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Abstract

Purpose: Accurate and robust segmentation of the prostate from magnetic resonance (MR) 

images is extensively applied in many clinical applications in prostate cancer diagnosis and 

treatment. The purpose of this study is the development of a robust interactive segmentation 

method for accurate segmentation of the prostate from MR images.

Methods: We propose an interactive segmentation method based on a graph convolutional 

network (GCN) to refine the automatically segmented results. An atrous multiscale convolutional 

neural network (CNN) encoder is proposed to learn representative features to obtain accurate 

segmentations. Based on the multiscale feature, a GCN block is presented to predict the prostate 

contour in both automatic and interactive manners. To preserve the prostate boundary details and 

effectively train the GCN, a contour matching loss is proposed. The performance of the proposed 

algorithm was evaluated on 41 in-house MR subjects and 30 PROMISE12 test subjects.

Result: The proposed method yields mean Dice similarity coefficients of 93.8 ± 1.2% and 94.4 ± 

1.0% on our in-house and PROMISE12 datasets, respectively. The experimental results show that 

the proposed method outperforms several state-of-the-art segmentation methods.
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Conclusion: The proposed interactive segmentation method based on the GCN can accurately 

segment the prostate from MR images. Our method has a variety of applications in prostate cancer 

imaging.
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1. INTRODUCTION

Prostate cancer is one of the most common types of cancer among American men. In 

2020, it was estimated that there were 191,930 new cases of prostate cancer, and 33,330 

deaths from prostate cancer in the United States.1 Magnetic resonance imaging (MRI) is 

being increasingly used for prostate cancer diagnosis and treatment planning.2,3 Accurate 

segmentation of the prostate from MR images has many applications in the management 

of this disease. Manual segmentation of each prostate image is a time-consuming and 

subjective task. The accuracy of the segmentation depends on the experiences of the 

radiologists and on the intra-reader and inter-reader variations. Therefore, numerous studies 

have focused on prostate MR image segmentation in recent years.4–6

Deep-learning-based automatic segmentation methods have achieved improved medical 

image segmentation performance.4,7–9 However, it is difficult to develop a fully automatic 

prostate segmentation method that can address various issues, such as cases with low-

contrast prostate boundaries, large shape variations, and variations of the appearance 

pattern in basal and apical regions. Therefore, these automatic segmentation methods are 

not adequately accurate and robust for routine clinical use. To solve this problem, user 

interventions are often needed to refine the automatic segmentation issues.

To-this-date, many interactive image segmentation methods have been proposed.10–14 In 

this study, we propose an interactive segmentation method based on a graph convolutional 

network (GCN) for prostate on MR images. The interactivity of the proposed method 

is similar to GrabCut,10 wherein a bounding box is drawn around the object to obtain 

an initial segmentation. GrabCut further improves the initial segmentation by drawing 

points on background and foreground regions, respectively. In contrast, we present a 

different interactive scheme that is better suited for a GCN-based algorithm by dragging 

a point on the prostate contour to the appropriate position. This manner can reduce 

user interactions during segmentation refinement to achieve higher accuracy. The user 

can intervene whenever an inaccurate segmentation occurs by correcting the erroneously 

predicted points. The proposed method continues its prediction based on the corrections.

In this study, we consider prostate segmentation as a regression problem, whereby the 

locations of all the vertices/points of the prostate contour are predicted simultaneously. 

These vertices are represented as a graph with a fixed topology. We perform predictions of 

these vertices based on the use of a GCN that can be optimized for interactive segmentation.

To the best of our knowledge, this is the first study that has explored GCN-based interactive 

methods for prostate MR segmentation. The contributions of the proposed method are as 
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follows. (a) A GCN is adopted to extract prostate contours from MR images automatically. 

The GCN is also used in an interactive manner to further improve the accuracy by correcting 

the points on the prostate contour. (b) We propose an atrous multiscale convolutional 

neural network encoder to obtain representative features for prostate from MR images that 

could help GCN to generate more accurate prostate contours. (c) The proposed method 

outperforms several state-of-the-art methods on both PROMISE12 dataset and in-house 

dataset.

The remainder of the study is organized as follows. In Section 2, related works are 

reviewed. In Section 3, we introduce the GCN-based interactive prostate segmentation 

method followed by the details of each part. In Section 4, we describe the evaluations based 

on the experimental results. In Section 5, we summarize the proposed method and outline 

the study’s conclusions.

2. RELATED WORKS

Interactive segmentation methods provide an effective way wherein a human and a 

machine interact. According to the interaction type, interactive segmentation methods can 

be classified into three categories, including the bounding box, click/scribble, and contour-

interaction-based methods.

In bounding-box-based methods, a bounding box is supposed to be placed around a target 

object to present the object’s range. Lempitsky15 mentioned that the bounding box is not 

only used to exclude the background information, but also to prevent the segmentation from 

shrinking. MILCut16 proposed the use of a sweeping-line strategy to perform segmentation 

tasks based on the bounding box provided by users that converts the interactive image 

segmentation into a multiple-instance learning problem. Rother10 proposed a GrabCut 

method for interactive object segmentation based on the graph-cut algorithm.17 GrabCut 

only requires the user to draw a bounding box loosely around the object. Wang12 presented 

an interactive medical image segmentation method based on a bounding box that adds an 

image-specific adaptation model for CNNs to obtain accurate segmentation. However, the 

segmentation results of these bounding box-based interactive methods cannot be further 

refined by users.

In the cases of click/scribble-based methods, users usually draw scribbles/points on 

foreground and background regions. Interactive graph cuts18 is a seminal scribble-based 

interactive segmentation method that marks several seed pixels that belong to the 

background or foreground. It then uses a max-flow/min-cut algorithm to provide a global 

optimal solution for segmentation. Papadopoulos19 and Maninis20 proposed a clicking 

strategy to replace the traditional bounding box method that lets users to click on the 

top, bottom, left, and right-most points of an object to achieve the desired segmentation 

results. In the field of medical image segmentation, Wang21 proposed an interactive method 

for two-dimensional (2D) and three-dimensional (3D) medical image segmentations. A 

CNN is used to obtain an initial automatic segmentation on which user click/scribble 

interactions were added to indicate mis-segmentations to refine the results. Although these 

click/scribble-based interactive methods can obtain more accurate segmentation results 
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by drawing scribbles or seed points multiple times on the foreground and background 

regions, these methods cannot obtain accurate and smooth object boundaries. In addition, the 

segmentation boundary cannot be fine-tuned in a click/scribble interactive manner.

Contour interaction methods are usually used to present an object boundary and refine it. 

Castrejon22 and Acuna23 proposed a contour-interaction-based segmentation method. They 

considered the segmentation task as a contour prediction problem that predicted the vertices 

of a contour that outlined the object. Ling24 proposed an interactive segmentation method to 

predict all the vertices of the object’s contour based on a GCN. The aforementioned methods 

could yield promising segmentation results. However, there is no method that combines 

deep learning and user interaction in a seamless way that is trained end-to-end. In addition, 

the methods ignore the multiscale feature that limits the representative feature extraction 

capability and restricts the segmentation performance.

In this study, we propose a GCN based interactive segmentation method to segment the 

prostate. GCN is a deep-learning method that handles non-Euclidean data within the 

graph domain. Therefore, it is suitable for contour-interaction-based segmentation methods. 

Because of convincing performance and high interpretability, GCN has been receiving 

increased attention recently. Motivated by the above descriptions, an interactive method is 

proposed for prostate segmentation by combining GCN and user interactions that are trained 

end-to-end.

3. MATERIALS AND METHODS

In this study, we propose an interactive MR image segmentation algorithm for prostate based 

on GCN. The algorithm accepts user interactions based on the interaction points (nodes or 

vertices) on the prostate contour. The proposed method consists of three parts, namely, the 

CNN feature encoder, automatic GCN module, and interactive GCN module.

In this study, we assume that the prostate shape can be accurately represented by N 
interaction points (also called vertices). The neighboring points/vertices are connected with 

spline curves to form the prostate contour. The locations of the vertices are considered as 

random variables and can be predicted based on the GCN in the non-Euclidean domain.

The GCN takes the output feature from the last convolutional layer of the CNN encoder 

applied on the cropped image as its input. We denote the CNN encoder feature as Xcnn. 

To observe the contour of prostate, a contour block is proposed. The output feature of the 

contour block is concatenated with Xcnn to produce an enhanced feature XcnnEnh.

The enhanced feature is followed by four 3 × 3 convolutional layers that aim to form a 

GCN feature Xgcn. To encode the locations of the interaction vertices, the initial coordinates 

of the interaction vertices are concatenated with the GCN feature to form a location-aware 

feature XgcnLoc. The feature XgcnLoc is fed to a GCN block to predict the locations of the 

vertices that could obtain the output of the automatic GCN module. The generation of the 

location-aware feature XgcnLoc is shown in Fig. 1.
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The interactive GCN module follows the automatic GCN module. The interactive GCN aims 

to improve the segmentation accuracy by introducing user interactions. The users select 

inaccurate interaction points and drag them to the correct positions. The shifts of these 

points are concatenated with feature XgcnLoc to produce a shift-encoded feature XgcnLocS. 

The feature XgcnLocS is fed into the GCN block to obtain the shifts of k neighboring vertices 

of the current interaction point. Fig. 2 presents an overview of the proposed method.

3.A. CNN feature encoder

Owing to the use of the repeated downsampling operations in traditional CNN networks, it 

is difficult to obtain an adequately large output feature resolution for the image segmentation 

task.25,26 ResNet27 is a commonly used backbone network in the semantic segmentation 

domain. However, the empirical receptive field of ResNet is smaller than the input image. 

In addition, it lacks multiscale features in the output feature map that is very important for 

the representation of the objects. To address these problems, an atrous/dilated multiscale 

CNN feature encoder is proposed. A dilated convolutional operation25 and a spatial 

pyramidal pooling module28 are introduced in ResNet to obtain multiscale features. In 

addition, a skip-layer architecture is used to obtain an effective output resolution and a 

multiscale feature. The dilated convolution aims to extract multiscale features and increase 

the receptive field of the kernel when the network depth increases. Meanwhile, it does not 

introduce any extra parameters into the network. The spatial pyramid pooling module can 

obtain both local information and global context information. At the same time, the skip-

layers concatenate different feature levels that can incorporate both shallow and deep-layer 

feature maps. By combining dilated convolutions, spatial pyramid pooling module, and the 

skip-layer architecture, the proposed CNN feature encoder can capture high-level semantic 

information, low-level detailed information, and multiscale features.

In the proposed multiscale CNN encoder, we removed first the fully connected layers and 

the last average pooling layer of ResNet-101. In addition, the convolutional operations in 

the last two blocks of ResNet-101 were replaced by dilation convolution with two and four 

dilated rates respectively. A 3 × 3 convolution layer was applied after four layers, including 

the first 7 × 7 convolution layer, the first residual layer, the second residual layer, and the 

last residual layer with dilated convolution. To obtain multiscale spatial features, the output 

features of four 3 × 3 convolutions were concatenated. Three bilinear upsampling operations 

were performed to ensure that they achieve the same spatial sizes. The concatenated features 

were then fed to two consecutive 3 × 3 convolution layers. Global prior representations have 

proven to be effective ways to produce high-quality results on object instance segmentations. 

Therefore, a pyramid scene parsing network (PSPNet)28 was adopted as a final pixel-level 

CNN feature extractor. The proposed dilated multiscale CNN encoder is shown in Fig. 3.

3.B. Automatic GCN module

Automatic GCN module consists of two blocks, namely, contour and GCN blocks.

3.B.1. Contour block—The CNN feature does not encode boundary information 

explicitly. It is difficult to be directly used to extract the prostate boundary. Therefore, 

the feature Xcnn obtained from the CNN encoder cannot allow the direct visualization of 
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the prostate contour. To solve this problem, a contour block is proposed to help the model 

visualize the prostate contour. The contour block is trained to predict the probability of 

existence of a prostate contour that consists of a 3 × 3 convolutional layer and a fully 

connected layer. A cross entropy loss is used to train the contour block. The output of the 

contour block is a 2 × 28 × 28 feature that encodes the boundary features of the prostate. The 

visualization of the contour block is shown in Fig. 2.

3.B.2. GCN block—While the CNN has achieved great success in processing Euclidean 

data, it has been associated with an increasing number of tasks whereby data are non-

uniformly sampled in the non-Euclidean domain, and are presented as graphs with complex 

relationships between data. It is a major challenge for CNN-based methods to handle the 

complexity of graph data.29 The data (location of the vertex) used in our method are 

graph data. Therefore, the GCN is adopted (instead of CNN-based methods) for prostate 

segmentation.

In this study, a graph G = (V, ℰ), is defined on a prostate MR image that consists of vertices 

V and edges ℰ. V = vi, i = 1, 2, …, N  is the set of N vertices in the graph. Let vi = (xi, 

yi) denote the location of the i-th interaction-point. ℰ = ej, j = 1, 2, …, M  is the set of M 

edges with each of its elements connecting two vertices. This graph structure defines how 

the information propagates in the GCN. The nodes of the GCN are initialized at a static 

central position in the cropped prostate image. The aim of the GCN is to predict the offsets 

for all points that could be used to shift these points to the true prostate contour locations.

In the GCN model, X(l) ∈ ℝN × dl is the output feature of the lth layer of the graph 

convolution that is also the input of the (l + 1)th layer. N is the number of the vertices on the 

prostate contour, while dl is the feature dimension of each vertex. X(l + 1) ∈ ℝN × dl + 1 is the 

output feature of the (l + 1)th layer of the graph convolution, whereby dl+1 is the dimension 

of the output feature. The graph convolution operation (GCO) is defined as follows,

X(l + 1) = σ D− 1
2AD− 1

2X(l)W (l) (1)

where A = A + IN is the adjacency matrix of the graph G with self-connections. The self-

connections are implemented by adding the identity matrix IN. The element of the adjacency 

matrix A denotes whether an edge exists between two vertices of the prostate contour. D
is the degree matrix of A. W(l) is a layer-specific trainable weight matrix, and σ(·) is an 

activation function.

The GCN generalizes the convolutional operation from a grid data to a non-Euclidean graph 

data. The graph convolutional operation aims to generate representations for vertices by 

aggregating its own feature and the features of its neighboring vertices. Based on multiple 

graph convolutional layers, the high-level vertex representations can be obtained. This 

representation generation methodology is also called information propagation. From this 

point-of-view, Eq. (1) can be considered as an information propagation rule. The high-level 

representations of vertices are very important for vertex classification or regression. Based 
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on the high-level vertex representations, the locations of the vertices can be predicted 

accurately. Therefore, an accurate prostate contour can be predicted by the GCN.

Information propagation in GCN is the main distinction from a CNN that also constitutes an 

important concept in GCN. Similar to CNNs, GCNs learn a new feature representation for 

each vertex in a graph over multiple layers.30 The feature of each vertex at the beginning 

is averaged with the features of its neighboring vertices. The feature will be updated 

based on different layers. This update can be expressed over the entire graph as a matrix 

multiplication between A and X.

The proposed GCN module is shown in Fig. 4.

In our method, the GCN block consisted of two graph convolutional operations (GCOs) and 

six cascaded residual GCOs. Therefore, the GCN block is a multilayer architecture. In each 

layer, the vertex feature is obtained by aggregating the features of its neighbors that are 

one hop away. This implies that after multiple layers, a vertex obtains feature information 

from all vertices that are multiple-hops away in the graph. This multilayer architecture is 

similar to CNNs, wherein the depth can increase the receptive field of the internal features.31 

The proposed GCN block can also increase the receptive field by using multiple GCOs and 

residual GCOs. The fc1, fc2, and fc3 in Fig. 4 denote the fully connected layers that have 

different output dimensions. The residual GCO consists of two GCOs with two nonlinear 

activation rectified linear functions (ReLUs) and a skip connection. A graph convolution 

operation and a fully connected layer are added after the output feature of the cascaded 

residual GCOs.

3.B.3. Loss function—The proposed model is trained with a contour matching loss, 

which is used for the evaluation of the accuracy of the predicted interaction points. We 

assume that the points have a well-defined order. Therefore, the vertices of the ground 

truth and those of the prediction should be well matched to calculate the loss. The contour 

vertices of ground truth are defined as gt = {gt0, gt1, ⋯, gtT−1}, and interaction points of the 

prediction are defined as ip = {ip0, ip1, ⋯, ipN−1}. N is the number of the interaction points. 

The contour matching loss Lcm is defined as follows.

Lcm(ip, gt) = min
j ∈ [0⋯, N − 1]

∑
i = 0

N − 1
ipi − gt(j + i)%N 1 (2)

where i and j are the indices of the vertices of the prediction and ground truth, respectively. 

To calculate the loss function Lcm, the sum of the distances between two sets of vertices 

∑i = 0
N − 1 ipi − gti 1 should be calculated. However, there is no one-to-one match between the 

two point sets. Therefore, we should calculate the sum of the distances of all the possible N 
matches. The minimum sum distance is then selected as the loss. The subscript of gt is used 

to implement all the possible N matches.
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3.C. Interactive GCN module

To mimic the processing of user interactions, we simulated an annotator that shifted the 

predicted incorrect vertex to its correct location (ground truth). The model was trained to 

predict the shifts of 2k neighboring vertices (k neighbors on either side) of the current 

interaction point. In our experiment, we set k = 2. This parameter can be changed during the 

test to control the neighborhood range. The shifting of the vertex (xi, yi) is denoted as (Δxi, 

Δyi).

We added two extra channels to the GCN feature XgcnLoc, namely, (Δxi, Δyi). Therefore, the 

input feature of the interactive GCN module XgcnLocS is presented as follows,

XgcnLocS = concat Xcnn, Δxi, Δyi , xi, yi (3)

where i = 1, ⋯, N, N is the number of interaction points. We set the value of (Δxi, Δyi) 

to zero for other vertices that did not belong to the 2k neighboring vertices. During the 

training, we let the annotator choose to correct the vertex with the worst accuracy. This 

was achieved based on the identification of the maximum Manhattan distance between the 

predicted and ground truth vertices. The interactive GCN module chose the worst prediction 

and re-predicts its 2k neighbors iteratively. At each iteration, the interactive GCN module 

predicted the new locations of neighbors of the current interaction point, and then corrected 

the next vertex with the worst prediction. To allow the model to learn the user’s interactive 

ability, we performed the aforementioned operations in an iterative manner.

3.D. Evaluation metrics

To quantitatively evaluate the proposed methods, four popular metrics were used in our 

experiments. Two metrics were region-based, namely, the Dice similarity coefficient (DSC) 

and the relative volume difference (RVD). The other two metrics were distance-based, 

namely, the Hausdorff distance (HD) and the average symmetric surface distance (ASD). 

The DSC was obtained with the following equation,

DSC = 2 Rgt ∩ Rpre
Rgt + Rpre

× 100%, (4)

where Rgt and Rpre are the prostate ground truth and predicted regions, respectively. The 

operator |*| represents the number of pixels in a region. The metric RVD is used to 

evaluate the prediction irrespective of whether it tends to cause under-segmentation or 

over-segmentation. The RVD is defined as follows.

RV D = Rpre − Rgt
Rgt

× 100% . (5)

The HD metric is defined as follows.

HD = max max
i ∈ Bpre

min
j ∈ Bgt

(d(i, j)) , max
j ∈ Bgt

min
i ∈ Bpre

(d(i, j)) , (6)
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where Bgt is the boundary of the ground truth, and Bpre is the boundary of prediction. d(i,j) 
is the Euclidean distance between pixel i (prediction) and pixel j (ground truth). The ASD is 

defined as follows,

ASD = 1
Bpre + Bgt

× ∑
i ∈ Bpre

d i, Bgt + ∑
j ∈ Bgt

d j, Bpre ,
(7)

where d is the distance from a point to a boundary.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.A. Data

In total, 140 subjects of prostate MRI from three datasets were used for the training model 

in our experiments. These included PROMISE12 (50 subjects),32 International Symposium 

on Biomedical Imaging 2013 (ISBI2013) (49 subjects), and in-house (41 subjects) datasets. 

Our in-house MR subject dataset included transversal T2-weighted MR images which were 

scanned at 1.5 T and 3.0 T. The voxel size varied from 0.4 to 1 mm. The matrix sizes of the 

transverse images ranged from 512 × 512 to 320 × 320. To evaluate the proposed method, 

we used the ground truths of 30 test subjects from PROMISE12 and 41 in-house subjects 

which were labeled by the radiologists. Each slice was manually labeled by two radiologists 

who had 15 yr and 3 yr of experience, respectively. In addition, each radiologist labelled 

the slices three times. To avoid the situation in which the two radiologists would remember 

previous labelled examples, successive manual segmentations were performed one week 

apart with respect to each other. Majority voting was adopted to fuse the labels segmented 

by the two radiologists.

4.B. Implementation details

The algorithm was implemented in Python with developed codes subject to the PyTorch 

framework. The algorithm ran on an Ubuntu system with an Intel Xeon E5-2620 CPU 

(2.1 GHz) and with a 64 GB memory. Our code used a GTX 1080 Ti GPU with 11 GB 

memory. The implementation was not optimized and did not use multithread and parallel 

programming.

During the training, a learning rate was set as 1×10−3. The weights of the CNN encoder 

were initialized with the use of the pre-trained model based on natural images.

4.C. Qualitative results

The segmentations of six subjects obtained from the PROMISE12 test dataset are shown 

in Fig. 5. The prostatic apex and base are not easily segmented. Therefore, a subdivision 

scheme was used to compute values of four metrics on three subregions of the prostate. 

All prostate slices were divided into three parts that included the apex subregion, mid-gland 

subregion, and base subregion (30%, 40%, and 30%, respectively).
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The images from the three subregions of the prostate were chosen for qualitative evaluation. 

Each subregion presented two result images from different subjects. In Fig. 5, three columns 

showed the apex, mid-gland, and base images, respectively. The values of the evaluation 

metrics were overlaid on the resulting images. Blue contours included the ground truth 

manually labelled by the radiologists, while the red contours were the results obtained from 

the proposed method. From the figure, we can observe that the proposed method could 

obtain accurate results from all three subregions.

4.D. Quantitative results

The quantitative segmentation results of the proposed automatic mode on in-house dataset 

are shown in Table I. Five-fold cross validation was adopted in this experiment. The 

proposed method yielded a DSC of 93.8% ± 1.2%, a HD of 5.8 mm ± 2.4 mm, and an 

ASD of 1.0 mm ± 0.3 mm on the entire gland. The results show that the proposed method 

could yield a relatively accurate segmentation with a low standard deviation. In addition, it 

could yield a RVD of −4.0% × 4.0%. This value indicates that the proposed method achieves 

an effective tradeoff between the under-segmentation and over-segmentation. Meanwhile, 

the proposed method could respectively yield a DSC of 92.9% ± 2.1%, 94.9% ± 1.4%, and 

93.1% ± 1.6% on base, mid-gland, and apex subregions, respectively. The results of the apex 

and base are comparable with those of the mid-glands.

Besides the experiment on the in-house dataset, the quantitative results on the PROMISE12 

test dataset are also presented. These achieved a DSC of 94.44% ± 1.03%, a RVD of 0.03% 

± 3.59%, a HD of 8.66mm ± 3.47 mm, and an ASD of 1.36mm ± 0.33 mm.

To evaluate the effectiveness of the proposed multiscale CNN encoder, an ablation 

experiment was performed on 30 test subjects of PROMISE12 and in-house dataset. The 

evaluation results of the four metrics of each subregion are shown in Table II and III. 

The results show that the proposed multiscale CNN feature encoder could improve the 

segmentation accuracy.

4.E. Comparison with other methods

A set of eight state-of-the-art image segmentation methods3,10,20,28,33–36 were chosen as the 

benchmark to evaluate the proposed method. The reported results in the tables were obtained 

based on the application of publicly available codes of these methods on the datasets. The 

comparisons of these eight methods with our method are listed in Tables IV and V. Four 

metrics are chosen to evaluate the performances of these methods. The results are reported 

as average ± standard deviation.

To emphasize the superiority of the proposed method, a statistical significance experiment 

was performed on the whole gland in terms of the DSC and ASD. We did a t-test for 

reporting the improvements. The analyses of the tests showed that there was a statistically 

significant difference on the entire gland (P < 0.05) both in terms of DSC and ASD.
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4.F. Evaluation of interactions

To evaluate the performance of the interactive mode, the mean intersection over union (IoU) 

scores37 were computed according to the number of clicks. Fig. 6 shows the IoU score 

vs the number of clicks on PROMISE12 test set. From the figure, we can observe that 

the segmentation accuracies of three subregions increase along with the number of clicks 

increases. The performance of the proposed method has no much improvement after eight 

clicks. This helps the users decide how much effort should be input to obtain the best 

segmentation results. In our experiment, the DSC increases from 94.4% to 95.7% with three 

interactions on PROMISE12 test set. Meanwhile, the DSC increases from 93.8% to 95.3% 

with three interactions on in-house dataset.

4.G. Evaluation of robustness

To evaluate the influence of the neighborhood range k of the interaction point, the DSC 

values obtained from experiments with five different parameters k are reported. From the 

Fig. 7, we can see that the DSC varies within a small range. This proves that the proposed 

method is robust to the parameter k.

Different users may yield different variations by clicking and dragging the interaction 

points. To evaluate the user variability of the proposed interactive segmentation method, 

two radiologists were recruited to use the proposed interactive method. The DSC metric 

and in-house dataset were used to evaluate the user variability. The DSC obtained from the 

first user was 95.7%, while the second user obtained a DSC of 93.4%. The experimental 

results showed that the proposed interactive segmentation method achieved a high DSC and 

considerable user variability. Therefore, the high DSC of our method is associated with an 

increased cost of user variability.

4.H. Evaluation of loss function

To evaluate the performance of L1 contour matching loss that used in the proposed method, 

three popular loss functions were chosen for comparison. These three loss functions are 

earth mover loss, chamfer loss, and L2 contour matching loss. PROMISE12 dataset was 

adopted for the comparison experiment. The results are shown in Table VI. From the table, 

we can observe that the L1 contour matching loss performs best among these loss functions.

4.I. Ablation study

We conducted an ablation study to show the superiority of the proposed multiscale encoder 

(ME) and multiple residual GCO blocks (MRG). A bare-bone adaption of Ling’s method24 

was chosen as baseline in this ablation study. PROMISE12 dataset was adopted in the 

experiment. The ablation results are show in Table VII. Compared with the baseline, the 

DSC of only using multiscale encoder or the multiple residual GCO blocks increases 1.14% 

and 2.53%, respectively. The DSC of both using two modules increases from 91.26% to 

94.44%.
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4.J. Computation time

The training time of the proposed model was approximately 6 h, while the inference time of 

the automatic GCN approach required 56 ms for one MR image. In the interactive approach, 

the proposed model re-used the CNN feature of the automatic approach that only consumed 

13 ms to generate an inference after the onset of the interaction operation Table VIII.

The total interaction time of the segmentation of a prostate was 1.5 min on average. This 

included 20 s for drawing bounding boxes, 70 s for correcting erroneously predicted vertices 

to the proper locations.

5. CONCLUSION AND DISCUSSIONS

In this study, we developed and evaluated a GCN for the segmentation of the prostate 

gland from MR images. To allow learning of more representative features for improved 

accuracy, a multiscale CNN feature encoder was proposed. To effectively train the GCN 

for prostate segmentation, we proposed a contour matching loss function. The contour 

matching loss was preferred to preserve boundary details that are useful for the contour-

based interactive segmentation method. The proposed method could yield more accurate 

segmentation compared with several other popular methods. We defined the interactive 

prostate segmentation from a novel point-of-view based on the use of the GCN. Our 

segmentation method benefitted from GCN from two perspectives: (a) the segmented 

contour can be further improved by correcting the interaction points based on GCN that 

yielded more accurate segmentation results, (b) the GCN-based segmentation method could 

obtain the segmented prostate segmentation efficiently. We believe that the proposed method 

can be extensively used for different image modalities and different regions-of-interests in 

medical images.

Most current CNN-based prostate segmentation methods treat prostate segmentation as 

a pixel-wise labeling problem and define the segmentation model at the pixel-level. 

Accordingly, each pixel of the input image needs to be classified.38,39 In this way, it 

is very difficult to incorporate the shape priors of the prostate. In addition, ambiguous 

regions, image saturation, and low-resolution prostate images will seriously affect the 

performance of the pixel-level prostate-segmentation methods. In this study, the proposed 

method considered the segmentation of prostate images as a prostate contour prediction 

problem. The contour of the prostate was represented with several vertices. Compared with 

other CNN-based prostate segmentation methods, the proposed GCN-based method does not 

need to classify each pixel of the image, but only predicts the vertices on the contour of 

the prostate by the GCN. The proposed GCN-based method can produce accurate prostate 

segmentation. In addition, the proposed GCN-based method can refine the segmentation 

result in an interactive manner. Furthermore, the time required by the proposed interactive 

module to formulate an inference was only 13 ms. The reduced time required to formulate 

an inference is very important for the responsive user interfaces. Traditional and CNN-based 

methods require 700–4000 ms to draw inferences.11,38 Therefore, the proposed GCN-based 

algorithm is more suitable for interactive segmentations.
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Although the proposed method achieves accurate segmentation, there are still some 

limitations. The proposed method is a deep-learning-based method that depends on the 

number of MR volumes. More MR volumes could yield more accurate results based on 

deep-learning methods. Although we have collected 140 volumes from three datasets, the 

amount and diversity of the data can be increased to improve accuracy. The automatic 

GCN approach required only 56 ms to segment an MR image, and has many clinical 

applications in prostate cancer diagnosis and therapy. The costs associated with a semi-

automatic algorithm are the interaction time and the observer variability. In our interactive 

segmentation method, the user interaction time is 1.5 min on average for one patient case 

that is less efficient than the fully automated methods. In addition, owing to the involvement 

of humans, the method yields higher observer variability than the fully automated methods.

The proposed method aims to segment the whole gland of the prostate. However, the 

segmentation of the peripheral and transition zones of the prostate40 would be more useful 

as cancerous lesions have different appearances in the two zones. Therefore, the proposed 

method will be extended in our future work to achieve the zonal segmentation of the 

prostate.

The proposed GCN-based segmentation method can be extended to handle 3D 

segmentations. In these cases, the predicted 3D segmentation masks are considered as 3D 

shapes composed of triangular meshes. The vertices of the triangular meshes are considered 

as graph nodes in the GCN. These nodes incorporated with CNN features can be input to 

GCN for 3D segmentation.
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Fig. 1. 
The generation of the location-aware feature XgcnLoc. The number of vertices is 40 in our 

method.
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Fig. 2. 
Overview of the proposed graph convolutional network (GCN) segmentation method. The 

proposed method consists of three parts: (a) CNN feature encoder, (b) automatic GCN 

module, and (c) interactive GCN module. In the interactive GCN module, the users select 

interaction points (e.g. yellow vertex) and drag them to their correct locations. Subsequently, 

the new locations of 2k neighboring vertices (k neighbors on either side) will be predicted. 

The green arrow indicates the movement of the vertex from the current location to a new 

location.
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Fig. 3. 
Overview of the multiscale convolutional neural network feature encoder.
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Fig. 4. 
Overview of the graph convolutional network (GCN) block. The GCN block consists of two 

types of operations, namely the graph convolutional operation (GCO) and the residual graph 

convolutional operations (residual GCO). The GCO is used at the beginning and ending of 

the GCN block for the adjustment of the feature dimensions. The residual GCO is used to 

learn more representative features for interactive segmentation. Additionally, fc1, fc2, and 

fc3, are three fully connected layers. The CNN feature and the adjacent matrix are the inputs 

of the graph convolution operation. The convolutional neural network feature is a 40 × 258 

feature map, while the adjacent is a 40 × 40 matrix.
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Fig. 5. 
Qualitative results of six prostate MR cases from the PROMISE12 test dataset. The red 

curves are the results of the proposed method. The blue curves are the manually labeled 

ground truth. The first column shows the results of the apex subregion. The middle column 

shows the results of the mid-gland subregion. The last column shows the base subregion. 

Four metric values are presented on the MR images, including the DSC (%), RVD (%), HD 

(mm), and ASD (mm). DSC is a Dice similarity coefficient (%). RVD is a relative volume 

difference (%). HD is the Hausdorff distance (mm), and ASD is the average symmetric 

surface distance (mm).
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Fig. 6. 
Effects attributed to the number of clicks.
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Fig. 7. 
Effects of parameter k on the segmentation performance. When the value of the parameter k 
varies from 1 to 5, the Dice similarity coefficient does not exhibit considerable change. This 

shows that the proposed method is robust to the neighborhood range of the interaction point.
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Table II.

Quantitative prostate segmentation results obtained from a PROMISE12 test dataset

DSC (%) RVD (%) HD (mm) ASD (mm)

Whole Gland

 Baseline w/o multiscale CNN encoder 93.79 0.25 8.61 1.47

 Baseline with multiscale CNN encoder 94.44 0.03 8.66 1.36

Apex

 Baseline w/o multiscale CNN encoder 93.01 −0.65 7.75 1.61

 Baseline with multiscale CNN encoder 93.80 0.04 7.69 1.54

Mid-gland

 Baseline w/o multiscale CNN encoder 95.68 1.11 6.96 1.38

 Baseline with multiscale CNN encoder 96.37 0.13 6.23 1.21

Base

 Baseline w/o multiscale CNN encoder 92.85 −0.65 8.75 1.92

 Baseline with multiscale CNN encoder 93.99 −0.82 8.57 1.76

The results of the whole gland, base, apex, and mid-gland regions are shown.
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Table III.

Quantitative prostate segmentation results obtained from an in-house dataset

DSC (%) RVD (%) HD (mm) ASD (mm)

Whole Gland

 Baseline w/o multiscale CNN encoder 92.47 −4.72 7.66 1.16

 Baseline with multiscale CNN encoder 93.77 −3.99 5.84 1.01

Apex

 Baseline w/o multiscale CNN encoder 92.19 −5.40 5.76 1.02

 Baseline with multiscale CNN encoder 93.09 −4.42 4.47 0.95

Mid-gland

 Baseline w/o multiscale CNN encoder 93.24 −3.56 6.24 1.20

 Baseline with multiscale CNN encoder 94.90 −3.22 4.82 0.98

Base

 Baseline w/o multiscale CNN encoder 91.73 −5.78 6.56 1.27

 Baseline with multiscale CNN encoder 92.93 −4.63 5.45 1.10

The results of the whole gland, base, apex, and mid-gland regions are shown.
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TABLE VI.

Comparison with three loss functions on PROMISE12 dataset

DSC(%) RVD(%) HD(mm) ASD(mm)

Earth mover loss 92.17 2.66 9.86 1.76

Chamfer loss 93.54 −0.75 10.23 1.49

L2 contour matching loss 93.78 0.36 9.20 1.48

L1 contour matching loss 94.44 0.03 8.66 1.36
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Table VII.

The effects of the proposed multiscale encoder (ME) and the proposed multiple residual GCO (MRG)

DSC(%) RVD(%) HD(mm) ASD(mm)

Baseline 91.26 2.32 11.89 1.93

Baseline + ME 92.40 0.19 9.76 1.72

Baseline + MRG 93.79 0.25 8.61 1.47

Baseline + ME + MRG 94.44 0.03 8.66 1.36

PROMISE12 dataset was adopted for this ablation study. Baseline is bare-bone adaption of Ling’s method.24
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Table VIII.

Computation time required by the proposed method after its application on a magnetic resonance image

Methods Time (ms)

Extreme-Cut20 164

Ours(automatic module) 56

Ours(interactive module) 13

ExtremeCut was used for comparison.
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