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Abstract

The genetic basis for most inherited neurodegenerative diseases has been identified, yet there 

are limited disease modifying therapies for these patients. A new class of drugs - antisense 

oligonucleotides (ASOs) - are showing promise as a therapeutic platform for treating neurological 

diseases. ASOs are designed to bind to the RNAs encoded by a target gene, thereby suppressing 

expression by catalyzing degradation of those RNAs or to elevate expression by correcting 

faulty RNA splicing. Following delivery by intrathecal injection into the cerebral spinal fluid 

that surrounds the brain and spinal cord, antisense agents distribute broadly into nervous tissues 

where they produce long-term effects. The recent approval of nusinersen as a treatment for spinal 

muscular atrophy validated antisense technology as a platform for neurodegenerative and other 

neurological diseases. Nusinersen demonstrated that effective treatments for neurodegenerative 

disease can be identified and that treatment not only slows disease progression but improves 

some symptoms. Antisense drugs are currently in development for amyotrophic lateral sclerosis, 

Huntington’s disease, Alzheimer’s disease, Parkinson’s, disease and Angelman syndrome. Several 

additional drugs are in late stage research for the treatment of spinocerebellar ataxias, sporadic 

forms of amyotrophic lateral sclerosis, infantile seizure disorders, and neurodevelopmental 

disorders, as well as multiple programs in drug discovery for the treatment of additional 

neurological diseases. This review will highlight the advances in antisense technology as potential 

treatments for neurological diseases.
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INTRODUCTION

Advances in molecular genetics in the 1980s and further refinement in the 1990s allowed the 

identification of causative genes for most of the inherited neurological disorders. These were 

heady times for the field, as a steady flow of news on identification of genes that causes 
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devasting neurological diseases occurred throughout the 1990s. One of the more notable 

discoveries was the causative gene for Huntington’s disease (HD), caused by a triplet repeat 

(CAG) expansion in exon 1 of the huntingtin gene (1). The list of diseases due to repeat 

expansion has expanded to include a number of spinocerebellar ataxias, spinal and bulbar 

muscle atrophy, type 1and 2 myotonic dystrophy, fragile X syndrome and most recently 

a inherited form of amyotrophic lateral sclerosis (2–4). Completion of the sequencing of 

the human genome, which provides a genetic reference, and advances in DNA sequencing 

have dramatically accelerated the pace of identification of genetic changes that cause disease 

including the private mutations harbored by a single family or in small populations. Today, 

it is common to identify a putative disease-causing gene within a few weeks of patient 

presentation.

If clinical geneticists can quickly identify the genetic cause of a disease, why do we not 

yet have effective therapies for these inherited neurological diseases? The answers to this 

question are complex and multifactorial. Perhaps a key historical limitation was the absence 

of interest by large pharmaceutical companies to apply their resources towards the discovery 

and development of drugs for what were considered rare patient populations. Fortunately, 

this is changing with commercial success of several rare disease drugs. Additional hurdles 

include: lack of knowledge of the normal function of the gene and how the genetic change 

affects the gene function, development of model systems to evaluate potential therapies, 

adequate knowledge of the natural history of the disease, development of both disease 

relevant and target engagement biomarkers that can be used to reduce project risk, and 

in many cases, the lack of targetability of the affected gene by traditional drug discovery 

strategies. Importantly, expansion of drug discovery platforms beyond traditional small 

molecule drugs has led to development of designer DNA drugs, frequently referred to as 

antisense oligonucleotides (ASOs), to directly target expression of the genes causative of 

neurological diseases (5). Targeting RNA rather than protein simplifies the drug discovery 

process and dramatically expands the types of therapeutic targets for drug discovery.

Antisense drugs have been used as research tools for neuroscientists for almost 30 years. 

Some of the early applications were to help determine functions of various proteins in 

the central nervous system (6–10). These early studies were limited by the adverse effects 

observed with first generation ASOs and their limited duration of effect. Advances in 

antisense chemistry and better understanding of antisense mechanisms and biodistribution 

helped advance the platform not only as a research tool but importantly as a therapeutic 

agent for severe neurological diseases. Today there are five licensed antisense drugs for 

neurological diseases (Table 1), nine antisense drugs in clinical trials and a larger number 

of targets being pursued with antisense technology for neurological diseases. This review 

will summarize the pharmacological properties of antisense drugs being used to treat 

neurological diseases.

ANTISENSE MECHANISMS OF ACTION

Antisense drugs bind to RNAs through normal Watson-Crick base pairing, although non-

canonical base pairing (e.g. G to U) is also a possibility. Following binding to a target 

RNA, an antisense drug can modulate the RNA through a variety of different mechanisms, 
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including degradation of the targeted RNA through endogenous nucleases; altering the 

splicing of the RNA; displacement of proteins bound to the RNA; and disruption of 

regulatory structures in the target RNA (Figures 1 and 2). It is expected that additional 

mechanisms for ASOs will be identified. Both the chemistry of the oligonucleotide and the 

positioning on the target RNA to which the ASO binds, are major design elements that 

dictate which antisense mechanism is utilized (5; 11). No single antisense mechanism meets 

all therapeutic needs and no mechanism is vastly superior to other mechanisms of action.

Degradation of the targeted RNA by either recruiting RNase H1 or binding to and activating 

argonaute 2 (Ago2) (Figure 1) are commonly used to promote degradation of the targeted 

RNA (5; 11). RNase H1 is a ubiquitously expressed enzyme involved in DNA replication 

and DNA transcription which cleaves the RNA strand of a DNA-RNA heteroduplex (12). 

Antisense drugs which have at least 5 to 7 consecutive DNA nucleotides are capable of 

supporting the RNase H mechanism (13). There are several approved antisense drugs that 

work through the RNase H1 mechanism and multiple drugs in clinical development (5; 

14). One approved RNase H1 drug, inotersen, is for the treatment of the neurological 

disease hereditary transthyretin polyneuropathy (15) and nine RNase H ASOs are in clinical 

development (Table 1). ASOs that work through the RNA interference pathway (e.g. 

siRNAs) are generally delivered to cells as an RNA duplex, or modified RNA, where the 

two strands dissociate within the cell and the antisense strand (also referred to as the guide 

RNA) binds to Ago2. Ago 2 is a member of the argonaute family of proteins, which contains 

an RNase H like domain. The bound antisense strand directs the RNA-Ago2 complex to the 

targeted RNA where it cleaves the RNA, releasing the complex to bind to another RNA. 

ASOs that utilize the RNA interference mechanisms are also commonly used as research 

tools and are gaining momentum as therapeutic agents with the recent approval of siRNA 

drugs for the treatment of acute hepatic porphyria (5; 16) and a second, patisiran, recently 

approved for hereditary transthyretin polyneuropathy (17). To date, we know of no siRNA 

drugs in clinical development for central nervous system diseases, although progress is being 

made optimizing design and delivery of siRNAs for CNS diseases (18).

ASO drugs can also bind to a target pre-RNA and interfere with its maturation or interfere 

with the function of the mature RNA through non-degradative mechanisms (Figure 2) (5; 

11). Blocking protein translation by ASOs is an example of a mechanism that does not 

result in degradation of the RNA transcript, but decreases protein production (19). The best 

characterized examples of non-degradative mechanisms are ASOs that modulate pre-mRNA 

splicing to promote exclusion or inclusion of exons (20). For Duchenne muscular dystrophy, 

a disease caused by point mutations or deletions of one or more exons in the dystrophin 

gene, two antisense drugs (Table 1) have been approved that promote exon skipping to 

restore the correct reading frame and synthesis of a nearly full length dystrophin that 

retains partial dystrophin function (21). A second strategy is to promote exon inclusion, 

which was the strategy used for the treatment of spinal muscular atrophy (SMA) with 

nusinersen (22; 23). A third outcome of splicing modulation is to promote degradation 

of the RNA transcript through nonsense mediated decay, which eliminates mRNAs that 

harbor a premature termination codon (24). ASOs can also be used to block or displace 

access to the target RNA by proteins and other RNA. An example blockage of binding 

of exon junction complex proteins to the RNA downstream of a premature termination 
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codon, thereby blocking degradation of the RNA by nonsense mediated decay (25). Another 

example is use of antisense drugs to modulate polyadenylation site selection (26). Finally, 

it should be noted that ASOs can be used to increase protein translation by blocking 

translation of upstream open reading frames, disrupting regulatory RNA structures, and 

blocking microRNA access to the 3’-UTR of the transcript (27–30).

OLIGONUCLEOTIDE CHEMICAL MODIFICATIONS

Unmodified DNA and RNA are unstable in biological systems and are not suitable as drugs. 

In developing nucleic acid therapeutics, two different strategies - formulations and chemical 

modifications - have been used to protect the nucleic acids from degradation. Chemical 

modification of ASOs have been used to enhance stability against endogenous nucleases, 

enhance binding affinity to RNA and decrease unwanted toxicities. Modifications to the 

phosphate backbone, ribose sugar and bases have all been examined for utility as potential 

antisense drugs (11; 31).

Nucleic acids are degraded by both endo- and exo- nucleases which cleave the 

phosphodiester bonds linking the nucleotides together. First-generation antisense chemistry 

focused on stabilizing the phosphodiester bond through chemical modifications including 

phosphorothioate, methyl phosphonate and phosphorodiamidate morpholinos. Of these, the 

phosphorothioate modification, in which one of the non-bridging oxygen atoms is replaced 

with sulfur, is the most widely utilized (32). Most of the approved antisense drugs as well 

as drugs currently in development have some phosphorothioate modifications. In addition 

to stabilizing the ASO against degradation by nucleases, the phosphorothioate modification 

enhances protein binding which can result in better tissue distribution and cell uptake, but 

protein binding also contributes to some unwanted side effects (11). Phosphorodiamidate 

morpholino oligonucleotides (PMO) are sugar-phosphate substitutions in which the sugar 

is replaced with a morpholine ring and the phosphate with a phosphorodiamidate linkage. 

Because of the neutral phosphorodiamidate linkage, morpholino oligonucleotides exhibit 

minimal protein binding and are rapidly excreted (33). The PMO modification does not 

support the RNase H1 or RNA interference mechanisms of action. PMOs are primarily 

used for modulating splicing, in which high doses are administered to compensate for the 

poor tissue distribution. There are two approved PMO drugs for the treatment of Duchenne 

muscular dystrophy (Table 1).

The ribose sugar has proven to be an important nucleic acid constituent in which chemical 

modifications have enhanced pharmacological effects. Sugar modifications are used to 

support splicing modulation, translation suppression, enhancement of translation, RISC-

based mechanisms, and RNase H1 mechanisms (Figures 1 and 2). Most sugar modifications 

do not support RNase H1 activity, therefore they are generally incorporated at the ends 

of the oligonucleotide, leaving a DNA gap in the middle and are often referred to as 

“gapmers” or “second-generation” ASOs. The 2’-O-methyl modification is a naturally 

occurring ribose modification. The other commonly used sugar modifications are not 

naturally found in RNAs. Examples include 2’-O-methoxyethyl (MOE), 2’-fluoro and 

bridged 2’−4’ modifications such as locked nucleic acid (LNA) and constrained ethyl 

(cEt). Most sugar modifications show enhanced nuclease stability (the 2’-fluoro being an 
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exception), and increased binding affinity to RNA. LNA and cEt modifications, which have 

a bridged 2’−4’ linkage, demonstrate the greatest binding affinity for their target RNAs 

(34–36). It should be noted that although the general trends are similar for the different 

sugar modifications, they each have unique attributes. Using affinity for RNA as an example, 

the ranking of the different sugar modifications is roughly DNA< RNA< 2’-O-methyl ≤ 

MOE <2’-fluoro < <cEt ~ LNA (36; 37). For resistance to nuclease degradation, the general 

ranking is RNA < DNA < 2’-fluoro < 2’-O-methyl < LNA < MOE < cEt. In addition, each 

modification has unique protein binding properties (38–40). Currently, the most effective 

drugs use a mixture of different chemical modifications which have been optimized for the 

specific indications.

DISTRIBUTION OF ANTISENSE DRUGS IN THE CENTRAL NERVOUS 

SYSTEM

Most centrally delivered antisense oligonucleotides (ASOs) for neurological indications 

today are 18–20 bases in length and thus 6–8 KDa. These negatively charged 

macromolecules do not cross the blood brain barrier. To access the CNS in preclinical 

studies, ASOs are delivered directly into the CSF by injection into the lateral ventricles 

(ICV) or the lumbar space. Clinically, ASOs are delivered into the CSF by intrathecal 

injection into the lumbar space. Once introduced into the CSF, small water soluble 

molecules like ASOs distribute broadly throughout the CNS (22; 41–44). An ASO delivered 

into the non-human primate (NHP) CSF via intrathecal bolus injection can be found 

throughout the spinal cord and cortex, often with higher ASO concentrations in the cortex 

than in the spinal cord (45). ASOs are delivered to and are effective in deeper brain regions, 

including the hippocampus, pons and amygdala, though to a lesser extent than cortex or 

spinal cord (41; 45; 46).

The broad distribution of ASOs in the CNS is likely facilitated by intrinsic CSF dynamics. 

CSF surrounds the brain and spinal cord, occupying the open spaces of the ventricles, 

subarachnoid space, cisterns, sulci of the brain, and central canal of the spinal cord. In 

humans and NHPs, CSF turns over about 3–4 times per day and accounts for ~10% of the 

total fluid volume in the intracranial space (47). CSF is in constant movement, driven largely 

by CSF production, cardiac cycle and respiration (see reviews (48; 49)). In addition to bulk 

movement, CSF and interstitial fluid are continuously exchanged, with CSF moving through 

the ventricular ependymal layer, interstitial and perivascular space and perineural lymphatic 

channels (see reviews (50; 51)). The exchange of CSF and interstitial fluid is facilitated by 

convective influx of CSF along the periarterial space into the brain parenchyma through 

the glymphatic system, with these convective forces driving movement of macromolecules 

through the parenchyma (52). This constant mixing and movement of CSF is likely a key 

factor in the broad distribution of ASOs within the CNS.

A combination of immunohistochemistry and live imaging of labeled ASOs have allowed 

for detailed kinetics of early ASO distribution (53). These data support a model for ASO 

distribution where ASOs first associate with the pial membrane and the major cerebral 

surface arteries, suggesting that like other macromolecules, ASOs may access deeper levels 
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of the parenchyma by traveling through intramural perivascular spaces. ASOs then progress 

into the parenchyma likely by direct migration through the glial limitans via gap-junctions 

or transcellular exchange and are detectable in the extracellular space. It is still not clear if 

ASO distribution into the parenchyma is primarily via passive diffusion or convective forces, 

or a combination of both. By 24 hours after dosing, an ASO is present in the intracellular 

space and pharmacologically active. Maximal onset of pharmacological action is typically 

between 1–3 days after injection and is then maintained for weeks after dosing.

Once in the parenchyma, ASOs are able to target the major cell types including neurons, 

astrocytes, microglia and oligodendrocytes (43; 54; 55). One cell population that appears 

partially resistant to the actions of ASOs are cerebellar granule cells, despite robust activity 

in neighboring Purkinje cells (56). The mechanism for this resistance is not yet known.

Distribution into the parenchyma is dose dependent, with an increase in neuronal ASO levels 

with increasing dose (53). Conversely, ASO levels in pia and perivascular spaces tend to 

be more constant across pharmacologically active dose levels. This is likely due to rapid 

absorption and saturation of vascular intramural basement membranes with ASOs, allowing 

for increased penetration across these membranes with increasing doses.

Insight into the pharmacology of ASOs can be gleaned from quantification of ASO activity 

in individual neurons in the dorsal root ganglia (DRG). Due to the unique architecture 

and stereotypical neuronal sizes of the DRG, it is possible to quantify pharmacology in 3 

neuronal subtypes exposed to similar amounts of ASO. Here, all three neuronal populations 

exhibited dose dependent suppression in target RNA uniformly across the population (57). 

This favors a model where low doses of ASOs target most cells modestly and evenly, 

rather than a subset of cells robustly. However, more work is needed to replicate this across 

cellular subtypes, and in human samples, as a limited data set in human patients suggested 

potentially more heterogeneity (58).

Given these principles and observations, it is not surprising that modulation of the ASO 

dosing paradigm can alter distribution. Enhancing convective forces either by increasing 

dose volume or applying percussive force improves distribution of ASOs up the neuraxis. 

Altering dose volume from 7% of total CSF to 17% of CSF changes the cord to cortex 

ratios, with higher cortical levels reached with higher dose volumes. Similarly, ASO bolus 

injection leads to wider and more efficient distribution than slow infusion (42). This is likely 

due to a higher maximal drug concentrations achieved in CSF (CMax) driving ASO into 

productive compartments, as has previously been demonstrated for liver (59). In the liver, 

ASO can be taken up into a productive compartment allowing ASO access to the target 

RNA, and into a non-productive compartment where ASO is unable to access the target 

RNA (59; 60). One can imagine a paradigm where simple changes in delivery technique can 

be used to achieve a desired distribution.
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PRECLINICAL AND CLINICAL EXPERIENCE OF CENTRALLY 

ADMINISTERED ANTISENSE DRUGS

There are currently five approved antisense drugs for neurological diseases (Table 1). Four 

of the five are delivered systemically targeting either skeletal muscle or liver and have been 

previously reviewed (5; 14; 61; 62). The only approved antisense drug that is administered 

by intrathecal injection is nusinersen used for the treatment of spinal muscular atrophy. 

There are nine additional drugs in clinical trials for the treatment of amyotrophic lateral 

sclerosis, Huntington’s disease, Alzheimer’s disease, Parkinson’s disease, and Angelman 

syndrome, all delivered intrathecally. In addition, there are multiple drug discovery programs 

to identify intrathecally administered antisense drugs for the treatment of a both common, 

rare, and ultra-rare neurological diseases (56; 57; 63–70). Highlighting the efficiency and 

acceptance of intrathecally administered ASOs, a personalized antisense drug was recently 

identified and tested in a single patient with a unique form of Batten’s disease (71) and 

more recently a patient with ALS caused by mutation in fused in sarcoma (FUS) gene. A 

comprehensive review of antisense drugs used to treat neurological diseases is beyond the 

scope of this article and the reader is referred to several recent reviews on the topic (5; 

14; 72). Here we will focus on intrathecal antisense drugs, examples that highlight lessons 

learned that translate across the platform.

Spinal Muscular Atrophy: Nusinersen

Spinal muscular atrophy is a severe pediatric neuromuscular disease characterized by muscle 

weakness and atrophy secondary to degeneration and death of neurons. Prior to therapeutic 

intervention, SMA was the most common genetic cause of infant mortality, with the life 

expectancy less than two years of age for the most severe form of the disease (73; 74). 

The disease is caused by mutations or deletions of the survival motor neuron 1 (SMN1) 

gene (75). Humans have a SMN1 paralog (SMN2) which was generated by an inverted 

duplication of the 5Q13 chromosomal region. SMN2 differs from SMN1 by approximately 

5 nucleotides, one of which is a C to T transition in exon 7 that disrupts an exon splice 

enhancer and creates an exon splice suppressor resulting in skipping of exon 7 for the 

approximately 80% of SMN2 transcripts. The transcripts missing exon 7 produce a truncated 

protein that is rapidly degraded (76), whereas the 20% of the transcripts containing exon 7 

make full length SMN protein identical to the protein derived from the SMN1 gene. Thus, 

SMA can be thought of as a SMN protein deficiency disease. This is further supported by 

the observation that patients with more copies of the SMN2 gene tend to have a milder form 

of the disease (77). SMA presents as a phenotypic spectrum that can roughly be classified as 

Type I SMA, Type II SMA and Type III SMA. Type I SMA being infantile onset, in which 

infants never gain the ability to sit and have short life-expectancy (< 2 years). Types II and 

III SMA have later ages of onset, usually in early childhood. Type II SMA children achieve 

the ability to sit but not walk independently and Type III SMA children gain the ability to 

walk, but often lose this ability as they develop (78).

Nusinersen is antisense drug that binds to a site in intron 7 of the SMN2 pre-mRNA, 

displacing hnRNPA1/A2 proteins which negatively regulate splicing of exon 7, resulting in 

full length SMN2 transcripts (23; 39). In multiple preclinical models, nusinersen enhances 
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SMN2 exon 7 inclusion, improves muscle function and enhances survival (23; 79–83). 

These findings plus safety and tolerability studies in rodents and non-human primates 

supported advancing the drug into development. The drug was broadly studied in all SMA 

Types, demonstrating beneficial effects across the different patient populations (22; 84–89). 

Nusinersen has been approved for the treatment of SMA in over 40 different countries.

There are several important lessons from nusinersen that could have broader implications for 

antisense drugs being used to treat other neurological diseases. First, it was a collaborative 

project by the many stakeholders which effectively capitalized on shared interests in finding 

a therapy. Second, the studies demonstrated for the first time that SMA is a treatable disease. 

Third, studies in genetically diagnosed, pre-symptomatic patients demonstrated remarkable 

benefit, with many children achieving motor milestones that included sitting, standing, and 

walking within the normal age appropriate windows (89). These findings demonstrated that 

treating before symptoms develop may prevent or markedly minimize disease symptoms 

for a neurodegenerative disease, which was intuitive, but not previously proven. Finally, 

nusinersen was important for the ASO field as it demonstrated that the technology can create 

commercially successful drugs that have a major impact on patients’ lives.

Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease), is a severe 

neurodegenerative disease with progressive muscle weakness and paralysis leading to 

respiratory failure and death (90). The primary pathology observed in ALS is degeneration 

and death of upper and lower motor neurons and denervation-induced muscle atrophy. 

Although the cause of disease for the majority of cases is unknown, approximately 10 

to 20% of cases are inherited. There are more than 50 genes that cause or contribute to 

ALS identified to date (91). Mutations in the superoxide dismutase 1 (SOD1) gene was the 

first example of a gene that causes familial forms of ALS and accounts for approximately 

20% of familial ALS cases (92). More than 170 different ALS causing mutations have 

been identified. There are multiple molecular mechanism(s) proposed by which mutations 

in SOD1 protein cause ALS, but to date there is no agreement on a unifying mechanism 

(93). Most data implicate a toxic gain of function in the SOD1 protein rather than a loss of 

function (93; 94). Examining the function of more recently identified genes that contribute 

to the disease does not identify a common mechanism that contributes to ALS. Putative 

ALS-causing genes appear to impact several important areas of cell biology including RNA 

metabolism (e.g. TARDBP. FUS. hnRNPA1, MATR3, C9orf72, ANG), autophagy (OPTN, 

SQSTM1, TBK1), intracellular transport (DCTN1, TUB4A, PFN1) and proteostasis (SOD1, 

VCP), suggesting that perturbation of several biological pathways can lead to dysfunction 

and death of motor neurons.

Targeting SOD1 as a potential treatment for ALS was the first use of antisense 

oligonucleotides for treating neurodegenerative diseases (44). A key factor in deciding to use 

SOD1 as a model system to learn about the behavior of ASOs delivered into the CNS was 

the overwhelming data supporting that the mutant SOD1 protein caused ALS through a toxic 

gain of function, providing a well validated target (93; 95–97). In addition, the initial study 

population was well defined and had a consistent natural history based on specific mutation, 
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e.g., a good genotype to phenotype correlation (98; 99). Finally, several systemically dosed 

second-generation 2’-MOE modified ASOs had advanced in the clinic, providing comfort 

regarding safety and tolerability when applied systemically.

Preclinical studies documented dose-dependent reduction in SOD1 mRNA and protein in 

spinal cord and different brain regions following injection into the lateral ventricle of 

wild-type and transgenic rats (44). Based on the efficacy and safety of the ASO drug, ISIS 

333611, it was advanced into a phase 1 clinical study in ALS patients with mutations in 

SOD1 (100). Because this was the first antisense drug to be delivered via the intrathecal 

route, the first study was primarily focused on safety. A 12- hour infusion of the drug 

into the intrathecal space was well tolerated. During the conduct of the study, significant 

advances in screening ASOs for CNS applications had been made resulting in more potent 

and well-tolerated drugs. In addition, preclinical data demonstrated that broader delivery 

within the CNS and better efficacy was achieved by bolus injection compared to constant 

infusion (42), therefore it was decided to terminate development of ISIS 333611 and 

advance a drug into development that took advantage of the improved screening.

Tofersen was identified following extensive screening in cell culture and transgenic rodents 

against the human SOD1 pre-mRNA. Tofersen was found to be more potent than ISIS 

333611(46). It exhibited enhanced activity in mouse and rat SOD1 ALS models (46). 

Tofersen was advanced into a single and multiple ascending dose (MAD) Phase 1/2a study 

in ALS patients with pathogenic mutations in SOD1 gene. Forty-eight subjects participated 

in the study and received all planned doses, ranging from 20 to 100 mg in the MAD portion 

of the study (101). Patients in the MAD portion of the study received 5 doses on days 

1, 15, 29, 57 and 85 by bolus intrathecal injection. Dose proportional plasma exposure 

was observed, but trough CSF concentrations (e.g. CSF concentration of the drug prior to 

administration of the next monthly dose) were less than dose proportional. The drug was 

generally well tolerated with most adverse events were ascribed to the underlying disease or 

the intrathecal procedure. A reduction from baseline in CSF SOD1 protein was observed in 

the 40, 60 and 100 mg dose groups, consistent with the drugs mechanism of action. In this 

short duration study, there was a lessening of decline in clinical measures of the disease in 

the 100 mg dose group which was significant in patients with fast progressing mutations. 

Consistent with decrease in rate of decline in clinical measures there was a decline in plasma 

and CSF phosphorylated neurofilament heavy chain and neurofilament light chain from 

baseline values. These encouraging data supported advancement of the drug into a pivotal 

Phase 3 study, which is currently ongoing (NCT02623699).

Hexanucleotide expansions in the first intron of the C9orf72 gene have recently been 

described as a pathogenic genetic change that leads to ALS and frontotemporal dementia 

(FTD) (3; 4). Mutations in C9orf72 account for approximately 8–10% of all ALS cases and 

40% of familial cases. The size of the hexanucleotide repeat can range from fewer than 20 

repeats in healthy controls to several thousand repeats in affected individuals (3; 4). The 

mechanism(s) by which the hexanucleotide expansion causes neurodegenerative diseases 

are not well understood. The protein product from the C9orf72 gene has a conserved 

DENN domain and can function as a guanine nucleotide exchange factor for Rab proteins 

(102). Most data support three potential non-exclusive mechanisms; RNA toxicity in which 
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the expanded repeat sequesters RNA binding proteins, translation of the repeat RNA into 

peptides (RAN translation), and decrease in C9orf72 expression (3; 103–105). Toxicity from 

repeat containing RNAs or their RAN translation products appears to synergize with reduced 

C9orf72 protein produced from the affected C9orf72 allele (106).

ASOs designed to bind to the C9orf72 transcript containing the hexanucleotide expansion 

decreased the number of repeat-associated RNA foci, improved electrophysiological 

changes, decreased sensitivity to neurotoxins and repeat associated dipeptides in human 

fibroblasts and iPSCs (104; 107–109). In mice expressing human C9orf72 gene with a 500 

nucleotide hexanucleotide expansion, one time treatment with an ASO targeting the C9orf72 

transgene reduced dipeptides derived from the expansion and attenuated the behavioral 

effects (110).

The collective data support pathogenesis arising from an acquired toxicity combined with 

the reduction in C9orf72 expression observed in the clinical samples. Correspondingly, 

an “on disease mechanism” therapy would be to suppress the repeat containing RNAs 

without exacerbating reduction in protein coding C9orf72 mRNAs. Consistent with this, 

an antisense drug has been identified that selectively targets C9orf72 transcripts with 

repeat expansions, but which does not target the majority of C9orf72 protein-encoding 

RNAs, thereby preserving expression of C9orf72 protein from RNAs produced by the 

unaffected C9orf72 allele (107). This drug is currently in Phase 1/2 MAD clinical study 

(NCT03626012).

Given the early success targeting familial forms of ALS, there is increased interest in 

identifying targets for sporadic forms of the disease. A frequent histological observation 

in motor neurons in the cortex and spinal cord from autopsies of ALS patients is the 

presence of cytoplasmic inclusions which contain TAR DNA-binding protein 43 (TDP-43) 

(111). TDP-43 is an RNA binding protein involved in transcription, RNA processing and 

nuclear cytoplasmic transport. Another recently identified pathological feature identified in 

induced pluripotent stem cell (iPSC) derived motor neurons and autopsy samples from ALS 

patients is a defect in nuclear import, possibly through a nuclear pore defect (105; 112). 

These observations are being extensively studied and are not only providing insights into 

the pathogenesis of ALS but also identifying potential drug targets. As an example, the 

cytoplasmic retention of TDP-43 is associated with loss of nuclear TDP-43 resulting in 

changes in RNA metabolism (113; 114).

One transcript that is markedly decreased in ALS-derived iPSC and spinal cord tissues 

is the one encoding stathmin-2, a tubulin binding protein thought to play a role in 

neurite outgrowth by affecting microtubule dynamics. Investigation into the mechanism of 

stathmin-2 decrease in neurons revealed the presence of a cryptic splice and polyadenylation 

sites within intron 1 of the stathmin-2 pre-mRNA, adjacent to which are a trio of TDP-43 

binding sites (115; 116). Loss of nuclear TDP-43 results in aberrant splicing and early 

polyadenylation of the stathmin-2 transcript, resulting in the decreased levels of the protein. 

Strategies to increase the expression of stathmin-2 could be of therapeutic utility for ALS 

patients.
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A second target for ASO therapy in sporadic ALS is the RNA encoding the RNA 

binding protein ataxin-2, which was identified in a yeast screen as TDP-43 modifier (117). 

While a long trinucleotide expansion in the ataxin-2 gene is causative of ataxia (118), an 

intermediate CAG repeat length (27 to 33 repeats) in found at an enhanced rate in sporadic 

ALS patients (117). Genetic depletion or ASOs to decrease ataxin-2 expression increase 

survival in a mouse model of TDP-43 neurodegenerative disease, providing a therapeutic 

rationale for targeting ataxin-2 as a potential therapy for ALS (119).

Although still early, these results provide promise that disease modifying therapies for ALS 

patients will become available.

Alzheimer’s Disease

Given the high societal impact and unmet need, evaluating multiple therapeutic targets and 

strategies for the treatment of Alzheimer’s disease (AD) is warranted. Two therapeutic 

targets heavily researched as potential therapies for Alzheimer’s disease are amyloid 

precursor protein (APP) and tau (120). There are multiple approaches being pursued for 

modulating APP, including preventing processing of the protein and enhancing clearance 

of amyloid deposits, which to date have been disappointing in the clinic (120). Limited 

preclinical work has been conducted testing the efficacy of APP targeting ASOs in cell 

culture and mouse models of AD (121–124). Given the limited clinical success of agents 

that modulating the processing of APP or enhance clearance of amyloid plaques, preventing 

the synthesis of APP merits further investigation as a therapeutic strategy for Alzheimer’s 

disease.

Tau protein which is coded for by the microtubule-associated protein tau (MAPT) has been 

broadly implicated in contributing to pathology in Alzheimer’s, primary tauopathies and 

other neurodegenerative diseases (120; 125). Like most other proteinopathies associated 

with neurodegenerative diseases the precise mechanism by which the protein causes disease 

is not well understood but appears to be linked to intracellular misfolding and aggregation 

of the protein and cell to cell spread of pathogenic forms. It is worth noting that in contrast 

to amyloid deposits, the appearance of tau deposits is closely linked to onset of symptoms 

in AD patients (120). There are multiple drugs being tested that affect folding, prevent cell 

to cell spread, block synthesis, or enhance clearance of tau protein. ASO can be used to 

block the synthesis of tau protein or synthesize a potentially less pathogenic form of tau 

through alternative RNA splicing and are currently being explored as potential therapies 

(41; 126–129). An RNase H ASO targeting MAPT pre-mRNA decreased the amount of 

phosphorylated tau in brain tissue, preserving hippocampal neurons and enhancing survival 

in a mouse model expressing a pathogenic form of tau (41). In addition, lowering of tau 

protein using an ASO reduced sensitivity to seizures in mice (126), consistent with genetic 

manipulation of tau (130). IONIS-MAPTRx is an ASO that reduces the synthesis of tau 

protein through an RNase H mechanism of action is currently in a Phase1/2 clinical study in 

early Alzheimer’s disease patients (NCT03186989).
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Parkinson’s Disease

Parkinson’s disease (PD) is a progressive movement disorder and is the second most 

common neurodegenerative disease affecting approximately 1% of the population over 60 

(131). Parkinson’s disease can be idiopathic or familial, with both dominant and recessive 

inheritance patterns. Though palliative care exists, there is no disease-modifying therapy. 

The pathological hallmark of idiopathic PD and some familial PD is accumulation of 

alpha-synuclein into Lewy bodies and Lewy neurites, and subsequent loss of dopaminergic 

neurons (132). Alpha-synuclein is thought to be an underlying driver of PD, as duplication 

and triplication of SNCA, the gene that encodes alpha-synuclein, causes autosomal-

dominant PD. Similarly, alpha-synuclein fibrils injected directly into the CNS can propagate 

and are directly toxic to dopaminergic neurons (133). Thus, it is not surprising that 

suppression of alpha-synuclein with ASOs has disease modifying benefits in multiple 

models (134; 135). Indeed, preventing production of alpha-synuclein can even reverse 

existing pathology and prevent dopaminergic cell death (135).

Dominantly inherited mutations in leucine-rich repeat kinase 2 (LRRK2) are the most 

common familial cause of PD (136). Patients with LRRK2 mutations are clinically and 

pathologically indistinguishable from idiopathic PD. ASO-mediated suppression of LRRK2 

in an alpha-synuclein model of PD reduced the pathological propagation of alpha-synuclein, 

prevented motor deficits and dopaminergic cell loss (137). Given that ASOs to reduce 

CNS LRRK2 are delivered centrally with limited systemic exposure, ASOs do not have the 

same systemic on-target liabilities that small-molecule inhibitors of LRRK2 do. A LRRK2 

targeting ASO is currently in an early stage clinical study (NCT03976349).

ASO drugs have the potential to be transformative disease-modifying therapies for PD. 

By targeting the primary underlying disease mechanism, either alpha-synuclein or LRRK2, 

dopaminergic cell loss can be prevented. Suppression of these targets is clearly beneficial 

after established pathology. PD is a particularly interesting case for disease modifying 

therapies, because good palliative therapies already exist. It is possible, that intervention in 

later, more established disease cases may have a greater opportunity for benefit than other 

neurodegenerative diseases, because combination therapy is possible. One can envision a 

scenario where disease pathology and progression are halted with an ASO, and established 

symptoms can be well managed with existing palliative care.

Huntington’s Disease: Tominersen

Huntington’s disease (HD) is caused by expansion of a CAG repetitive sequence in the 

first intron of the huntingtin gene (HTT) (1). The CAG codon is translated into glutamine, 

resulting in an expanded polyglutamine track in the amino terminus of the HTT protein. 

Although the normal cellular function of HTT and the mechanism(s) by which the expanded 

CAG tract causes HD are not well understood, most data point to the mechanism being a 

dominant gain of function of the protein (138). At least three different antisense approaches 

have been investigated as potential treatment for HD; selective blocking translation of 

the RNA containing the CAG expansion, selective reduction of the mutant RNA and 

non-selective knockdown of wild-type and mutant HTT RNAs (43; 139–144). In general, 

blocking translation of the mutant HTT RNA (mHTT) has proven to be challenging due 
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to the limited in vivo potency of the ASOs used. Allele-selective silencing through either 

RNase H or siRNA selective targeting of single nucleotide polymorphisms linked to the 

disease-causing allele would be a promising strategy, but these approaches are limited by 1) 

the limited sequence space available surrounding unique single nucleotide polymorphisms 

for designing ASOs which could impact potency and safety of the antisense drug and 2) 

because there is no polymorphism shared among all HD patients- a single drug would only 

be applicable to a sub-population of HD patients (145). The most advanced approach is non-

allele selective reduction of huntingtin-encoding RNAs through an RNase H mechanism. 

Preclinical data in mouse models have demonstrated dose-dependent reduction of huntingtin 

expression yielding sustained, partial disease reversal including improvements in clinical 

phenotypes in several mouse model of HD and in an aggressive mouse model, stoppage of 

loss of brain mass (43; 45; 146).

A Phase 1 clinical study evaluating the safety and tolerability of tominersen (also known 

as IONIS-HTTRx or RG6042) has recently been completed (147). Tominersen is a chimeric 

2’-MOE/DNA ASO designed to reduce both mutant and wild-type HTT expression through 

an RNase H mechanism of action. The first-in-human study was a randomized placebo-

controlled dose escalation study in which subjects were administered four monthly doses 

of tominersen by bolus intrathecal injection. Five dose groups were analyzed, 10, 30, 

60, 90 and 120 mg. The drug was well tolerated at all dose levels with adverse effects 

being mild or moderate in severity and none ascribed to the study drug. Dose-dependent 

trough CSF concentrations were observed which appeared to plateau at the highest dose 

groups. Importantly, a dose dependent reduction in CSF levels of mHTT protein were 

observed supporting the mechanism of action of the drug. No group-wise changes in clinical 

outcomes were observed, which was expected given the short treatment duration and small 

number of patients in each cohort (147). A global Phase 3 study of tominersen is currently 

enrolling, 801 subjects, who will be randomized to receive placebo, 120 mg tominersen 

every 2 months or 120 mg tominersen every 4 months (Generation HD1, NCT037662849).

Two allele selective antisense drugs have advanced into clinical studies, WVE-120101 and 

WVE-120102 (Table 1). However, there is limited publicly available information regarding 

the chemistry, design and preclinical data for these antisense drugs.

Spinocerebellar Ataxias

The spinocerebellar ataxias (SCAs) are a growing class of more than 30 diseases (148). 

They are progressive neurodegenerative diseases characterized predominantly by cerebellar 

dysfunction, which is often accompanied by broader CNS involvement. Patients typically 

suffer from incoordination, loss of balance, speech impairments and early mortality (149). 

There are no disease modifying therapies. The most prevalent diseases in the class are 

dominantly inherited SCAs caused by expansion mutations with a toxic gain of function. 

This group includes, but is not limited to, SCA1, SCA2, and SCA3 caused by CAG 

expansions in the ATXN1, ATXN2, and ATXN3 genes, respectively.

ASO-mediated suppression of the disease genes in rodent models robustly ameliorates 

symptoms. Transient suppression of Atxn1 in SCA1 knock-in mice results in sustained 

improvement of motor phenotype, improvement of MRS scores, normalization of SCA1 
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disease-associated genes and extension of survival (56). Suppression of ATXN2 in mouse 

models of SCA2 improves motor function, restores Purkinje cell neural networks and 

normalizes expression of SCA2-related proteins expressed in Purkinje cells (67). ASO-

mediated lowering of ATXN3 results in reversal of nuclear ATXN3 accumulation, dose-

dependent clearance of soluble and high molecular weight species, mitigation of motor 

deficits, repair of cerebellar network dysfunction, and gene expression changes (63; 150; 

151).

In these disease models, partial and transient suppression of the disease gene lead to a 

sustained improvement in phenotype. Interestingly, this improvement of phenotype did 

not happen immediately, but once it did, it was sustained. This suggests a model where 

suppression of the disease-causing gene allows the system to recover, and once recovered, 

these slowly progressing diseases take time to become symptomatically detrimental again. 

This is similar to previous observations in models of HD, another CAG expansion disease 

(43; 152).

CONCLUSIONS

The approval of nusinersen as a treatment for SMA has helped validate ASOs as a viable 

therapeutic approach for the treatment of neurodegenerative diseases, neurodevelopmental 

disorders, and possibly other diseases of the CNS. Several additional clinical studies have 

provided proof of mechanism, e.g. modulation of the targeted protein and encouraging 

evidence of clinical benefit. The ongoing larger and longer-term studies are needed to 

provide robust evidence of clinical benefit, which will support the registration of additional 

antisense drugs. Like most technologies, ASO technology continues to evolve resulting 

in drugs with improved potency and safety profile. To help support use in large patient 

population more convenient methods of administration will be needed. In summary, ASOs 

may finally provide a therapeutic platform for developing drugs for the treatment of severe 

neurodegenerative and neurological diseases.
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Figure 1: 
RNA degradation antisense mechanisms. RNA is transcribed from DNA into a precursor 

form (pre-mRNA) which undergoes several post-transcriptional processing events, such 

as splicing to remove intronic sequence forming the mature RNA (mRNA). The mRNA 

is exported out of the nucleus to the cytoplasm where it is translated into its protein 

product. Two broadly used antisense mechanisms result in selective degradation of the 

targeted RNA. Single stranded ASOs that work through the RNase H1 mechanism bind 

to the targeted RNA and recruit RNase H1 to the ASO-RNA heteroduplex in either the 

nucleus or cytoplasm. RNase H1 catalyzes the degradation of the RNA strand releasing 

the ASO to bind to another target RNA. A second common antisense mechanism, siRNA, 

utilizes double stranded RNA or RNA analogs which are dissociated within the cell and 

the antisense strand (also commonly referred to as the guide strand) binds to argonaute 2 

(Ago2) protein in a facilitated manner. The antisense strand (guide RNA) bound to the Ago2 

protein directs the complex to the targeted RNA through Watson-Crick base pairing to a 

complementary sequence in the targeted RNA. Ago2 cleaves the targeted RNA and after 
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cleavage the Ago-2/RNA complex is released allowing it to bind and cleave additional target 

RNAs.
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Figure 2: 
Non-RNA degradation antisense mechanisms (occupancy only). RNA is transcribed from 

DNA into a precursor form (pre-mRNA) which is undergoes several post-transcriptional 

processing events, such as splicing to remove intronic sequences and polyadenylation to 

form the mature RNA (mRNA). The mRNA is exported out of the nucleus to the cytoplasm 

where it is translated into its protein product. ASOs can be designed to modify RNA 

processing events in the nucleus such as modulate RNA splicing to exclude or include a 

protein coding exon. In some cases, excluding specific exons could result in a truncated 

protein product or alternatively, the RNA missing a specific exon is recognized by the cell 

as mis-spliced and is degraded by the non-sense mediated decay (NMD) pathway. ASOs can 

also be designed to alter polyadenylation site selection resulting in loss of RNA regulatory 

sequences in 3’-untranslated regions of the RNA. In the cytoplasm, ASOs can be designed to 

decrease translation of the RNA into proteins by binding to sequences in the 5’-untranslated 

region of the mRNA or by blocking microRNA binding to the RNA. ASOs can also be 

designed to block translation starting at an upstream open reading frame (uORF) or disrupt 

regulatory RNA structures resulting in an increase in protein translation.
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