 
each layer to 0.5. Dropout can prevent over fitting by randomly sets input units to 0 with 
a frequency of rate at each step during training time. At the end of the training, we keep 
the last full connection layer data generated by each data set after model training, and 
then proceed to the next step. In this step of the model Encoder1, the prediction effect 
of each data set on the disease to be predicted can be initially seen. Although the pre-
diction effect is not the final effect, it can help us measure the embedding effect of this 
model on each data set. The parameters needed to be trained for each data set are as fol-
lows: Para1 = n× (64 + 1)+ 64× (32+ 1)+ 32× (32+ 1)+ 32× (16+ 1)+ 16× 27 , 
where n is the dimensionality of each dataset.

In the final prediction model Encoder2, we use a deep neural network with three 
hidden layers. The neurons in each layer are 32, 24 and 16, respectively. Bias neurons 
are added to each layer. As mentioned above, the output is still a multi label vector of 
length 27. In the activation function, we refer to the data embedding model, using Relu 
in the hidden layer and tanh in the final output layer. The data we need to input is the 
data generated by each data set reserved in the previous model, which is connected in 
series, and then the model is trained. The training parameters of the model are as fol-
lows: Para2 = 16×4× (32+ 1)+32× (24+1)+24× (16+1)+16×27 = 3,436,992 . 
Table 1 lists the hyperparameters of the deep learning model of Encoder1 and Encoder2.

Results
Comparison of MDL with other methods

In this section, we compare our traditional machine learning and deep learning algo-
rithm with several other baseline algorithms, including: (1) existing DNN algorithm, 
including using a single feature type and concatenating all data sets for training; (2) 
gradient boosting tree algorithm; (3) logistic regression classifier (LR), using L2 regu-
larization and other default parameters; (4) In order to verify the effectiveness of the 
Mashup algorithm, we compare the predictive performance of the DNN algorithm 
using an Encoder 1 module where Mashup was used to process the GO and PPI fea-
tures together against the DNN algorithm without using Mashup (i.e. using a separate 
Encoder 1 module for each of the GO and PPI datasets). (5) Compared with the existing 
deep learning algorithm, the fitting degree of each module and the final prediction effect 
are compared. (6) The main idea of the Naive classifier is to think that the more research 
on a gene, the more likely it is to be related to disease. For the GO, PPI and PathDIP 
datasets, the degree of research is defined as the number of terms. If this gene does not 

Table 1  Learning hyperparameters for each network model

Models Batch-size Optimizer Learning-rate Epoch

Encoder1 2048 Adam 0.0001 150

Encoder2 3072 Adam 0.0001 150
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exist in the data set, it is considered that its research level is 0. For data sets with non-
BOOL values such as GTEx, the degree of genetic research that exists is set to 1, and the 
non-existent is set to 0. Finally, the research level of each gene in the 4 data sets is added 
together to generate a Naive classifier containing 4 types of feature information to iden-
tify whether our algorithm is simply assigning positive classification labels to genes with 
higher research levels.

Table  2 shows the information of each feature set. Unknown proportion refers 
to the proportion of the feature set that is not included in the label set. (e.g. propor-
tion of genes without any PPI values, for the PPI feature.) Concat. M is the combina-
tion of PathDIP+GTEx+Mashup+KEGG, and Concat. P&G is the combination of 
GO + PPI + GTEx + KEGG + PathDIP. It should be noted that the Concat. P&G row of 
DNN column and naive column data in the Tables 3 and 4 does not contain KEGG and 
Mashup data.

Finally, we use the area enclosed by the ROC curve under 10-folds cross validation. 
The predictive accuracy measure (AUC value in this case) is calculated as the average of 
the measure in the test set of 10 experiments. Therefore, each data instance is used once 
in the test set and nine times in the training set. AUC is the area under the ROC curve 
and surrounded by the coordinate axis, while the abscissa of the ROC curve is the false 

Table 2  Data information of each feature set

Datasets GO PPI PathDIP GTEx Mashup KEGG Concat. M Concat. P&G

Unknown proportion 4% 19.4% 16.8% 4.1% 5.3% 3.7% 0 0

Data dimension 13,615 13,887 4790 84 800 318 5992 32,694

Sample size 18,418 15,469 15,956 18,597 15,709 7040 19,188 19,188

Table 3  AUROC values obtained by 10-fold cross-validation in datasets with unknown genes

Algorithms/datasets Encoder1 GBT LR DNN Naive

PPI 0.7451 0.6585 0.6844 0.6381 0.7995
GO 0.8326 0.8520 0.7900 0.8498 0.6080

GTEx 0.8165 0.7156 0.7173 0.7535 0.5062

pathDIP 0.8457 0.8392 0.7600 0.7507 0.7817

Mashup 0.8637 NA NA NA NA

KEGG 0.8322 NA NA NA NA

Table 4  AUROC values obtained by 10-fold cross-validation in datasets without unknown genes

Algorithms/datasets Encoder1 GBT LR DNN Encoder2

PPI 0.7464 0.6782 0.6889 0.6897 NA

GO 0.8321 0.8268 0.7981 0.8583 NA

GTEx 0.8163 0.7114 0.7233 0.7476 NA

pathDIP 0.8420 0.8314 0.7607 0.8051 NA

Mashup 0.8631 NA NA NA NA

KEGG 0.8324 NA NA NA NA

Concat. M 0.8881 0.8688 0.8760 NA 0.9153
Concat. P&G 0.7995 0.8503 0.8777 0.8795 0.9095
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positive rate (FPR), and the ordinate is the true positive rate (TPR). Their calculation 
formulas are as Eq. (4):

where FN, FP, TN, TP mean false negative, false positive, true negative and true posi-
tive, respectively. Because some genes have unknown values of features for each type of 
feature, we use two different strategies to generate the training and test sets according to 
whether or not genes with unknown features are all included in those datasets. Tables 3 
and 4 show the value of the AUROC measure obtained by each method, for the datasets 
containing or not (respectively) the genes with unknown values of the corresponding 
type of feature. The bold in tables 3 and 4 represents the prediction results of the best 
algorithm in the corresponding dataset.

It should be noted that the data in the first four rows (PPI, GO, GTEx, PathDIP) of 
columns 3–5 (GBT, LR, DNN) in Tables 3 and 4 are provided by Fabris et al. [7]. From 
the data in the above two tables, it can be seen that the effect of only containing known 
genes is better than that of containing unknown genes. In Table 3, when using only the 
PPI data set, our Encoder1 is 5.44% lower than Navie, but it is more than 6% higher than 
other algorithms, and more than 10% higher than the previous DNN algorithm. When 
using the GO data set alone, Encoder1 is slightly lower than DNN. When using other 
data sets, our algorithm will perform better than other algorithms.

In Table  4, we use Mashup algorithm combined with the MDL model, which has 
more advantages than the existing deep learning algorithm or the traditional machine 
learning algorithms such as logistic regression algorithm and gradient boosting tree. 
When we directly use PPI or GO data to input Encoder1, too large data dimensional-
ity leads to a huge increase in the amount of calculation, and the convergence speed is 
also very slow (10-fold cross-validation training time is about 10 h per module). When 
we use the Mashup algorithm to combine PPI and GO, it not only greatly reduces the 
amount of machine learning computation, but also improves the prediction effect. From 
0.7464 of PPI and 0.8321 of GO to 0.8631 of Mashup. Then we add all the data sets into 
Encoder2, that is, we bring them into Concat. P&G respectively to make the final predic-
tion. Although our data sample dimensions are larger (16 * 5 vs 16 * 4, where 16 is the 
each feature data dimensions after Dimensionality reduction by Encoder1), we still have 
advantages in the prediction effect (0.9095 vs 0.8795). It proves that our deep learning 
model has better effect than the previous deep learning model. Finally, by comparing the 
training effect of encoder2 using concat. M and concat. P&G data sets, we find that the 
use of concat. M also has a significant improvement (0.9153 vs 0.9095). This shows that 
mashup algorithm not only has a good effect in embedding PPI and GO, but also has a 
positive effect in integrating it into other feature data sets.

In order to see the advantages of our method more intuitively, We draw ROCs in each 
method in the case of using Concat. M or Concat. P&G datasets. It is worth noting that 
the larger the area under the curve, that is, the higher the curve is, the better the predic-
tion effect of the corresponding algorithm.

The corresponding results of Fig. 2 are the rows concat. M and concat. P&G in Table 4. 
GBT, GBT0 use GBT algorithm, LR, LR0 use LR algorithm, fulldataset and fulldataset0 

(4)FPR =
FP

FP + TN
, TPR =

TP

TP + FN
.
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only use Encoder1 algorithm, the data set Concat. M is used if the suffix of their names 
contains 0, otherwise Concat. P&G is used. Joined and nomashup correspond to the two 
results of whether our MDL algorithm uses Mashup for embedding in the dataset PPI 
and GO. In Fig. 2, we can see that ‘joined’ is significantly higher than all other methods 
except ‘nomashup’. We can also see that directly concatenating several large data sets 
together using Encoder1 will also seriously reduce the training effect.

Results statistical analysis

We use our own method to compare existing DNN algorithms, GBT and logistic regres-
sion classification, and make a statistical analysis in the case of considering the use of 
known and unknown genes. Considering that the data set used in a single module is dif-
ferent from that used in the combination of all our data, and the prediction performance 
is obviously better in the case of combining multiple data sets, we do not give statistical 
analysis of the results for the individual datasets (types of features), and focus instead 
on the statistical analysis for the results combining all datasets. Our statistical analysis 
method includes two kinds, one is based on T-test, which is used to test whether there is 
significant difference in the mean value of cross validation results. We add the statistical 
significance test based on Mann–Whitney-U test to supplement. In the U-test, we cal-
culate the p value of “Greater”, “Two side” and “Less” models, that is, the null hypothesis 
is that other methods are better, the same or worse than ours. The data we tested and 
analyzed were 10-folds cross validation of 30 random seed changes, and the AUC value 
predicted by each fold record was verified.

The data in Table  5 shows the comparison results between our method and other 
methods. The first column lists our method and each method that needs to be com-
pared. The second column is the combination method of each characteristic data set 
under different methods. The third column is the corresponding average AUROC value. 
The fourth column gives the significance test results of T hypothesis. The fifth column 

Fig. 2  Comparison of ROCs by Concat. M datasets and Concat. P&G datasets on each methods
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is the statistical results based on Mann–Whitney-U test. From this table, we can see 
that except for the prediction results in the line of Encoder2, other methods can easily 
reject the null hypothesis through p value and get the conclusion that our method works 
better. However, using Encoder2 to combine data with Concat. P&G method can not 
reject the null hypothesis of T-test ( 0.1256 < 0.05 ), and their average value has no sig-
nificant difference. At the same time, in Mann–Whitney-U test, the p value of Encoder2 
algorithm in Concat. P&G is better than Concat. M is 0.0261, which can reject the null 
hypothesis. Therefore, it can be said that at least we embed PPI and GO datasets in the 
way of Mashup, and then use our deep learning algorithm will not be worse than using 
PPI and GO datasets directly.

Table 5  Comparing the MDL approach (AUROC =  0.9153) with each data set of others methods 
using T-test and Mann–Whitney-U hypothesis testing

Algorithms Feature combination AUROC T-test Mann–Whitney-U test p value

p value Greater Two-side Less

Encoder1 Concat. M 0.8881 0.0045 0.0021 0.0043 0.9980

Concat. P&G 0.7955 1.721e−09 4.428e−08 8.857e−08 1.0000

Encoder2 Concat. P&G 0.9095 0.1256 0.0261 0.0522 0.9739

GBT Concat. M 0.7301 6.778e−09 4.523e−08 9.046e−08 1.0000

Concat. P&G 0.8503 0.0001 4.146e−05 8.292e−05 1.0000

LR Concat. M 0.8760 1.704e−06 1.461e−07 2.922e−07 1.0000

Concat. P&G 0.8777 4.071e−07 1.094e−07 2.189e−07 1.0000

Fig. 3  AUROC value of 27 diseases predicted by each algorithm
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AUROC results of individual diseases

In the end, we calculate by prediction AUROC of each class label (disease) for the final 
results predicted by all methods, and the AUROC is shown in Fig. 3. As we can see from 
Fig. 3 that the stability of prediction AUROC for each disease is the best among all meth-
ods, and our algorithm has the best performance in most diseases.

Analysis of prediction results

In the last step of prediction, we rank each disease score corrsponding to each gene in 
order to identify the positive (with disease) class labels recommended by the model. The 
set of samples (genes) predicted as having a positive class label by the model are likely to 
contain some negative samples (i.e. the corresponding diseases are not annotated), and 
these negative samples are the objects that we need to further study [22, 23]. Because 
the genes without annotation information are regarded as negative labeled samples by 
default, the originally positive samples may be wrongly annotated as negative in the 
dataset. It seems that the reliability of negative label is low, and the lack of relevant evi-
dence does not mean that there is no evidence of disease [24].

In order to identify these negative genes more reliably, we carried out the following 
rule screening. We ranked all the negative genes according to the predicted probabil-
ity that the gene is associated with each disease (i.e. the predicted probability of each 
positive class label), and selected the top 30 genes with negative labels with the highest 
probability, since the disease (class label) with less annotated genes, osteoporosis, con-
tains only 30 genes, then we chose to recommend 30 genes for each disease. Since there 
is generally around 15,000 genes in the sample, which means at least the top 0.2%, i.e. 
30/15,000, of the predicted genes met the requirements. Because of the randomness of 
deep learning, we repeated this experiment for 30 times, and required at least 20 times 
to meet the above requirements before we could get our recommendation for negative 
label samples. In fact, all the 30 recommended genes met this preset standards, further-
more, among the top 30 genes there are at least 25 genes were listed in the practical pro-
cess of 30 repeats, exceeding the above standards.

Due to the limitation of space, instead of listing all the 30 positive genes, We only listed 
the top five genes in three of the 27 diseases. The 27 kinds of labels (diseases) include 
one primary label(Class_Disease), seven secondary labels(Disease.Brain, Disease.Heart, 
Disease.Immune, Disease.Muscle, Disease.Neoplasm, Disease.Nutrition, Disease.Respir-
atory.Asthma), and the remaining 19 are tertiary labels. The secondary label is defined 
as: if a gene associated with any one of the tertiary labels (disease) of the correspond-
ing class, the secondary label is associated with the gene. Primary label is the same. We 
have chosen three of the seven more comprehensive secondary labels (Disease.Immune, 
Disease.Brain, Disease.Nutritional). Giving their average probability (Ave. P), the lowest 
probability (Low. P) and the highest probability (Hig. P) of positive prediction accord-
ing to the frequency of occurrence in 30 repeated experiments. These results are sum-
marized in Table 6, in which column 1 is the class of disease, column 2 is the Entrez ID 
of the gene and the official abbreviation of the name and the official full name. column 
3–5 is the average, highest, lowest probability of recommended gene in 30 experiments. 
Column 6 is the average probability of all negative genes except as recommended (top 
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30) genes. As can be seen from Table 6, the probability that the genes we selected will be 
positive according to the algorithm is far greater than other genes.

Considering that the significance of comparing the best 30 genes recommended by the 
algorithm with the average value of all other negative genes may not be comprehensive 
enough (other genes may contain a lot of samples with low recommendation values, thus 
pulling down some samples similar to the recommended genes). So we used the same 
method of selecting recommended genes to select genes with probabilities ranging from 
31 to 60 for each disease. And then we use the probability of their association with the 
disease and the top 30 genes for hypothesis testing. The null hypothesis is that the gene 
we recommend is the same as his neighbor.

It can be seen from Table  7 that the probability of our top 30 genes is significantly 
better than that of our neighbor genes (ranking 31–60). It should be noted that the sta-
tistics can’t show that the negative class-label genes ranked after the 30th have no rela-
tionship with the diseases we study. On the contrary, if the genes ranked after the 30th 
have evidence related to a certain disease, according to our algorithm, the top 30 genes 
recommended by us should also have a higher probability of obtaining evidence related 
to diseases.

Table 6  The top five genes related to each of the three diseases according to the frequency of 
occurrence in 30 repeated experiments, and the various probabilities of association with disease of 
these candidate genes

Disease Candidate genes Ave. P Hig. P Low. P Ave. P of rest genes

Immune 3553(IL1B—interleukin 1 beta) 0.119864 0.166426 0.062936 0.00128

1544(CYP1A2—cytochrome P450 0.115728 0.159259 0.061422

family 1 subfamily A member 2)

4023(LPL— lipoprotein lipase) 0.113289 0.155988 0.06022

1543(CYP1A1— cytochrome P450 0.111613 0.154343 0.059018

family 1 subfamily A member 1)

4846(NOS3—nitric oxide synthase 3) 0.110097 0.154304 0.057448

Brain 1544(CYP1A2—cytochrome P450 0.204762 0.303633 0.111395 0.0363

family 1 subfamily A member 2)

1559(CYP2C9—cytochrome P450 0.190703 0.28241 0.104468

family 2 subfamily C member 9)

1586(CYP17A1—cytochrome P450 0.175779 0.243321 0.104167

family 17 subfamily A member 1)

338(APOB—apolipoprotein B) 0.174123 0.256506 0.097296

1557(CYP2C19—cytochrome P450 0.173544 0.258927 0.0953

family 2 subfamily C member 19)

Nutrition 3553(IL1B—interleukin 1 beta) 0.343483 0.496965 0.195028 0.00677

1544(CYP1A2—cytochrome P450 0.332656 0.478875 0.190983

family 1 subfamily A member 2)

1557(CYP2C19—cytochrome P450 0.284008 0.414314 0.163521

family 2 subfamily C member 19)

4035(LRP1—LDL receptor) 0.280427 0.412398 0.159798

related protein 1

2688(GH1—growth hormone 1) 0.279018 0.381114 0.171254
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Discussion
In fact, the evidence of genes and related diseases that we recommend can also be found 
in a large number of literatures. For example, IL1B of immune related diseases was 
approved by Zhi-gang et al. [25]. Found that it is related to immune T cells in abortion 
of pregnant women, and found in the paper 2016 that the lineal homologous gene of 
IL1B also plays an important role in the immune regulation of fish [26]. Liver IL1B may 
be a new target for restoring bile and sterol transport to treat PNAC [27, 28]. The spe-
cific expression of CYP2C9 in the axons and synapses of brain neurons may be related to 
some brain diseases, and the mutation allele frequency of CYP2C9 is higher in 23 tumor 
samples, such as breast tumor and brain tumor, which indicates that CYP2C9 may be 
related to tumor [29, 30].

The evidence we found is not limited to these genes. With the help of Google aca-
demic, we can easily find the research papers related to the recommended genes for 
each disease. For the 15 genes mentioned above, we list the relevant information in the 
Table 8. Finally, only the evidence of CYP2C19 gene recommended for nutritional dis-
eases was not found.

We have recommended 30 genes that are most likely to be positive for each disease. 
However, due to the limitation of space, we have only made a detailed analysis of five 
genes of three diseases (Disease.Immune, Disease.Brain, Disease.Nutritional). But we 
want to find out whether there is some internal relationship between these genes rec-
ommended for each disease, so as to find out the genes that may be related to aging. 
Therefore, we have made the Fig. 4 for all the recommended genes, so we can see their 
distribution more intuitively. Figure 4 should be viewed horizontally.

The Vertical-axis of the five subgraphs in Fig. 4 corresponds to 27 diseases. The order 
of the Vertical-axis from 1 to 27 corresponds to the order from top to bottom listed on 
the right of the figure. The Horizontal-axis of each subgraph corresponds to the ID value 
of the recommended gene.

Table 7  Testing results for the statistical hypothesis of whether the recommended 30 genes are 
significantly different from the subsequent 30 genes for 27 aging-related diseases

Disease classification p values Disease classification p values

Disease.Brain 8.484e−09 Disease.Neoplasm 2.033e−09

Brain.Alzheimer 3.474e−10 Neoplasm.Adenocarcinoma 1.464e−10

Brain.Multiple.Sclerosis 5.967e−09 Neoplasm.Breast 1.205e−10

Brain.Parkinson 1.070e−09 Neoplasm.Colorectal 2.154e−10

Disease.Heart 5.072e−09 Neoplasm.Lung 7.380e−10

Heart.Arteriosclerosis 1.776e−10 Neoplasm.Prostatic 3.196e−09

Heart.Coronary.Disease 6.695e−11 Neoplasm.Stomach 2.609e−10

Heart.Hypertension 4.504e−11 Disease.Nutrition 7.118e−09

Heart.Coronary.Disease 6.695e−11 Nutritional.Diabetes.Type1 3.689e−11

Disease.Immune 6.065e−10 Nutritional.Diabetes.Type2 2.227e−09

Immune.Hypersensitivity 5.494e−11 Nutritional.Obesity 4.975e−11

Disease.Muscle 2.438e−11 Disease.Respiratory.Asthma 7.380e−10

Muscle.Arthritis 1.464e−10 Class_Disease 2.831e−08

Muscle.Osteoporosis 8.484e−09
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As can be seen from the Fig. 4, the majority of the recommended genes are distributed 
within 1–8000, and after 8000 only the category of diseases exists with recommended 
genes. The distribution of these recommended genes in 1–8000 shows that many of our 

Table 8  Evidence of 15 genes recommended for association with disease

Gene ID Genes associated with “Disease.Immune” Relevant evidence

3553 IL1B—interleukin 1 beta Roghieh Safari et al. [26]

1544 CYP1A2—cytochrome P450 family 1 Klein et al. [31]

subfamily A member

4023 LPL—lipoprotein lipase S. aureus et al. 2015 [32]

1543 CYP1A1—cytochrome P450 family 1 Uno et al. [33]

subfamily A member 1

4846 NOS3—nitric oxide synthase 3 Bogdan et al. [34]

Gene ID Genes associated with “Disease.Brain ” Relevant evidence

1544 CYP1A2—cytochrome P450 family 1 Siokas et al. [35]

subfamily A member 2

1559 CYP2C9—cytochrome P450 family 2 Sun et al. [36]

subfamily C member 9

1586 CYP17A1—cytochrome P450 family 17 Emanuelsson et al. [37]

subfamily A member 1

338 APOB—apolipoprotein B Bjelik et al. [38]

1557 CYP2C19—cytochrome P450 family 2 Ingelman-Sundberg et al. [39]

subfamily C member 19

Gene ID Genes associated with “Disease.Nutrition” Relevant evidence

3553 IL1B—interleukin 1 beta Norde et al. [40]

1544 CYP1A2—cytochrome P450 family 1 Agúndez et al. [41]

subfamily A member 2

1557 CYP2C19—cytochrome P450 family 2 None

subfamily C member 19

4035 LRP1—LDL receptor related protein 1 Masson et al. [42]

2688 GH1—growth hormone 1 Thissen et al. [43]

Fig. 4  Distribution of recommended genes in 27 diseases. The gray dots in the figure represent the 
association between diseases and genes in the tag set, and the red dots represent the association between 
diseases and genes we predict
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recommended genes like to cluster in multiple diseases. Although we have not made fur-
ther analysis on each type of disease, it can be seen from the gene prediction results 
that it is more likely that similar diseases will predict the same associated genes. This 
phenomenon shows that the diseases we choose have certain internal relations, and as 
far as we know, the only thing they have in common may be that they are all related to 
aging. This also shows that our research can not only stay in the level related to aging 
diseases, but also have a certain reference value in the deeper level of the relationship 
between genes and aging. Some recommended genes appear frequently in some regions, 
such as 300–400, 1500–1600, 3500–3600, 7100–7200, and so on. It may be more helpful 
to reveal the relationship between genes and aging by giving priority to gene research in 
these regions. An additional file shows all recommended genes in more detail (see Addi-
tional file 1).

Conclusion
In general, our method has a significant improvement in prediction performance com-
pared with the existing modular deep learning model or the traditional machine learning 
method like LR or GBT in both single module prediction and total module prediction 
accuracy. At the same time, for a single module, we use Mashup algorithm to embed 
PPI and GO into a network, which greatly improves the original performance of only 
two modules. In addition, due to the decline of data dimensionality, the training time 
also has a great decline (from dozens of hours to only more than 1 h). We used 30 times 
of random seed replacement to repeat the experiment. The 30 negative marker genes 
were recommended for further analysis by biological researchers with more than 99.8% 
(i.e. 1− (30/19,188) ) positive probability. The hypothesis test of the top 30 genes in our 
experiment and the genes ranking 31–60 confirmed that the recommended genes are 
significantly different from other genes. We also found evidence from the literature that 
supports our assumption that genes may be disease-related, which further confirms that 
lack of evidence of gene-disease association does not mean they are not disease related.
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