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Although the need for addressing matching in the analysis of matched case-control studies is well established,
debate remains as to the most appropriate analytical method when matching on at least 1 continuous factor.
We compared the bias and efficiency of unadjusted and adjusted conditional logistic regression (CLR) and
unconditional logistic regression (ULR) in the setting of both exact and nonexact matching. To demonstrate that
case-control matching distorts the association between the matching variables and the outcome in the matched
sample relative to the target population, we derived the logit model for the matched case-control sample under
exact matching. We conducted simulations to validate our theoretical conclusions and to explore different ways
of adjusting for the matching variables in CLR and ULR to reduce biases. When matching is exact, CLR is
unbiased in all settings. When matching is not exact, unadjusted CLR tends to be biased, and this bias increases
with increasing matching caliper size. Spline smoothing of the matching variables in CLR can alleviate biases.
Regardless of exact or nonexact matching, adjusted ULR is generally biased unless the functional form of the
matched factors is modeled correctly. The validity of adjusted ULR is vulnerable to model specification error. CLR
should remain the primary analytical approach.

biased estimate; logistic regression; matched case-control study; restricted cubic spline; selection bias

Abbreviations: CLR, conditional logistic regression; L, linear term of the matching factor(s); SP, restricted cubic spline trans-
formation of the matching factor(s); ULR, unconditional logistic regression.

The case-control design is one of the most commonly
used designs in epidemiology and clinical research to assess
risk factors for rare diseases, particularly those with long
latency periods. In the presence of strong confounders, the
matched case-control design is generally more efficient than
the unmatched design (1, 2). In individually matched studies,
controls are randomly selected and matched to individual
cases using exact or caliper matching. Matching can be
performed on many different types of variables, including
binary factors, such as sex; nominal factors with many cat-
egories, such as neighborhood, sibship, or referring physi-
cian; continuous factors, such as age; or mixed types of
factors, such as age and sex.

Depending on the number and type of matching vari-
ables, matched data can be analyzed in at least 2 different
ways: 1) by conditional logistic regression (CLR) or 2) by
unconditional logistic regression (ULR). When the number
of participants per stratum of the matched factors is low,

such as when cases and controls are matched on nominal
factors with many categories (e.g., neighborhood or sib-
ship) or on many different factors (e.g., sex, race, and age
categories), CLR is the well-accepted choice for analysis
(3). ULR adjusting for many matched sets as covariates is
not appropriate in this setting because maximum likelihood
estimation can yield highly biased point estimates in the
presence of many nuisance parameters (3). In contrast, when
the number of participants per stratum is high, such as when
cases and controls are matched on one binary factor (e.g.,
sex), both CLR and ULR adjusting for the matching factor
are appropriate, with ULR providing greater efficiency of
estimation. This advantage was recently illustrated in a
widely cited study by Pearce (4). In this study, Pearce used
a hypothetical example to illustrate that covariate-adjusted
ULR can outperform CLR in a matched case-control design
with a binary matching factor. However, some researchers
have taken this conclusion even further and applied it to
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matched studies in which cases and controls are matched
on a continuous factor (5–7), a design in which the most
practical analytical method is still debated.

Breslow and Day (3) noticed several decades ago that
ULR controlling for linear terms of continuous matching
variables produced very similar results to CLR in some cases
(8, 9), despite breaking the matched sets. However, other
investigators have demonstrated that case-control matching
can alter the functional form of continuous matching vari-
ables in such a way that even though the matching variables
may have a linear logistic form in the source population,
they have a highly nonlinear form in the matched sample
(10, 11). In this case, fitting a naive ULR including a linear
term of the matching variable(s) will likely yield biased
results because the model is misspecified (12). On the other
hand, when matching is not exact, unadjusted CLR estimates
could be biased from a mixture of residual confounding from
nonexact matching and the noncollapsibility of the odds
ratio in a logit model (13–15). This bias often goes unnoticed
in practice (12).

Given remaining uncertainties over the most appropriate
method for analyzing case-control studies matched on at
least 1 continuous factor, we compared the performance of
unadjusted ULR, ULR including a linear term of the match-
ing factor(s) (ULR + L), and ULR including a restricted
cubic spline transformation of the matching factor(s)
(ULR + SP) to CLR. In the exact matching setting, all
comparisons were made to unadjusted CLR, whereas in the
nonexact setting, comparisons were made to CLR including
a linear term of the matching factor(s) (CLR + L) and
CLR including a restricted cubic spline transformation of
the matching factor(s) (CLR + SP). We performed this
additional analysis in the nonexact setting to investigate the
bias introduced by nonexact matching (12) and to determine
the best approach to address this bias.

METHODS

CLR versus adjusted ULR when matching is exact

For simplicity, we first assume the disease outcome in a
hypothetical source population is rare (e.g., proportion of
cases in each level of matching factors of <10%) and discuss
the common outcome later. We let Y denote a binary disease
outcome variable, where Y = 1 for a case and Y = 0 for
a control. We similarly denote the exposure variable by E,
where E = 1 if exposed and E = 0 if not exposed. Next, we
denote a vector of p discrete and continuous confounders by
X = (X1, X2, . . . , Xp). We assume there are no unmeasured
confounders and that the size of X is feasible for matching. In
practice, we commonly match on 1 or 2 variables such as sex
and age. We further assume the relationship between E, X,
and Y in the source population is described by the following
logit model:

logit (P (Y = 1|E, X)) = β0 + β1E + f (X) , (1)

where β1 measures the conditional effect of the exposure
and f(X) represents an arbitrary function of X. For example,

when f(X) = β′
2X, where β′

2 = (β2,1, β2,2, . . . , β2,p),
only the linear terms of confounders are included and the
confounders are linearly associated with the logit probability
of having the disease. f(X) can take more complex forms
by including nonlinearity and interaction terms. Because the
disease outcome is rare, the logit model 1 can be approxi-
mated by a log-linear model and thus eβ1 can be interpreted
as both an odds ratio and relative risk.

The relationship between the exposure and confounder in
the source population is specified by:

logit (P (E = 1|X)) = α0 + g (X) , (2)

where g(X) is an arbitrary function of X. For example,
when g(X) = α′

1X, where α′
1 = (α1,1, α1,2, . . . , α1,p), the

confounders are linearly associated with the logit probability
of being exposed. g(X) can also take more complex forms
by including nonlinearity and interaction terms.

In matched strata formed by matching cases and controls
on X = xj (j = 1, 2, 3, . . . , k), we can reasonably assume
there are more potential controls available than cases
because the disease outcome is rare, and we select all cases
and an equal number of controls in each matched stratum
to create a matched case-control sample. Because cases are
oversampled and controls are undersampled, the population
that the matched sample represents might be very different
from the source population. Therefore, we should not expect
the matched sample to have the same outcome model 1
describing the relationship among the outcome, exposure,
and confounders as the source population.

To fit an ULR to the matched sample, it is necessary to
derive the underlying “correct” logit model for the matched
sample first. The logit model describing the association
between the exposure, confounders, and outcome in the
matched data can be derived as:

P (Y = 1|X, E, S = 1) = 1

1 + P(Y=1|X=xj)
P(Y=0|X=xj)

e−β0−β1E−f(xj)

= 1

1 + ec(xj)−β1E′ (3)

where the nuisance term c(xj) = log
(

eβ1−1
1+e−α0−g(xj)

+1
)

. c(X)

can be considered as a nuisance term because it does not
include the exposure variable and can be seen as the stratum-
specific intercept for each matched set. We are usually not
interested in estimating these intercepts. S is the selection
indictor that takes the value of 1 if a participant is randomly
selected into the matched set and 0 if this participant is

not selected. Of note,
P(Y=1|X=xj)

P(Y=0|X=xj)
can be interpreted as the

chance that a control is selected into the matched set from all
controls with X = xj, whereas for cases, this probability is 1
because every case will be selected. Details are provided in
Web Appendix 1 and Web Table 1 (available at https://doi.
org/10.1093/aje/kwab056).
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By comparing models 1 and 3, we can make the following
observations. First, model 3 for the matched sample does not
retain the confounding term f(X) from model 1. Intuitively,
the reason this term cancels out can be explained using a
causal diagram (16). The selection indicator S in the matched
design is a collider between the confounders X and outcome
Y because the selection decision is determined by the con-
founders and outcome, so S is a common effect of both X and
Y . Conditioning on S by matching introduces a selection bias
and induces a new association between X and Y . This new
association has to cancel out the confounding association
between X and Y in the source population, represented by
f(X), to ensure that X and Y are “marginally” (uncondi-
tionally) unassociated in the matched sample because the
distributions of X are the same in cases and controls through
individual matching (15). The conditional odds ratio in
model 3 is still eβ1 , which is the same as in model 1. As
expected, the matched case-control design delivers the same
effect measure as in the source population.

Second, a new nuisance term c(X) appears in model 3
because of the selection bias introduced by matched case-
control sampling. In fact, 1

1+e−α0−g(xj)
in c(X) comes from

the exposure model 2. As shown in model 3, X can still be
“conditionally” associated with Y in the matched sample via
c(X) conditioning on E. Even in settings in which X is not
a confounder in the source population (e.g., X is associated
with the exposure but not the outcome), matching on X can
still induce a conditional association between X and Y given
E. By definition, this X is a confounder in the matched
data and thus contributes to confounding in the matched
sample (17). This finding supports previous conclusions that
matching in case-control studies can introduce confounding
(4, 16).

As a result, matched designs routinely require controlling
for the matching factors in the analysis (4), unless c(X) is
negligible. Failing to control for c(X), such as through use
of unadjusted ULR, results in an omitted-variable bias in
the logistic regression model. This bias is attributable to a
mixture of confounding and the noncollapsibility of the odds
ratio in a logit model. Noncollapsibility of the odds ratio is
a phenomenon in which the marginal or crude odds ratio
is not equal to the average of conditional or adjusted odds
ratios (averaged over the distributions of covariates), even
when confounding is absent. In the framework of a logit
regression model, noncollapsibility occurs when omitting an
independent variable alters the coefficients of the remaining
variables in the logit regression model (13–15). This bias
tends to bias estimates toward the null hypothesis (17) and to
underestimate the true association between the exposure and
the outcome (see details in Web Appendix 2). The degree of
this bias is determined by the variability of c(X). Thus, we
might estimate a different quantity than eβ1 when we fail to
adjust for c(X).

CLR controls for the matched factors by conditioning
out c(X) in model 3. Therefore, CLR avoids the model
misspecification by not modeling the nuisance term and
serves as a robust solution. By contrast, the validity of ad-
justed ULR requires modeling c(X) correctly. If c(X) is
approximately linear in the domain of X, then ULR + L, a

common analytical approach, will estimate β1 with minimal
bias because ULR + L approximates model 3. However,
if the functional form of c(X) deviates from linearity, then
ULR + L will be misspecified and might cause biased
estimates of β1. The complexity of exposure model 2 deter-
mines the level of deviation of c(X) from linearity and
thus the magnitude of bias. ULR + SP can alleviate this
bias if the spline transformation approximates the functional
form of c(X) well, but this method is not used often in
practice.

When the outcome is not rare, the nuisance term can
become even more complicated because it includes regres-
sion terms from both the outcome (i.e., f(X)) and exposure
models (i.e., g(X)). Details are provided in Web Appendix 1.
These terms further increase the complexity of modeling
c(X) and the risk of fitting an incorrect ULR model, particu-
larly if they include nonlinearity forms and interaction terms.
Thus, the main findings discussed previously under the rare
outcome assumption still hold for the common outcome
scenario.

CLR versus adjusted ULR when matching is not exact

In practice, we often select controls within a certain range
of the value of the matching factor of cases (e.g., controls
matched to cases within 5 years of age). In this setting, unad-
justed CLR could also be biased. The conditional likelihood
constructed for each matched pair routinely assumes exact
matching and that the matched pairs have the same risk of
developing the outcome, allowing the matching factors to be
conveniently canceled out from the conditional likelihood
function. However, CLR fails to account for the fact that
cases and controls in the same match sets have different
matching values from nonexact matching and thus different
risks of developing the outcome. The resulting bias can
be interpreted as the omitted variable bias problem in the
noncollapsible logit model (14, 15). Details are provided in
Web Appendix 3. One way to address this bias is to include
matching factors in the CLR logit model (18), but incorrect
specification of the functional form of the matching factors
in CLR could also produce biased results.

SIMULATION

We designed simulation studies to compare the potential
biases of ULR and CLR in 2 separate situations: 1) when
matching is exact and 2) when matching is not exact. To
evaluate their performance under model misspecification,
we fine-tuned the level of nonlinearity and complexity of the
matching variables in the population outcome model 1 and
exposure model 2 to generate different levels of complexity
in the functional form of c(X) in model 3 for the matched
data. We also considered scenarios in both rare and common
settings.

CLR versus adjusted ULR when matching is exact

The simulation algorithm for comparing ULR and CLR
under exact matching is outlined as follows:
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Step 1: We generated the disease outcome variable Y , the
exposure variable E, and confounders X1 and X2 from a
source population. Specifically, we generated confounders
and exposures for 6 scenarios. We selected β0 to ensure that
the proportion of participants with the disease outcome was
under 10% in scenarios 1–5 and ∼40% in scenario 6.

1. X1 ∼ N(72, 8). c(X) is approximately linear (Figure
1A). The model coefficients are from a published case
study on endometrial cancer (11). X1 is linear in both
outcome and exposure models. In this scenario, we
expect that ULR + L is unbiased because c(X) is
linear.

2. We modified scenario 1 by adding a quadratic term
for X1 in the population outcome model (Figure 1B)
to show that, when the outcome is rare, ULR + L
will still be adequate for the matched data as long
as c(X) is approximately linear. Nonlinearity in X1 in
the population outcome model does not contribute to
bias.

3. X1 ∼ N(0, 5). X1 is linear in both population outcome
and exposure models. c(X) has a nonlinear S shape
(Figure 1C). We expect ULR + L to be biased because
of the nonlinearity of c(X) even though X1 is linear in
the outcome model.

4. We modified scenario 3 by adding a quadratic term for
X1 in both the population outcome and exposure mod-
els to increase the complexity of c(X) (Figure 1D).

5. X1 ∼ N(0, 5) and X2 follow a discrete uniform distri-
bution taking values of 1–4 with equal probability of
0.25. We let X1 interact with X2 in the exposure model
2. Thus, the curves of c(X) also interact with each other
(Figure 1E).

6. To generate a common outcome scenario, we modified
scenario 4 by changing β0 = 1.5. The common out-
come setting might further increase the complexity of
c(X) (Figure 1F).

Of note, we rounded X1 to the nearest integer in scenarios
1 and 2 or to 1 decimal place in the remaining scenarios
to allow exact matching to be performed for continuous
variables.

Step 2: After generating the source population (sample
size n = 10,000), we used a greedy matching algorithm to
randomly select 1 control for each case from all candidate
controls sharing the same values of the matching variables.
In scenarios 1–4 and 6, we performed unadjusted ULR,
ULR + L, ULR + SP, and unadjusted CLR in each matched
sample and reported estimates of β1 and their model-based
standard errors. For the restricted cubic spline transforma-
tion of X1, we selected 5 knots, located at the 5th, 20th, 33rd,
67th, and 95th percentiles. In scenario 5, which included 2
matching variables, we performed unadjusted ULR, ULR +
L1 (without the X1 × X2 interaction), ULR + L2 (with the
interaction), ULR + SP1 (without the interaction between
the spline function of X1 and X2), ULR + SP2 (with the
interaction) and unadjusted CLR. We repeated this process
10,000 times and then averaged the point estimates and
model-based standard errors. We also computed empirical
standard errors by calculating the standard deviations of

10,000 estimates of β1. When averaged model-based stan-
dard errors differ substantially from averaged empirical stan-
dard errors, model-based standard errors are likely biased
and model-based inference is not reliable (e.g., P value is not
correct) because the empirical standard error approximates
the true variability of estimates. Finally, we reported the
coverage probability of 95% confidence intervals for each
method.

CLR versus adjusted ULR when matching is not exact

We used 4 of the previous scenarios (1, 3, 5, 6) to generate
the data, but we reduced β1 from 2.27 to 1 in scenario 1 to
make the confounding effect of β2 stronger relative to the
exposure effect. We defined 6 different matching calipers
for the continuous matching variable X1 (d = 1, 2, 3, 4, 5,
6). In scenarios 1, 3, and 6, we performed unadjusted CLR,
CLR + L, and CLR + SP, and unadjusted ULR, ULR +
L, and ULR + SP. In scenario 5, we performed unadjusted
CLR, CLR + L, CLR + SP and unadjusted ULR, ULR + L,
ULR + L2, ULR + SP1, and ULR + SP2. In this scenario,
adjusted CLR only included linear or spline functions of X1.
The interaction term was not included.

RESULTS

CLR versus adjusted ULR when matching is exact

As shown in Table 1, unadjusted ULR underestimated β1
in all 6 settings. In scenarios 1 and 2, in which c(X) was
approximately linear, both ULR + L and CLR were unbi-
ased. ULR + L was more efficient than CLR with smaller
standard errors, even though, in scenario 2, the matching
variable had a quadratic term in the population outcome
model. The coverage probability for both ULR + L and CLR
was at the nominal level.

In scenarios 3, 4, and 6 in which c(X) was nonlinear,
ULR + L underestimated the true parameter despite the fact
that X1 was linear in the population outcome model. CLR
produced unbiased estimates. The model-based standard
errors of ULR + L were generally larger than the empirical
standard errors, whereas the model-based and empirical
standard errors for CLR were close to each other, indicating
that ULR + L can produce biased estimates and invalid
inferences in matched case-control studies when c(X) is
modeled incorrectly. ULR + SP reduced this bias. The
coverage probability for ULR + L in the 3 scenarios was
below 0.95, whereas the coverage probability for ULR + SP
and CLR was nominal.

Finally, in scenario 5 in which X1 and X2 interact in the
exposure model, ULR + L1 and ULR + SP1 gave biased
estimates as expected. However, ULR + L2 and ULR +
SP2 reduced this bias and performed similarly to unadjusted
CLR. The coverage probability for ULR + L1 and ULR +
SP1 was below 95%, whereas the coverage probability for
ULR + L2, ULR + SP2, and CLR were at the nominal
level. These results demonstrate that CLR depends less on
modeling and is less susceptible to model misspecification
than ULR.
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Figure 1. The functional form of c(X) in 6 scenarios: A) Exposure: α0 = 3.09, α1 = −0.045 for intercept and X1; outcome: β0 = −12.81, β1 =
2.27, β2 = 0.1 for intercept, exposure, and X1. B) Exposure: α0 = 3.09, α1 = −0.045 for intercept and X1; outcome: β0 = −12.81, β1 = 2.27, β2 =
0.1, β3 = −0.05 for intercept, exposure, X1, and X2

1 . C) Exposure: α0 = 0, α1 = 1 for intercept and X1; outcome: β0 = −3, β1 = −1.2, β2 = 0.2 for
intercept, exposure and X1. D) Exposure: α0 = 0, α1 = 1, α2 = −0.2 for intercept, X1 and X2

1 ; outcome: β0 = −1, β1 = −1.2, β2 = 0.2, β3 = −0.1
for intercept, exposure, X1 and X2

1 . E) Exposure: α0 = 0, α1 = −0.1, α2 = (0.476, −0.191, 0.858), and α3 = (0.2, 0.3, −0.1) for intercept, X1,
and 3 dummy variables of X2, and 3 interaction terms of X1 × X2; outcome: β0 = −4, β1 = 1.2, β2 = −0.1, and β3 = (0.476, −0.191, 0.858) for
intercept, exposure, X1, and 3 dummy variables of X2. F) Exposure: α0 = 0, α1 = 1, α2 = −0.2 for intercept, X1 and X2

1 ; outcome: β0 = 1.5, β1 =
−1.2, β2 = 0.2, β3 = −0.1 for intercept, exposure, X1 and X2

1 .
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CLR versus adjusted ULR when matching is not exact

In all 4 scenarios (Figure 2), the bias of unadjusted CLR
estimates increased as caliper size increased. However, it is
worth noting that when the caliper size was small (d = 1),
unadjusted CLR had minor biases in each setting. This mi
ght be explained by the fact that the residual from the
nonexact matched confounder is negligible when the caliper
size is small, and not adjusting for this residual effect does
not affect CLR estimates appreciably. Unadjusted ULR was
always biased. In scenario 1 in which c(X) was approxi-
mately linear (Figure 2A), the adjusted CLR (CLR + L)
estimates were close to the true parameter at all levels of
caliper size. In scenario 3 (Figure 2B), the biases of CLR +
L increased first and then stabilized. The biases of ULR +
L were largest at the smallest caliper size (d = 1), but
steadily decreased as the matching caliper size increased.
This might be attributable to the observation that matched
case-control sampling begins to resemble case-control sam-
pling as caliper size increases and the matching factor is
linear in the population outcome model 1 (Web Figures 1
and 2). The estimates for CLR + SP and ULR + SP were
close to the true parameters at all levels of caliper size,
mainly because spline transformation well approximated the
complex form of the matching factor. However, in scenario
6 (Figure 2C), in which the matching factor was nonlinear in
the population outcome model and the outcome is common,
the biases of both ULR + L and CLR + L increased as
caliper size increased. The estimates for CLR + SP and
ULR + SP were close to the true parameters at all caliper
sizes. In scenario 5 in which X1 × X2 interact in the exposure
model (Figure 2D), the estimates from CLR + L and CLR +
SP were close to the true parameter. In contrast, ULR + L1
or ULR + SP1 still gave biased estimates because ULR did
not capture the interaction between X1 and X2. After includ-
ing the interaction term, ULR + L2 and ULR + SP2 allevi-
ated these biases. Overall, these findings suggest that CLR
depends less on modeling than ULR in the nonexact setting.

DISCUSSION

Whether we can break the match and use ULR instead
of CLR to analyze individually matched case-control data
has long been debated. There appears to be some consensus
in certain scenarios, but uncertainty remains among applied
researchers as to the most appropriate analytical approach
when one of the matched factors is continuous. We revealed
the trade-off between CLR and ULR. On the one hand,
CLR with exact matching or tight caliper size depends less
on modeling but its estimates can be less efficient with
larger standard errors. On the other hand, adjusted ULR can
produce more efficient estimates, but this advantage requires
correct model specification. A misspecified ULR can give
both biased estimates and invalid inferences.

Building upon findings from previous studies (10, 11,
19), we analytically and by simulation arrived at the fol-
lowing conclusions: First, our results confirm previous con-
clusions that matching does not remove confounding (4,
16). Thus, we need to control for the matching variables in
matched case-control studies. Unadjusted ULR in general
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Figure 2. Bias of conditional logistic regression (CLR) and unconditional logistic regression (ULR) when caliper size increases. A) Scenario 1
with rare outcome but we set β0 = −17.8, β1 = 1, β2 = 0.2, and we defined 6 different matching calipers (d = 1, 2, 3, 4, 5, 6). B) Scenario 3
with rare outcome, c(X) has a nonlinear shape. C) Scenario 6 with common outcome, X1 has quadratic terms in both the population and
exposure models. D) Scenario 5 with rare outcome, X1 and X2 have interaction. L, linear term of the matching factor(s); SP, restricted cubic
spline transformation of the matching factor(s).

underestimates the true association between the exposure
and the outcome. Second, we showed that the correct logit
model for the matched data includes a nuisance function of
matched factors, which is derived from the exposure model
when the outcome is rare or from the exposure and outcome
models when the outcome is common. As a result, ULR is
vulnerable to model specification error because ULR needs
to model this term correctly. CLR circumvents this model
misspecification problem by conditioning out the nuisance
term, making it a more robust approach in the exact setting.

The advantage of CLR over ULR with respect to depen-
dence on modeling is also evident in the setting of nonexact
matching. In this situation, unadjusted CLR can produce
biased results because of a mixture of residual confounding
and the noncollapsibility of the logit model. This bias
increases with larger matching caliper size. In our analysis,
we showed that controlling for the matching variable using
a proper form in CLR can reduce this bias when the caliper
size is relatively large. Although ULR with smoothing of the
matching variable can yield similar results, CLR depends
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less on modeling, particularly when the caliper size is
small.

In summary, the logit model for the matched sample
can be different from the logit model for the target pop-
ulation, and might take a more complex form, making it
challenging to fit adjusted ULR correctly in practice. By
contrast, CLR is less vulnerable to model misspecification.
Although more complex regression modeling techniques
such as smoothing splines can alleviate this bias for ULR
(11) and model diagnosis methods exist for specification
error (e.g., graphic analysis using residuals) (20), it is worth
emphasizing that, in practice, we rarely know the true form
of the unconditional logit model for matched data. Thus, it
is always appealing to applied researchers to design their
study rigorously first and then to follow up with simple-to-
implement analytical approaches. Bringing in the additional
complexity of modeling the correct functional form of the
matched variables, testing for the existence of interaction
effects after designing the study, and performing model
diagnosis might not always be the best approach in practice.
Even in situations in which researchers think it might be
appealing to break the matched sets and use adjusted ULR
(e.g., more efficient estimate, missing data), it is still advis-
able to compare the results with those from CLR.
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