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Abstract

Accurately segmenting contrast-filled vessels from X-ray coronary angiography (XCA) image 

sequence is an essential step for the diagnosis and therapy of coronary artery disease. However, 

developing automatic vessel segmentation is particularly challenging due to the overlapping 

structures, low contrast and the presence of complex and dynamic background artifacts in 

XCA images. This paper develops a novel encoder–decoder deep network architecture which 

exploits the several contextual frames of 2D+t sequential images in a sliding window centered at 

current frame to segment 2D vessel masks from the current frame. The architecture is equipped 

with temporal–spatial feature extraction in encoder stage, feature fusion in skip connection 

layers and channel attention mechanism in decoder stage. In the encoder stage, a series of 

3D convolutional layers are employed to hierarchically extract temporal–spatial features. Skip 

connection layers subsequently fuse the temporal–spatial feature maps and deliver them to the 

corresponding decoder stages. To efficiently discriminate vessel features from the complex and 

noisy backgrounds in the XCA images, the decoder stage effectively utilizes channel attention 

blocks to refine the intermediate feature maps from skip connection layers for subsequently 

decoding the refined features in 2D ways to produce the segmented vessel masks. Furthermore, 

Dice loss function is implemented to train the proposed deep network in order to tackle the 

class imbalance problem in the XCA data due to the wide distribution of complex background 

artifacts. Extensive experiments by comparing our method with other state-of-the-art algorithms 
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demonstrate the proposed method’s superior performance over other methods in terms of 

the quantitative metrics and visual validation. To facilitate the reproductive research in XCA 

community, we publicly release our dataset and source codes at https://github.com/Binjie-Qin/

SVS-net.
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1. Introduction

1.1. Motivation

Nowadays, cardiovascular diseases have seriously threatened more and more people’s health 

(Townsend et al., 2016). Percutaneous coronary intervention, as the minimally invasive 

method for cardiovascular disease treatment, has been widely adopted in the clinic. During 

this intervention, contrast agents are injected into the vessels through one catheter and then 

X-ray coronary angiography (XCA.2) is employed to help surgeons navigate the catheters 

(Albarqouni, Fotouhi, & Navab, 2017; Jin, Li, Jiang, & Qin, 2017; Yang, Wang, Liu, Tang, 

& Chen, 2009). With the help of the contrast-enhanced images, doctors can diagnose the 

coronary artery disease and evaluate therapeutic effects. It is important to accurately and 

quickly segment vessels from XCA data for the diagnosis and intervention of cardiovascular 

diseases.

Although vessel segmentation has always been a hot spot due to its significance and 

complexity in clinical practice (Jin, Hao, Ding, & Qin, 2018; Kerkeni, Benabdallah, 

Manzanera, & Bedoui, 2016; Soares, Leandro, Cesar, Jelinek, & Cree, 2006), coronary 

artery vessel segmentation still remains highly challenging because of the poor visual 

quality of XCA, which is caused by the low contrast and high Poisson noise of low dose 

X-ray imaging, overlap of background structures and foreground vessels, complex motion 

patterns and disturbance of spatially distributed noisy artifacts. Currently most 3D/2D vessel 

segmentation methods are proposed to segment the vessels from computed tomography 

angiography, magnetic resonance angiography and a single 2D image (Jin et al., 2018; 

Moccia, Momi, Hadji, & Mattos, 2018), of which there is no serious disturbance from the 

noise and overlapping background structures. To obtain the vascular structures from XCA, 

a few computer vision and machine learning related methods have been developed. Kerkeni 

et al. (2016) propose an iterative region growing algorithm to integrate both vesselness 

and direction information in the multi-scale space. However, it fails to recognize thin and 

peripheral vessel in the low contrast XCA images. Jin et al. (2018) extract the contrast-

filled vessels via robust principal component analysis and combine both local and global 

thresholds to refine vessel segmentation mask (Unberath, Aichert, Achenbach, & Maier, 

2017) but with some residuals remained around vessel regions. Felfelian et al. (2016) detect 

coronary artery regions of interest based on Hessian filter and identify vessel pixels by 

2The notations used in this paper are listed in Table 1.
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flux flow measurements. Nevertheless, a series of postprocessing should be performed to 

improve the robustness and accuracy of segmentation mask.

With the development of neural network-based deep learning, Nasr-Esfahani et al. (2016) 

use convolutional neural network (CNN) with fully-connected layers to perform vessel 

segmentation, which overlooks the structure information and temporal correlation in XCA 

sequence images. To alleviate these issues, Fan et al. (2018) develop a multichannel fully 

convolutional neural network with live image and corresponding dense matching mask 

image inputted to the network. However, it should collect corresponding mask images and 

perform dense matching in advance to segment vessel structure from live images, which is 

not practical in clinical applications. Most of XCA segmentation algorithms are dependent 

on the pixels of local windows in a single frame of XCA sequences, so that they waste 

lots of temporal–spatial contextual information in XCA sequences, which can be important 

to infer whether the pixels belong to the foreground vessel regions or not. Although 

current vessel segmentation (Moccia et al., 2018) methods have made great progress in 

segmentation accuracy, they are still inefficient in the large dynamic datasets from the 

complex XCA sequences with many noisy and overlapped background artifacts.

To design a robust and efficient XCA segmentation algorithm for clinical applications, 

we should have a good knowledge about the XCA images’ characteristics. Usually, with 

the illumination of X-rays at specific angle or direction, various 3D anatomical structures 

such as vessels, lungs, spines, diaphragms and bones are projected along definite path 

and displayed as overlapped 2D structures on the X-ray angiogram plane. To simplify 

description, we straightly identify vessels as foreground and regard other overlapped 

structures as background. Low dose radiopaque contrast agents are primarily injected into 

angiocarpy to enhance the visibility of vessels in XCA images. Even so, the vessels in 

XCA images are still of poor visibility due to the following factors: (1) The projection 

onto 2D plane causes overlap of adjacent tissues. Therefore, foreground vessel regions are 

badly disturbed by respiratory motion (Blondel, Malandain, Vaillant, & Ayache, 2006). 

Moreover, it is very difficult to differentiate foreground vessels from background due to the 

low intensity contrast between the vessels and the background in low-dose X-ray imaging 

(Xia et al., 2019); (2) Vessels usually have plenty of branches. Radiopaque contrast agents 

flow at different speeds in each branches. As a result, different vessels branches vary in gray 

values and some vessel regions cannot be clearly visible in the same time (Qin et al., 2019); 

(3) The spatially distributed Poisson noises (Zhu et al., 2013) caused by low-dose X-ray 

imaging reduce the SNR between the signals and noise. The noisy background artifacts and 

foreground vessels have different motion patterns, so that these noisy and dynamic structures 

severely interfere with the feature extraction and classification for vessel segmentation. All 

abovementioned difficulties determine that sequential vessel segmentation from XCA image 

sequences is a highly challenging task.

Hierarchical deep CNN features have proven incredibly effective at a wide range of image 

classification and image segmentation tasks. The generic deep CNN feature extractor 

trained for general purpose image segmentation often perform surprisingly well for novel 

segmentation tasks without doing any fine-tuning beyond training a linear classifier (Chen, 

Papandreou, Kokkinos, Murphy, & Yuille, 2018; Ronneberger, Fischer, & Brox, 2015). This 
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success is often explained by the built-in invariance of deep CNN features to local image 

transformation and the insensitivity of deep CNN features to shading, low-contrast, etc. We 

might hope that these invariances would prove useful in our challenging setting of sequential 

vessel segmentation. However, our problem differs in that we need to segment sequential 

foreground vessels from the noisy and overlapped background with similar appearances 

rather than simply training a k-way classifier. To overcome all the mentioned issues of XCA 

segmentation by deep network, we give the following specific considerations:

1. although unsupervised learning or weakly-supervised learning (Huang, Change 

Loy, & Tang, 2016; Kallenberg et al., 2016) with deep CNN features have 

developed a lot, they still fail to obtain competitive performance compared with 

supervised ones. That is because supervised learning introduces straight priors to 

guide the learning process. In view of the requirement of segmentation accuracy, 

we adopt supervised learning strategy. As a data-driven method, supervised 

deep learning depends on large annotated training datasets to ensure excellent 

performance especially for the video related tasks. Unfortunately, there is no 

readily available public dataset for vessel segmentation from XCA sequence. To 

this end, we have collected many XCA sequences from our university-affiliated 

hospitals and employed several clinical experts to annotate vessel label so that 

we can set up ground truth for vessel segmentation.

2. Recent approaches have concentrated on some but not all the fore-mentioned 

issues and try to make use of temporal information for vessel segmentation. 

They either take adjacent multiple frames in a sliding window centered at current 

frame as whole input straightly (Hao, Ma, & van Walsum, 2018) or make pre-

matching to generate segmentation mask (Fan et al., 2018; Khanmohammadi, 

Engan, Eftest, Sœland, Larsen, et al., 2017). The former indeed introduces not 

only temporal information but also much disturbances; the latter needs extra 

dense image matching which is time consuming and incorrect especially for 

the low contrast images. Recent video segmentation methods explore how to 

properly utilize the temporal information in the sequential images, i.e., estimate 

optical flow (Rashed, Yogamani, El-Sallab, Krizek, & El-Helw, 2019; Sun, 

Yang, Liu, & Kautz, 2018) for modeling the motion among adjacent frames, 

apply convolutional LSTMs (Pfeuffer & Dietmayer, 2019; Pfeuffer, Schulz, 

& Dietmayer, 2019) to learn long short-term dependencies in video sequence. 

They learn effective temporal–spatial consistent features in natural scene image, 

however they may exist as data matching errors (Simoncelli, Adelson, & Heeger, 

1991) when applied in the noisy, low-contrast, and blurry XCA medical images. 

Therefore, how to design an effective network that can learn proper temporal–

spatial vessel features from the noisy background will be most important for our 

work.

3. The class imbalance problem caused by the imbalance ratio between the 

number of foreground vessel pixels and background pixels typically lies in the 

challenging vessel segmentation tasks and must be well treated to boost the 

vessel segmentation. Current methods partly addressed this issue by weighted 

cross entropy (Lim & Keles, 2018) or proper training patch selection strategy 
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(Nasr-Esfahani et al., 2016; Yan, Yang, & Cheng, 2018). However, they failed 

to completely solve that imbalance problem. Inspired by the work in Ambrosini, 

Ruijters, Niessen, Moelker, and van Walsum (2017), Zhang et al. (2018), we 

utilize Dice loss function to guide the network learn balanced information 

representation between foreground vessel and background pixels. In addition, 

the deeper the network, the stronger is the representation capacity. However, the 

optimization of deep network structure is extremely difficult due to the common 

problem of gradient vanishing and gradient explosion in deep network. We have 

properly integrated residual blocks (He, Zhang, Ren, & Sun, 2016; Szegedy, 

Ioffe, Vanhoucke, & Alemi, 2017; Xie, Girshick, Dollár, Tu, & He, 2017) into 

our vessel segmentation deep network to alleviate the above problem.

In summary, this work has the following contributions:

1. We propose an encoder–decoder-based sequential vessel segmentation deep 

network architecture called SVS-net that acquires the temporal–spatial 

information from the several contextual frames in a sliding window centered 

at current frame to segment the 2D vessel masks of the current frame in XCA 

sequence: (i) In encoder network, temporal–spatial vessel features from the 

complex and noisy background artifacts are extracted in 3D (2D+t) manners; 

(ii) The extracted features are then fused along temporal axis in the skip 

connection layers, which transform the contextual 3D temporal–spatial feature 

maps into 2D spatial feature maps for the segmentation of current frame. 

This 3D-2D fusion introduces dimension reduction to further help reduce the 

subsequent calculation burden and trainable parameters; (iii) Finally, the decoder 

network efficiently integrates the fused temporal–spatial information in XCA 

image sequence by feature refinement and subsequently decodes the refined 

features in 2D ways to produce the segmented vessel masks. Specifically, a 

channel attention mechanism is implemented in channel attention blocks (CABs) 

to refine the fused temporal–spatial features by adaptively highlighting and 

learning the discriminative vessel features from the noisy background artifacts 

via weighting the feature maps. To the best of our knowledge, it is the first 

time to apply channel attention mechanism in taking both temporal and spatial 

information into the deep sequential vessel segmentation architecture. Moreover, 

the proposed SVS-net can be trained in an end-to-end way.

2. We publicly release a XCA database with ground truth annotation. The lack of 

XCA data with annotated label impedes the further exploration on XCA related 

researches such as vessel segmentation and vessel recovery in deep learning 

community. Therefore, we established database to promote these studies with 

detailed data description in the method section of this paper.

3. We employ Dice loss function in deep network to alleviate the severe class 

unbalance problem in sequential vessel segmentation and validate its significance 

when compared with binary cross entropy. We have evaluated the effectiveness 

of 3D temporal–spatial features and CABs used in the proposed SVS-net 

by comparing them with 2D counterparts and other state-of-the-art methods. 
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Extensive experiments have verified SVS-net’s superior performance over other 

algorithms.

1.2. Related works

This section introduces the recent works related to vessel segmentation. Vessel segmentation 

algorithms can be simply divided into two categories: traditional segmentation methods and 

deep learning-based methods. Recent traditional methods and deep learning-based methods 

are summarized in this section respectively.

1.2.1. Traditional vessel segmentation methods—Various traditional approaches 

have emerged in the past decades, including filtering based methods (Chaudhuri, Chatterjee, 

Katz, Nelson, & Goldbaum, 1989; Frangi, Niessen, Vincken, & Viergever, 1998; Moccia et 

al., 2018; Soares et al., 2006), tracking based algorithms (Kumar, Vázquez-Reina, & Pfister, 

2010; Staal, Abràmoff, Niemeijer, Viergever, & Van Ginneken, 2004), and model-based 

methods (Chen, Zhang, & Cohen, 2019; Dehkordi, Hoseini, Sadri, & Soltanianzadeh, 2014; 

Law & Chung, 2009). Filtering-based methods develop specific filters convolving with the 

original images to enhance the tubular structures (Chaudhuri et al., 1989; Frangi et al., 1998; 

Moccia et al., 2018). In Chaudhuri et al. (1989), the intensity profile of the vessel was 

approximately modeled as a Gaussian shaped curve and then 12 different matched filtering 

templates are utilized to search for the latent vessel segments along different directions. 

Frangi et al. (1998) propose a common vesselness enhancement technique, where the second 

order derivative is calculated to form Hessian matrices and the corresponding eigenvalues 

are analyzed.

Different from above filtering based approaches, other classes of filters are developed 

to extract vessel features, such as the ridges feature, the Radon-like features and Gabor 

wavelet features (Kumar et al., 2010; Soares et al., 2006; Staal et al., 2004) and construct 

pixel-wise vessel feature descriptors for classification. Although these methods enhance 

vessel structure to some degree, they are executed with high time complexity for the 

pixel-wise manipulation. Besides, they usually serve as the preprocessing step and further 

postprocessing like threshold methods and morphology operation should be utilized to 

construct final refined vessel masks.

In regard to tracking based segmentation methods, the initial seed points on the vessel 

edges are chosen firstly and then the tracking process starts under the guidance of image-

derived constraints. The tracking algorithms vary from each other according to the different 

definition of the tracking constraints. For example, Makowski et al. (2002) employ two-

phase based method during vessel extraction, which use balloon segmentation and snake 

segmentation, respectively. Recursive tracking (Carrillo, Hoyos, Dávila, & Orkisz, 2007) is 

performed by accumulating pixels on the basis of a cluster algorithm with geometry and 

intensity constraints, while level set evolution (Manniesing, Viergever, & Niessen, 2007) 

is employed to track the vessel axis with the evolution process being guided by imposing 

shape constraints on the skeleton topology. However, these tracking based methods fail to 

segment out small vessels from the complex and overlapped noisy background, and human 

intervention is needed to set and adjust the algorithms’ parameters.
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Usually, model-based methods are designed on the basis of specific shapes and appearance 

of the interested structures (Chen et al., 2019; Moccia et al., 2018) contained in the images. 

There are mainly three categories including parametric model, deformable model-based 

segmentation, and statistic model. We can refer to Moccia et al. (2018) for detailed 

introduction. The model-based methods still have many unsolved problems on detecting 

small vessels, finding out right parameters to fit the model, and recognizing abnormalities 

consisted in the diseased vessels. Overall, above traditional segmentation methods require 

professional knowledge to elaborately construct feature engineering and the complex 

processing procedures and their segmentation accuracy and real time performance still need 

to be improved.

1.2.2. Deep learning-based methods—Compared with traditional segmentation 

methods, deep learning ones automatically learn proper feature representation and perform 

better on generalization capacity as well as inference speed. Consequently, deep learning 

methods can earn a top rank in many computer vision fields including segmentation, 

detection, classification and so on (Sakkos, Ho, & Shum, 2019; Voulodimos, Doulamis, 

Doulamis, & Protopapadakis, 2018).

Recently, CNN-based methods have been broadly applied to medical image segmentation 

such as retinal vessel segmentation (De Fauw et al., 2018; Yan et al., 2018). Generally, 

the works in Liskowski and Krawiec (2016), Nasr-Esfahani et al. (2016) treat the retinal 

vessel segmentation task as binary classification, in which a typical classification network 

containing several stacked convolutional layers and three fully-connected layers are adopted. 

To alleviate the limitation of annotated data, a patch-based learning strategy is implemented. 

However, there exist several problems: (1) The limited size of patch means a limited 

receptive field, which fails to provide sufficient contextual information for accurate 

segmentation. Fusing predictions of all patches in the image to form the final vessel mask 

needs to run the whole network many times and is very time consuming. (2) Fully-connected 

layers function as feature weighting and fuse both local and global information from feature 

space to label space. However, they contain almost 80% the parameters of the whole 

network, which may result in overfitting (Ruder, Dosovitskiy, & Brox, 2018; Wen, Zhang, 

Li, & Qiao, 2019). (3) Due to the localization requirement, fully-connected layers overlook 

the spatially structured features that are significant for segmentation tasks. Furthermore, the 

usage of fully-connected layers sets a limit on the network’s input size.

To deal with these inherent problems, fully convolutional network (FCN) (Dasgupta & 

Singh, 2017; Maninis, Pont-Tuset, Arbeláez, & Van Gool, 2016) is proposed to replace 

fully-connected network in segmentation tasks. Recently, a FCN based on encoder–decoder 

architecture is introduced in Fan et al. (2018), which adopts a two-channel input strategy 

and largely depends on the pre-matching between the two-channel inputs. Mo and Zhang 

(2017) combine some intermediate layers’ outputs and fuse hierarchical features together 

to set up the final segmentation map. Similarly, a deeply supervised multi-level and multi-

scale network with short connections is utilized to ease the gradient back propagation for 

retinal vessel segmentation (Guo, Gao, Wang, & Li, 2018). However, proper feature fusing 

weights should be carefully set. Fu, Xu, Wong, and Liu (2016) have modeled the retinal 

vessel segmentation as a pixel-level classification based on modified FCN. Unfortunately, 
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the lack of smoothness constraint and the limited receptive fields in FCN result in false 

positive (spurious) regions in segmentation output. Therefore, conditional random field 

(CRF) formulating long-range interactions between pixels is employed to refine the coarse 

vessel maps (Hu et al., 2018). However, most vessel segmentation algorithms are proposed 

for solely segmenting vessels from 3D and/or 2D vessel images, which are not appropriate 

to confront the poor visual quality as well as complex and dynamic background artifacts in 

sequential vessel segmentation of XCA sequences.

To focus on the most salient features and suppress the less relevant artifacts simultaneously 

during learning, attention mechanism equipped within deep learning network (Chen et al., 

2017; Hu, Shen & Sun, 2018; Jetley, Lord, Lee, & Torr, 2018) is widely adopted for various 

tasks including image classification (Peng, He, & Zhao, 2018; Schlemper et al., 2019; 

Wang et al., 2017), image segmentation (Kearney et al., 2019; Li, Dong, Du, & Mu, 2019; 

Schlemper et al., 2019; Yu et al., 2018) and object detection (Fu, Zhao, & Gu, 2018; Li & 

Yu, 2018; Li et al., 2016). Attention mechanism is derived from the study of human visual 

mechanisms, with which people usually pay more attention to the most salient information 

while neglect some trivials. The key idea of attention mechanism lies in properly generating 

attention maps to weight feature maps which are extracted by convolutional layers. Zhou, 

Khosla, Lapedriza, Oliva, and Torralba (2016) use fully convolutional networks and utilize 

global average pooling to generate attention maps. Hu, Shen et al. (2018) and Yu et al. 

(2018) have proposed channel attention mechanism to obtain weight vectors by modeling 

the channel-wise relationship between different feature maps. Chen et al. (2017) integrate 

both spatial and channel-wise attention in CNN for image captioning. However, to the best 

of our knowledge, there are no deep network utilizing the channel attention mechanism 

to extract most salient vessel features from complex and dynamic background artifacts in 

spatial–temporal contexts for XCA vessel segmentation.

2. Methods

2.1. Overview

The architecture is equipped with temporal–spatial feature extraction in encoder stage, 

feature fusion operation (FFO) in skip connection layers and CAB in decoder stage. In the 

encoder stage, a series of 3D convolutional layers are employed to hierarchically extract 

temporal–spatial features. Skip connection layers subsequently fuse the temporal–spatial 

feature maps and deliver them to the corresponding decoder stages. To learn discriminative 

feature representation and suppress the complex and noisy artifacts in the XCA images, the 

decoder stage effectively utilizes CAB to refine the intermediate feature maps from skip 

connection layers.

In the proposed SVS-net, (1) we introduce 3D residual blocks (see Fig. 1) to extract 

multi-scale temporal–spatial features while ease network optimization in feature encoder 

stage; (2) these 3D features are integrated by the skip connection layers (see Fig. 1), which 

fuse the temporal–spatial 3D feature maps along temporal axis and generate the fused 2D 

spatial feature maps. Through the fusion at the left bottom of Fig. 1, the feature maps’ 

dimension mismatch problems between the 3D encoder stage and the 2D decoder stage are 

solved and the computation cost is also reduced; (3) the fused features are passed to CAB 
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(see the right bottom of Fig. 1 to refine the vessel features from the noisy background and 

then transmitted to the decoder stage. (4) Furthermore, Dice loss function is implemented to 

train the proposed deep network in order to tackle the class imbalance problem in the XCA 

data due to the imbalanced ratio between background pixels and foreground pixels. CAB in 

the decoder stage and FFO in the skip connection layers used in the proposed architecture 

are also displayed at the bottom of Fig. 1.

In the following part of this section, we illustrate the architecture and its training setup in 

detail. Data augmentation methods and loss function are also introduced in this section.

2.2. Experimental setup

The XCA image sequence consists of a set of frames (F1, F2, … Fn). Each frame Fi 

corresponds to a binary probability map Yi where the value of the foreground vessel pixels 

is 1 and the other background regions is 0. For intuitive perspective, single frame fails 

to provide enough contextual information to infer one pixel belonging to foreground or 

background because of the low contrast of intensity and the similar appearance between 

the foreground and background. Among successive frames, contrast-filled vessel regions 

move fast and consistently through the contiguous frames and the noisy and dynamic 

background artifacts fluctuate synchronously along with human breathing and heart beating. 

Therefore, these consistent contexts can serve as the auxiliary temporal–spatial information 

to accurately identify vessels from background. In this work, we use successive 4 frames 

(i.e., Fi−2, Fi−1, Fi, Fi+1) as input to generate predicted probability map (i.e., Pi) with 

considering that too many frames will increase the burden of memory and calculation. 

Furthermore, due to the salient motion disturbances introduced by heart beating and 

breathing in a relative long period, too many frames will result in big differences of the 

vessel’s shapes and positions between the first and last frames, causing the temporal–spatial 

contexts turning into misleading information.

To verify the rationality of the input configuration of 4 frames, we respectively input 

successive frames, i.e., 2, 3, 4, 5 frames, into the network to investigate the network 

convergence performance. As shown in Fig. 2, there are slight differences in terms of the 

convergence results of loss function (DiceCoef) in the training set. The smaller that the 

loss becomes, the better the fitting performance that the model achieves. When we input 4 

frames into the network, the loss converges at about −0.86, which is the smallest compared 

with other input strategies. Therefore, 4 frames are reasonable and feasible to the input 

configuration for accurate segmentation results. We further explore hyper-parameter setup 

in a sensitivity analysis of the parameters including the learning rate and the size of input 

images. In our baseline model, we simply set up learning rate and input size as 0.01 and 512 

× 512 respectively. In the subsequent contrast experiments, we merely change either learning 

rate (i.e., 0.1, 0.001) or input size (i.e., 128 × 128, 256 × 256) and make other experimental 

configurations remain unchanged. As shown in Fig. 3, the learning rate and input size make 

a big difference to the training loss. The smaller input size means the limited receptive field 

so that the model suffers from performance degradation. Furthermore, the smaller initial 

learning rate may cause the model to get stuck into local minima in optimization, which also 

decreases the segmentation performance. By these experiments, we can conclude that our 
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settings of learning rate (0.01) and the input size (512 × 512) lead to the best performance 

considering both speed and accuracy.

2.3. Modified U-net architecture

We employ U-net as the fundamental architecture in SVS-net. U-net (Ronneberger et 

al., 2015) is a classical and powerful segmentation network architecture widely used 

for biomedical images by effectively exploring the underlying high-resolution and low-

resolution information in biomedical image. Using skip-layers to build a bridge transmitting 

multi-scale information from encoder network to decoder network, U-net can improve the 

spatial accuracy of a deep CNN for final high-resolution segmentation results.

On the one hand, XCA images have low contrast and fuzzy boundary, which require 

more high-resolution detail information for accurate segmentation. The skip connection 

mechanism in U-net allows high-resolution information delivery to the decoder network for 

detail recovery. On the other hand, the internal tissue structures with their topologies in XCA 

images are relatively fixed, the distribution of segmentation targets in the XCA images is 

regularly presented with simple and clear semantics, which require more low-resolution 

information to present accurate semantic information for the target object recognition. 

Multiple downsampling operations in U-net’s encoder network appropriately provide low-

resolution information for contextually semantic recognition. In Fig. 1, the encoder network 

captures 3D temporal–spatial contexts through 3D convolutions followed by 3D residual 

convolutional blocks except the last convolutional operation. The decoder network enables 

precise localization of high-resolution target vessel semantic information via upsampling 

layers and CAB.

Aiming at the accurate 2D+t XCA vessel segmentation, we make following adaptations 

based on conventional U-net: (1) In the encoder network, there are 7 stages of 3D 

convolution. The first six convolutional stages followed by 3D residual convolutional block 

(in Section 2.4) are utilized to extract rich temporal–spatial feature representations, which 

provide contexts for subsequent vessel mask inference in the decoder network. The output 

of each 3D residual convolutional block is passed to the next 3D convolutional stage and 

the skip connection layer respectively. At the last two 3D convolutional stages, spatial 

dropout (0.5) is employed before executing convolution to avoid overfitting; (2) In the skip 

connection layers, we fuse temporal–spatial feature representation by mapping from 3D 

space to 2D space via 4 × 1 × 1 convolutional kernel in FFO, where the first dimension of 

convolutional kernel indicates the temporal axis, i.e., 4 indicating 4 channels (frames) in the 

temporal domain. The temporal domain features are then fused together by temporal axis 

convolution. The FFO can be formulated as follows:

XFl = Squeeze XF ⊗ W (1)

where XF ∈ ℝC × T × H × W  is the spatial–temporal feature map coming from the output 

of each 3D convolutional stage in the encoder network, XFL ∈ ℝC × H × W  denotes fusing 

spatial–temporal feature map, C, T, H, W are the features’ channel dimension, temporal 

dimension, height, and width, respectively. W denotes 4 × 1 × 1 convolutional kernel, ⊗ 
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represents convolution operation, Squeeze denotes dimension compress, a straightforward 

schematic can be seen at the left bottom of Fig. 1; (3) In the decoder network, to gradually 

recover the feature maps’ spatial resolution, we take advantage of the parameter-free bilinear 

upsampling strategy rather than transposed convolutional operations, which contributes to 

reduce the number of trainable parameters without degrading the segmentation performance 

(De Fauw et al., 2018). Each upsampling layer is followed by one CAB (see the right bottom 

of Fig. 1) and one 2D residual convolutional block (Block2D, see Fig. 1). Note that the 

high-stage and low-stage feature map outputs with the same resolution from the upsampling 

layer and the skip connection layer are inputted simultaneously to CAB (as illustrated at the 

right bottom of Fig. 1), which is employed to learn the most discriminative features from 

noisy and complex background artifacts (see the details in Section 2.5). After the last 2D 

residual convolutional block, we employ 1 × 1 convolution followed by sigmoid activation 

function to yield the final vessel mask.

2.4. 2D and 3D residual convolutional blocks

Generally speaking, increasing the depth of networks can improve network generalization 

capacity. However, a very deep network implies the difficulty in promoting gradient back 

propagation, which results in the poor performance. To overcome this problem, He et al. 

(2016) develop the deep residual network to facilitate gradient back propagation by identity 

mapping connection. Zagoruyko and Komodakis (2016) demonstrate that the two stacked 

convolutional layers in single residual block is optimal architecture compared with other 

settings. Hence, we follow the strategy as advised in Zagoruyko and Komodakis (2016) 

and employ 3D residual blocks and 2D residual blocks in encoder and decoder networks 

respectively.

2.5. Channel attention mechanism

To learn more rich and multi-scale feature representation for extracting vessels from 

complex and dynamic background artifacts, the proposed SVS-net firstly extracts multiple 

types of features by multiple convolutional kernels in every convolutional stage of the 

encoder stage (see Fig. 1). Note that there exist three problems: (1) each channel of feature 

maps represents one specific feature type but not all features are equally significant to 

the final output; (2) XCA sequence contains not only the target vessels but also much 

disturbance of overlapping structures that have similar appearances and intensities to vessels, 

these disturbances are aggregated nearly at different positions with their relatively various 

moving speeds. Therefore, these disturbances are distributed in different feature channels; 

(3) Note that the skip connection layers fuse the temporal–spatial features through 4 × 1 

× 1 convolution, which performs linear combination in temporal domain. This combination 

inevitably introduces extra noisy artifacts into different feature channels besides the noisy 

disturbances inherent in the XCA sequences. As shown in Fig. 4(a2), (b2), the fused spatial 

feature map contains a lot of noise artifacts from the background area, which may decrease 

the accuracy of vessel detection. Therefore, the fused spatial feature map from the output of 

skip connection layer should be well treated to weaken the noise disturbance from the noisy 

backgrounds and emphasize the vessel feature simultaneously. To this end, we introduce an 

effective scheme called as channel attention mechanism for highlighting foreground vessel 

features and noise removal.

Hao et al. Page 11

Neural Netw. Author manuscript; available in PMC 2021 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Through the operation of CAB, the SVS-net can adaptively highlight some channel 

information meanwhile suppress the trivial channel information. Hence, the predicted 

probability map is gradually improved. Inspired by the works (Hu, Shen et al., 2018; Yu et 

al., 2018), we introduce the CAB to weight the feature maps from the low-stage output from 

the skip connection layer and then combine with the corresponding high-stage feature maps 

that are outputted from the upsampling layer. High-stage output feature maps contain more 

advanced global semantic information while low-stage feature maps contain more detailed 

yet noisy information, therefore the high-stage features can provide clues to screen useful 

information from low-stage feature maps and generate more pure feature representation. 

Under the guidance of high-stage features, the attention weights are learned and used to 

obtain discriminative salient features. As shown in Fig. 4(a3), (b3), the low-stage feature 

map from the output of skip connection layer is refined by the CAB. From Fig. 4(a2)–(a3) 

and Fig. 4(b2)–(b3), the background noises in Fig. 4(a2), (b2) are greatly reduced while the 

foreground vessel features are highlighted in Fig. 4(a3), (b3).

Specifically, the CAB do the following operations (see the right bottom of Fig. 1): the 

low-stage feature maps XFl ∈ ℝC × H × W  and the corresponding high-stage feature maps 

XFℎ ∈ ℝC × H × W  are concatenated together to make feature maps XF ∈ ℝ2C × H × W . 

Furthermore, a global average pooling is performed on the concatenated feature maps to 

generate the weighted vector W XF ∈ ℝ2C × 1 × 1. (Yu et al., 2018). Two 1 × 1 convolutional 

operations, which are followed by the rectified linear unit function and sigmoid function, 

respectively, are performed on W XF ∈ ℝ2C × 1 × 1 to learn inter-channel relationship and the 

final channel attention weights vector W XFl ∈ ℝC × 1 × 1 is achieved. The obtained attention 

vector multiplies low-stage feature maps in channel-wise manner, then the weighted feature 

maps from low stage are added with the corresponding high-stage feature maps to be 

subsequently passed to the next layer. The whole process of generating attention weights can 

be expressed as:

W XFl = ϕ φ GAP XF (2)

where GAP means the operation of global average pooling, φ denotes 1 × 1 convolution 

followed by rectified linear unit and ϕ indicates 1 × 1 convolution followed by sigmoid 

activation. An intuitive display of CAB is shown at the left bottom of Fig. 1.

2.6. Data augmentation

As there are limited manually annotated datasets, data augmentation is necessary for the 

benefit of improving the model generalization. To teach SVS-net how to accommodate 

to various sample transformations, we adopt multiple augmentation methods including 

rotations by the angle ranging in [−10°, 10°], flipping both horizontally and vertically, 

scaling by a factor of 0.2, random crop, affine transformations. For the images in our dataset, 

there is a 50% probability to perform each of above transformations to generate new samples 

in real time during the training process.
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2.7. Loss function

To tackle the class imbalance problem in vessel segmentation, we employed Dice loss 

function to guide parameters learning. The class imbalance problem mainly has two aspects: 

firstly, the number of negative pixels (being 0, i.e., background) is much more than the 

number of positive pixels (being 1, i.e., vessel pixels); secondly, the ratio between the two 

classes varies a lot among both inter-frame in the same XCA sequence and intra-frame 

or inter-frame in different XCA sequences. Currently most semantic segmentation tasks 

adopted the following cross entropy (CE) (Mosinska, Marquez-Neila, Kozinski, & Fua, 

2018; Ronneberger et al., 2015) to optimize the network:

LCE = ∑
i

N
yi log pi + 1 − yi log 1 − pi (3)

It can be observed that from Eq. (3), each pixel contributes equally to the CE loss. Hence, 

CE loss tends to bias the network’s optimization.

Different from CE loss calculated in pixel-wise form, Dice loss can avoid above problem by 

measuring the overlap ratio between ground truth mask and the predicted vessel mask. Dice 

loss is defined in Drozdzal et al. (2018), Zhang et al. (2018) as follows:

LDiceCoef = −
2∑1

N piyi + ϵ
∑1

N pi + ∑1
N yi + ϵ

(4)

where yi ∈ {0, 1} is ground truth label and pi ∈ [0, 1] is predicted value for location i. N is 

the total number of pixels, ϵ is a very small constant used to keep value stable. From Eq. (4) 

we can find that the Dice loss is applied to the whole mask and it measures the overall loss 

for that mask rather than the average loss across all the pixels.

3. Experiment results

3.1. Materials

In our experiments, 120 sequences of real clinical X-ray coronary angiograms images are 

acquired from Renji Hospital of Shanghai Jiao Tong University. The length of each sequence 

ranges from 30 to 140 frames. Images from 120 sequences have been manually annotated 

by three experts to constitute the ground truth. Specifically, for the totally hard-annotated 

323 samples from these 120 annotated sequences including extremely low-contrast vessels 

and vessel trees that contain a lot of thin vessel branches, we take three experts’ average 

annotated result as the final ground truth.

It is worth noting that these XCA sequences in the dataset are acquired from different 

machines (i.e., 800 mAh digital silhouette angiography X-ray machine from Siemens, 

medical angiography X-ray system from Philips), the resolution, the noise distribution and 

the pixels’ intensity range of each single frame are different. To eliminate these differences, 

we resize the images from the XCA sequence into 512 × 512 resolution with 8 bits per pixel, 
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employ Poisson denoising methods (Cerciello, Bifulco, Cesarelli, & Fratini, 2012) to smooth 

the noise and normalize the pixels’ intensity range into 0 – 1.

Furthermore, due to the varieties of XCA images with different directions and angles of 

X-ray penetration as well as different patient sources with different dosages of contrast 

agents, the vessels visibility of different sequences in clinic is quite changeable. Thus, 

designing a robust vessel segmentation algorithm is necessary for the XCA data with poor 

visual quality. Besides, proper selection of frames from each sequence for experiment is 

crucial (Lim & Keles, 2018) especially when both of the background and foreground are 

dynamic and contain many artifacts. The strategy of selecting the training frames is similar 

to Wang, Luo and Jodoin (2017). We selected XCA images containing most of vessel 

structures as experiment samples from 120 annotated sequence according to their lengths 

and visual quality. Totally, 332 samples are obtained for our experiment. The dataset is 

randomly divided into training dataset, validation dataset, and test data at approximately 0.5, 

0.25 and 0.25, respectively.

We investigate the proposed model’s performance on the abovementioned dataset. We plot 

the loss curves for both the training set and validation set in the training process. As can 

be seen in Fig. 5, for both training set and validation set, the loss reduces quickly at the 

beginning stage of training process, and gradually converges. There is no sign that the model 

falls into over-fitting or under-fitting state. Meanwhile, the size of our dataset is assumed to 

be properly matched into the size of our model.

All the experiments performed in this work were approved by our institutional review 

board. The dataset which will be released to public has received the transfer agreement 

from our cooperative partners. All the dataset is stored in mat array format according to 

the corresponding filenames, and they will be available on website.3 You can also visit the 

website to access further detailed information on the dataset.

3.2. Evaluation metrics

Several metrics, namely, detection rate (DR), precision (P), and F measure are employed to 

quantitatively evaluate the performances of our segmentation method and also compare them 

with other state-of-the-art methods. The above metrics are defined as below:

DR = TP
TP + FN , P = TP

TP + FP , F = 2 * DR * P
DR + P (5)

where TP (true positives) is the total number of correctly classified pixels in vessel regions 

of the predicted vessel probability map, FP (false positives) indicates the total number of 

wrongly identified as vessel pixels but practically belonging to backgrounds in the predicted 

vessel probability map, TN (true negatives) and FN (false negatives) represent the total 

number of correctly predicted as background pixels and wrongly predicted as background 

pixels in the predicted output, respectively. DR measures the proportion between the 

correctly identified vessel pixels and the total vessel pixels in the ground truth, P measures 

3The source codes and dataset will be available at https://github.com/Binjie-Qin/SVS-net.
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the ratio of true positives among all the true positives. F measure comprehensively considers 

both P and DR metrics and indicates the overall segmentation performance. All these 

metrics range in [0, 1], and a higher value indicates better segmentation performance.

3.3. 2D vs 3D with and without channel attention mechanism

We utilize 3D convolution layers to extract rich temporal–spatial feature representation in 

encoder network. To investigate whether the temporal–spatial features are more advanced 

compared to purely spatial features extracted by 2D convolutional layers for generating final 

predicted probability map, we replace 3D convolutional layers with corresponding 2D ones 

in encoder network while keeping the decoder network the same. It is noted that simple 

substitution reduces the number of trainable parameters and hence weakens the model’s 

expressive capacity. For fair comparison, we increase the number of convolution layers 

in the encoder network for 2D version to make both 3D version and 2D version have 

comparable amount of parameters. In addition, we investigate the effectiveness of CAB 

by removing it from decoder network in SVS-net and 2D model respectively. We choose 

our 2D model without CAB (2D naive) as baseline, and compare it with 2D model with 

CAB (2D+CAB), 3D model without CAB (3D naive) and 3D model with CAB (3D+CAB) 

respectively.

To quantitatively evaluate the performance, we measure three metrics on the test set. The 

results are shown in Table 2 and Fig. 6. Specifically, we compare the performance between 

different feature extraction manners and then analyze the function of CAB. As can be seen 

in Table 2, compared with the baseline, the 3D naive model obtains higher scores in terms 

of DR (79.59%), P (86.40%), F (82.55%) measures and surpasses its 2D counterpart by 

4.17%, 0.29% and 2.47%, respectively. Despite they have almost similar model complexity, 

their performance have big differences. This is because 3D version integrating contextual 

spatial–temporal features while 2D version only using spatial domain features to predict the 

final probability map. Obviously, the former one has more sufficient and robust information 

in discriminating between noisy artifacts and vessel trees.

Next, we investigate the effect of CAB in both 3D and 2D scenarios. From Table 2, we 

can find that the channel attention strategy decreases the P measures from 0.8615 to 0.8595 

and reduces the DR scores from 0.7640 to 0.7838 in 2D case. There are slight changes in 

both DR and P. Hence, F measures almost keep consistent due to F measure achieving the 

trade-off between P (related with FPs) and DR (related with FNs) measures. In 3D case, 

the CAB also shows the good compromise between P and DR (i.e., DR increases from 

0.7959 to 0.8424 while P declines from 0.8640 to 0.8492) but the overall performance F 

measure improves by 2.09% and arrives at 0.8428. We analyze the role that the CAB plays 

in the overall performance: in the 2D case, we find the fact that CAB makes a compromise 

between P and DR with rare improvement in F measure, which is now interpreted that 

2D version failing to provide sufficient and valuable information for CAB to choose from; 

however, in 3D case, the temporal–spatial information is relatively rich so that the CAB 

can suppress trivial features in noisy background and utilize the most discriminative ones in 

foreground to generate fine vessel mask.
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Furthermore, we analyze the stability of SVS-net’s segmentation performance. When we 

compare SVS-net (3D+CAB) with the baseline (2D naive), the DR and F witness a large 

increase by 10.26% and 4.61%, respectively. The metrics have a relatively high standard 

deviation, which indicates that there exist both relatively hard-segmented and relatively 

easy-segmented samples in test sets. The relatively hard-segmented samples may pull down 

the whole metrics and result in the high standard deviation. In the future, we will enlarge 

our dataset and increase the number of hard-segmented samples to help SVS-net pay more 

attention to them for improving the its performance on those samples. It is worth noting 

that the relatively high standard deviation problem almost exists in all the tested methods, 

which illustrate there indeed exist hard-segmented samples. The comparative methods also 

fail to deal with these hard-segmented samples. In view of the average metrics, we further 

our confidence that SVS-net performs better than all the other methods.

Moreover, the 3D+CAB model achieves the highest DR score while the lower P score. 

Higher DR score means lower FNs, which indicates SVS-net have superior capacity 

in detecting vessel pixels from backgrounds. In detecting vessel pixels, it is likely to 

mistakenly identify backgrounds that resemble vessel pixels as vessel pixels. This may 

increase FPs to some degree, so that the P score will suffer from degradation. However, the 

3D+CAB model’s overall F measure performance is highest, which illustrates its balanced 

and better performance in accurately recognizing both vessel pixels and background pixels 

when compared with other methods.

Intuitive quantization result can be seen in Fig. 6. The typical segmentation results 

are displayed in Fig. 7. As shown in Fig. 7, the vessel masks produced by SVS-net 

have less fractures (i.e., less FNs) than do the other methods, which implies SVS-net’s 

better performance on detecting vessel pixel (TPs). In 2D settings, the vessel masks 

either have more fracture (i.e., more FNs) or have more artifacts (i.e., more FPs). This 

phenomenon shows that their pool ability on differentiating vessel pixels from background 

pixels. Through above observation and analysis, we validate the effectiveness of the 3D 

convolutional layers and CAB used in SVS-net.

3.4. Cross entropy loss vs Dice loss

To validate the loss function in deep network for vessel segmentation, we employ CE loss 

and Dice loss function as objective function to train our model respectively and use the 

same settings with other parts of network. It can be seen in Table 3, the model trained with 

Dice loss can result in the performance improvement by 2.0% in terms of F measure, which 

implies the effectiveness of Dice loss in class imbalance segmentation task when compared 

with the CE loss. Besides, the model trained with Dice loss achieves higher F measure and 

DR score but slightly higher P score when compared with the model trained with CE loss. 

The Dice loss’s optimization goal is expected to facilitate the model in getting higher gain 

of F measure for achieving better overall segmentation performance. When the model is 

optimized, the overall segmentation performance of F measure certainly has an upper bound. 

With this upper bound on the F measure that is computed from the harmonic mean of DR 

and P, the model makes a trade-off balance between the DR and P metrics, so that it may 

result in the balance with higher DR and slightly higher P.
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Then, we compare the intuitive segmentation results by two loss functions. When compared 

with the vessel masks obtained from the model trained with Dice loss, the vessel masks 

obtained from the CE loss have blurred boundaries (see the red arrows in Fig. 8(c)–(d)), 

which means pixels at vessel boundaries are less confident to discriminate whether they 

belong to vessels or backgrounds. Therefore, to get binary vessel masks, we should carefully 

apply proper threshold to the original probability maps which involves troublesome manual 

operations (shown in Fig. 8(e)–(h)). While the masks produced by model trained with Dice 

loss have clear boundaries, there is no need to utilize threshold anymore. Therefore, the Dice 

loss function is appropriate to train SVS-net for sequential vessel segmentation.

3.5. Comparison with other state-of-the-art methods

We compare SVS-net with three traditional vessel segmentation algorithms, i.e., Coye’s 

filter method (Coye’s)4 (Coye, 2017), Jin’s spatially adaptively filtering method (Jin’s) 

(Jin et al., 2018), Kerkeni’s multi-scale region growing method (Kerkeni’s) (Kerkeni et al., 

2016), and four deep learning-based methods, i.e., Retinal-net,5 (Liskowski & Krawiec, 

2016; Ronneberger et al., 2015) bridge-style U-Net with salient mechanism (S-UNet)6(Hu 

et al., 2019), X-ray net,7 (Ambrosini et al., 2017) short connected deep supervised net 

(BTS-DSN)8 (Guo et al., 2018).

Table 4 and Fig. 9 summarize the segmentation performances for the different approaches. 

It can be observed that SVS-net surpasses other methods by a large margin on all the 

metrics. The segmentation result comparison is given in Fig. 10. Among traditional vessel 

segmentation methods, Jin’s and Kerkeni’s obtain relatively better quantitative metrics and 

visual qualities. However, Jin’s algorithm detects more FPs due to its inaccurate local and 

global thresholds applied to the low contrast XCA images. Kerkeni’s method can well 

segment thick vessels out but almost fail to recognize thin ones. This is because thin vessels 

are extremely indistinct compared with thick vessels and region growing algorithm cannot 

assign seed points to these regions so that they wrongly exclude these thin vessels from 

vessel regions in the subsequent procedure.

In regard to deep learning methods, they surpass traditional methods and gain higher 

performances in term of some metrics. Retinal-net, as a patch based method, introduces 

more background residuals since it lacks more global contextual information to guide 

the segmentation. X-ray net inputs current frame image with its first three frames to the 

network, but it simply concatenates them together and cannot effectively extract temporally 

consistent information. It not only increases temporal information but also introduces 

disturbances at the same time. BTS-DSN adopts deeply supervised strategy and achieves 

relative higher metrics. However, there are still FPs in the vessel regions. Compared with 

above deep network methods, SVS-net can not only robustly detect the vessel regions 

with almost intact vessel structures with continuous vessel branches but also effectively 

remove the noisy background artifacts. The continuity and integrity of the segmented 

4http://www.mathworks.com/matlabcentral/fileexchange/50839.
5https://github.com/orobix/retina-unet.
6https://github.com/hdd0411.
7https://github.com/pambros/CNN-2D-X-ray-Catheter-Detection.
8https://github.com/guomugong/BTS-DSN.
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vessel branches is assumed to be owed to the contextual information inferred in the 

temporal–spatial features extracted by the encoder network and feature fusion in the skip 

connection layers. The noise reduction in the segmented vessel regions is mostly derived 

from the discriminative feature selection implemented by the channel attention mechanism. 

Therefore, the temporal–spatial feature extraction, feature fusion and the discriminative 

feature learning adopted in SVS-net are necessary to help improve the segmentation 

performances.

Additionally, there is a small number of thin vessel branches fail to be recognized by 

SVS-net. It is really challenging and we plan to design novel loss function in our future 

work, which will differentiate the thick and thin vessels efficiently and integrate these 

different vessels with different weights. In this way, we increase the weights of thin vessels 

in loss function and promote the model to pay more attention to the thin vessels. Thin-vessel 

segmentation is definitely a promising direction for improving the clinical value of XCA 

images.

Our experiments are implemented on GPU (i.e., NVIDIA 1080 Ti, 11 GB). The number 

of parameters and the average runtime of per test image for deep-learning methods are 

listed in Table 4. Compared with other deep learning-based methods having bigger or fewer 

number of parameters, i.e., from the 15.32 million parameters for SU-Net to the 0.47 million 

parameters for Retinal-net, as well as having longer or shorter inference time, i.e., from 

the 2.28 s for Retinal-net to the 0.046 s for SU-Net, SVS-net has 10.2 million parameters 

and 0.178 s inference times to achieve an intermediate level of complexity. The reason for 

SVS-net’s medium-complexity in achieving its best segmentation performance is two-fold: 

(1) the 3D convolutional layers instead of 2D convolutional layers are adopted in the stage 

of feature extraction; (2) the fully connection layers are utilized in the stage of feature 

refinement. Although these two strategies for feature extraction and feature refinement 

employed in SVS-net explicitly increase the parameter number, they are necessary as the 

verification in the hyper-parameter experiments in Section 2.2. Moreover, the relatively long 

inference time mainly results from the feature fusion and channel attention mechanism. 

In the future work, we intend to explore more efficient network architectures for further 

decreasing computation time and improving inference efficiency.

3.6. Downstream works

Vessel segmentation is an efficient preprocessing procedure for various medical tasks. To 

assess the influence of vessel segmentation on various medical tasks, we further investigate 

two down-stream tasks that use the proposed SVS-net. We choose three state-of-the-art 

segmentation methods (i.e., SU-Net, BTS-DSN, X-ray net) to compare our SVS-net.

Estimating the distribution of coronary vessel networks via vessel segmentation is very 

important to evaluate the coronary circulation (Vigneshwaran, Sands, LeGrice, Smaill, 

& Smith, 2019) in percutaneous coronary intervention. Usually, we estimate the area 

proportion of vessel network distribution in the whole heart regions of XCA images. 

Obviously, the wider the distribution, the smoother the blood flows in coronary circulation. 

Specifically, we use relative gland volume errors (GVEs) defined in Nooshin et al. (2019) to 
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measure the vessel distribution area. GVE is calculated by the absolute difference between 

the predicting segmentation V (ypr) and the manual ground-truth segmentation V (ygt):

GVE = V ygt − V ypr
V ygt

× 100% (6)

V (*) is based on counting the positive voxels in the binary segmentation. From the 

definition, it is easy to learn that a good segmentation method should have low GVE value. 

The relative GVE is summarized in Table 5. From Table 5, we can see that the mean GVE of 

SVS-net is 9.74%, which is much lower than those of other methods. Besides, the standard 

deviation of our method is also lower than those of other methods. These measures implicate 

that SVS-net is better and more stable in vessel distribution estimation than other methods.

Furthermore, quantitative coronary analysis and corresponding myocardial perfusion 

analysis are other downstream works for the diagnosis and therapy of coronary artery 

disease. The gray-level intensities of cardiac vessels carry important information for the 

quantitative analysis. Usually, we locate the vessel through segmentation but lose the gray 

intensity at the same time. As illustrated in Qin et al. (2019), we can use the vessel mask 

regions from the vessel segmentation and then complete vessel gray information in these 

regions by tensor completion algorithm (Qin et al., 2019). We compare three segmentation 

methods’ effect on the final gray intensity recovery after vessel mask region segmentation. 

As shown in Fig. 11, SVS-net is much more conducive to reconstruct vessels and their 

gray intensities from the complex and noisy backgrounds of X-ray images. There are few 

vessel residuals remained in the background regions. Hence, SVS-net can provide relatively 

accurate vessel mask segmentation for recovering gray intensity in quantitative coronary 

analysis.

4. Discussion and conclusion

We propose a sequential vessel segmentation deep network, which integrates 3D 

convolutional layers extracting rich temporal–spatial features and utilizes CAB learning 

discriminative features from the complex and noisy background artifacts in the XCA 

image sequences. Experiment results verify the superior performance of special designs 

in our SVS-net. The proposed SVS-net can effectively segment the whole branches of the 

vessel trees from the XCA sequences. There is still room in the future work to improve 

the accuracy of segmenting small branches of thin vessels and enhance temporal–spatial 

consistency of vessel tree mask. To achieve a reliable segmentation of all small and thin 

vessels in the low-contrast and noisy XCA sequence, the channel-wise attention scheme 

can be further integrated into saliency-aware image matching (Qin et al., 2018; Qin, Shen, 

Zhou, Zhou, & Lv, 2016) and segmentation (Wang, Shen, Yang, & Porikli, 2018) methods 

as well as pixel-wise phase-based edge feature filtering (Mei, Hu, Fei, & Qin, 2020; 

Reisenhofer & King, 2019; Zhao, Zheng, Liu, Zhao, Luo, Yang, Na, Wang, & Liu, 2018) 

to automatically choose the key frame and corresponding regions that contain the most 

salient small and thin vessel features from the XCA sequence so that this frame’s thin vessel 

feature representation can be taken as priors for pixel-wise labeling in sequential vessel 
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segmentation. Deep feature matching (Kong, Supancic, Ramanan, & Fowlkes, 2019) and 

deep temporal–spatial correlation (Wang, Luo, Shen, & Pantic, 2019) in the image sequence 

with deep autoencoding prior (Li, Qin, Xiao, Liu, Wang, & Liang, 2020; Zhang, Zhang, Qin, 

Zhang, Xu, Liang, & Liu, 2020) can also be utilized to transfer the learning priors from key 

frame to its neighboring frames containing unsharp small vessels.

Furthermore, we can sample vessel mask regions using contrast agent motion information 

or randomly sample vessel mask regions for background inpainting via tensor (or matrix) 

completion (Qin et al., 2019; Unberath et al., 2017) and deep video inpainting (Kim, Woo, 

Lee, & Kweon, 2020), the completed background is then subtracted from XCA image 

sequence for the overall vessel extraction. This scheme of trial-and-completion can not only 

accurately recover the structures and intensities of vessel trees but also well compensate the 

deficiency of small vessel extraction (or segmentation) in the XCA image sequences. Such 

vessel extraction can be effectively implemented in an unsupervised deep network (Sultana, 

Mahmood, Javed, & Jung, 2019).
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Fig. 1. 
The proposed network architecture is based on U-net with the encoder network extracting 

3D feature from the input sequence and the decoder network learning the salient feature 

via upsampling and operation of CAB, between the encoder and decoder network is the 

skip connection layers with FFO. The numbers 8, 16, 32, … , above each block denoting 

the number of output channels for that block. Convolutional kernel sizes and strides (s: 

strides) for each block are given in legend. In the FFO and CAB at the bottom, the 

F ∈ ℝC × T × H × W  denotes the temporal–spatial feature maps, C denotes channel axis, T 

denotes temporal axis, H denotes height axis, W denotes width axis, Fc ∈ ℝT × H × W : the 

cth channel of temporal–spatial feature maps. Ffusing
c ∈ ℝH × W  denotes the cth channel of 

fused temporal–spatial feature map through Conv3D with kernel size 4 × 1 × 1 and strides 

(1,1,1).
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Fig. 2. 
The training loss curve (left) and its local enlarged curve (right) for different input strategies 

in training process. The 4 frame’s input strategy can achieve the least training loss.
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Fig. 3. 
The hyper-parameter experiments (left) and its local magnified curve (right) comparing 

different learning rates (lr) and input sizes with baseline (lr: 0.01, input size: 512 × 512.).
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Fig. 4. 
Two instances of feature visualizations for illustrating the CAB’s effects: suppresses the 

noises in the background areas while highlights the foreground vessel feature. From left to 

right, each row displays the original XCA image; the 2nd channel of fused spatial feature 

maps in the output of the second skip connection layer (Fig. 1) before inputting to the CAB, 

it contains noise pollution from the background areas; the 2nd channel of refined feature 

maps from the output of CAB in the decoder stage (Fig. 1). The background noise is reduced 

and the foreground vessel feature is highlighted via the channel attention operation.
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Fig. 5. 
The loss curve and its local enlarged curve for both training set and validation set in training 

process.
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Fig. 6. 
Vessel segmentation performance using 2D and 3D convolutional layers with and without 

CAB. The detection rate (DR), precision (P) and F measure of test data.
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Fig. 7. 
Four instances of vessel segmentation result by different vessel segmentation methods. From 

left to right, each row displays the original XCA image, the manually outlined ground 

truth vessel segmentation, the vessel images segmented by 2D naive, 2D+CAB, 3D naive, 

3D+CAB, respectively.
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Fig. 8. 
Original vessel segmentation result by Dice loss, CE loss and threshold (0.2, 0.4, 0.6, 

0.8 respectively) postprocessing for the segmentation result by CE loss. (a) Original XCA 

image. (b) Manually outlined ground truth. (c) Original segmentation result by Dice loss. 

(d) Original segmentation result by CE loss. (e) 0.2 thresholding result of (d). (f) 0.4 

thresholding result of (d). (g) 0.6 thresholding result of (d). (h) 0.8 thresholding result of (d).
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Fig. 9. 
Vessel segmentation performance using different methods. The detection rate (DR), 

precision (P) and F measure of test data.
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Fig. 10. 
Four instances of vessel segmentation for real XCA image sequence by different vessel 

segmentation methods. From left to right, each row displays the original XCA image, 

the manually outlined ground truth vessel segmentation, the vessel images segmented 

by Coye’s, Jin’s, Kerkeni’s, Retinal-net, SU-Net, X-ray net, BTS-DSN, and SVS-net, 

respectively.
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Fig. 11. 
Vessel gray intensity recovery. From top to bottom, each row displays the original XCA 

image, the background and foreground vessel images recovered from SU-Net, X-ray net, 

BTS-DSN and SVS-net, respectively.
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Table 1

The main notations used in this paper.

Notation Explanation

XCA X-ray coronary angiography

SVS-net sequential vessel segmentation deep network

CRF conditional random field

FFO feature fusion operation

CAB channel attention block

Conv3D 3D convolution

Block3D 3D residual convolutional block

Conv2D 2D convolution

Block2D 2D residual convolutional block

BN batch normalization

ReLu rectified linear unit

sigmoid sigmoid activation function

ks convolutional kernel size

LF low-stage feature maps

HF high-stage feature maps

DR detection rate

P precision

CE cross entropy

GVEs gland volume errors
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Table 2

The average detection rate (DR), precision (P) and F measure (mean value ± standard deviation) for test data.

Method DR P F

2D naive 0.7640 ± 0.0701 0.8615 ± 0.0694 0.8056 ± 0.0431

2D+CAB 0.7638 ± 0.0738 0.8595 ± 0.0684 0.8046 ± 0.0459

3D naive 0.7959 ± 0.0714 0.8640 ± 0.0586 0.8255 ± 0.0714

3D+CAB 0.8424 ± 0.0813 0.8492 ± 0.0605 0.8428 ± 0.0531
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Table 3

The average detection rate (DR), precision (P) and F measure (mean value ± standard deviation) for test data.

Method DR P F

CE loss 0.8197 ± 0.0814 0.8423 ± 0.0633 0.8262 ± 0.0428

Dice loss 0.8424 ± 0.0813 0.8492 ± 0.0605 0.8428 ± 0.0531
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